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Review 

HLA variation and antigen presentation in COVID-19 and 
SARS-CoV-2 infection 
Danillo G Augusto1,2 and Jill A Hollenbach1,3   

The extraordinary variation of the human leukocyte antigen 
(HLA) molecules is critical for diversifying antigen presentation 
to T cells. Coupled with the rise of novel strains and rapidly 
evolving immune evasion by SARS-CoV-2 proteins, HLA- 
mediated immunity in COVID-19 is critically important but far 
from being fully understood. A growing number of studies have 
found the association of HLA variants with different COVID-19 
outcomes and that HLA genotypes associate with differential 
immune responses against SARS-CoV-2. Prediction studies 
have shown that mutations in multiple viral strains, most 
concentrated in the Spike protein, affect the affinity between 
these mutant peptides and HLA molecules. Understanding the 
impact of this variation on T-cell responses is critical for 
comprehending the immunogenic mechanisms in both natural 
immunity and vaccine development. 
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Introduction 
Since nearly the start of the global COVID-19 pandemic, 
there has been an intensive effort to deduce the genetic 
and immune features that may underlie the variation in 
susceptibility to infection with SARS-CoV-2, as well as 
disease outcomes in COVID-19. Most COVID-19 patients 
are either asymptomatic or experience relatively mild 

symptoms, including fever and cough, but some individuals 
develop severe pneumonia; a subset of those individuals 
will progress to develop the acute respiratory distress syn-
drome. Acutely ill patients may further develop shock and 
multiple organ failure [1]. Many specific demographic, 
medical, and behavioral risk factors have been identified as 
contributory to more severe disease and poor outcomes. 
Advanced age, comorbidities such as diabetes and hy-
pertension, smoking history, and African American ancestry 
have all been associated with increased morbidity and 
mortality in COVID-19, for example [2]. 

Infection with SARS-CoV-2 activates both innate and 
adaptive immune responses. The adaptive immune re-
sponse is a critical component of protection from viral pa-
thogens. CD4 T cells promote virus‐specific antibodies 
through their action on T‐dependent B cells, while CD8 T 
cells’ cytotoxic capacity may help kill virally infected cells. 
T-cell responses to SARS-CoV-2 are crucial factors for re-
cognizing and killing infected cells [3]. At the same time, T 
cells from patients with severe disease have been shown to 
have phenotypic characteristics associated with differential 
cytokine secretion, and that these differences are antigen 
dependent [4]. Because of their pivotal role in antigen 
presentation to T cells, the genes encoding the human 
leukocyte antigen (HLA) molecules have been a primary 
focus in genetic association studies across a multitude of 
infectious and immune-mediated disease. We and others 
have been actively engaged in studies to pinpoint specific 
HLA alleles associated with the risk for SARS-CoV-2 in-
fection and/or specific COVID-19 disease outcomes, and 
more recently, vaccine response. Proceeding in tandem, 
numerous efforts have sought to identify the viral antigens 
presented either by specific HLA or broadly across allo-
types, and in particular, those acting as T-cell epitopes. By 
synthesizing information pertinent to antigen presentation 
and T-cell reactivity with HLA genetic associations, we are 
beginning to develop a more comprehensive picture of the 
immune mechanisms underpinning differential host re-
sponse to SARS-CoV-2 exposure and infection. 

The extraordinary variation of human 
leukocyte antigen molecules is determinative 
in antigen presentation 
The HLA genes are located within the human major his-
tocompatibility complex (MHC), located on the short arm of 
chromosome 6 (p21.3). HLA molecules are critical 
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components of the adaptive immune system, which med-
iates the specific destruction of infected cells and the pro-
duction of antibodies. Classical HLA class I molecules 
(HLA-A, HLA-B, and HLA-C) are expressed on all nu-
cleated cells and contain two noncovalently bound poly-
peptide chains. The polymorphic alpha chain is encoded by 
the HLA gene within the MHC region, while the gene for 
the nonpolymorphic beta-2 microglobulin chain is located 
on chromosome 15. HLA class I molecules present en-
dogenous peptides, including those derived from in-
tracellular pathogens such as viruses. Foreign peptides 
presented on class I antigens are recognized by cytotoxic 
CD8 T lymphocytes [5]. Classical HLA class II molecules 
(HLA-DR, HLA-DQ, and HLA-DP) are heterodimers 
composed of an alpha and a beta chain encoded by genes 
within the MHC, and present peptides generated in en-
dosomes from protein sources both inside and outside the 
presenting cell to CD4 T lymphocytes [6]. In contrast to the 
constitutive expression of class I molecules, the expression 
of class II molecules is limited to cells of specialized func-
tion in immunity, collectively known as professional an-
tigen-presenting cells, including primarily dendritic cells, 
macrophages, and mature B lymphocytes. In addition, HLA 
class II molecules are highly expressed on the surface of 
epithelial cells in both the lung and intestine [7], which is 
potentially relevant in the context of SARS-CoV-2 infection. 

The HLA are the most polymorphic genes of the human 
genome [8]. More than 30,000 HLA alleles have been 
identified to date, which encode more than 18 000 un-
ique proteins (allotypes) [9]. The majority of the nu-
cleotide substitutions in HLA alleles are concentrated in 
the exons encoding the peptide-binding groove and the 
region of interaction with T-cell receptors, and, im-
portantly, the most polymorphic positions are those that 
affect peptide binding [10]. This remarkable variation in 
the peptide-binding groove affects its geometry, charge 

distribution, and hydrophobicity, determining interac-
tion with individual peptides. Diverse HLA molecules 
may exhibit distinctive peptide-binding repertoires, 
while individuals with different HLA genotypes may 
exhibit a differential ability to present specific peptides 
and elicit immune responses. These variable elements in 
antigen presentation underlie the many known HLA 
associations with human disease [11]. 

Association of human leukocyte antigen 
polymorphism with COVID-19 disease course 
HLA class I and class II alleles have been previously 
associated with the severe acute respiratory syndrome 
caused by SARS-CoV [12]. The most robust genetic 
association studies to date for SARS-CoV-2 infection 
have primarily focused on disease outcomes, given the 
inherent difficulty in assessing infection risk and con-
trolling for exposure. In many cases, these studies have 
specifically examined severe outcomes in disease 
(e.g. need for mechanical ventilation or death). Thus far, 
numerous HLA class I and II alleles have been asso-
ciated with disease outcomes, but without clear con-
sensus. Indeed, some large studies, in the context of 
either genome-wide-association studies [13] or large 
HLA databases [14], have failed to show a significant 
influence of HLA genotype on disease. 

Nevertheless, some interesting results have emerged 
and are summarized in Table 1. For example, HLA- 
C*04:01 was found to be associated with a severe clinical 
course of COVID-19 in European patients, with carriers 
of this allele having twice the risk of requiring me-
chanical ventilation [15]. In contrast, a different class I 
allele, HLA-A*11:01, was associated with severe disease 
in one Japanese cohort [16], while a class II allele, HLA- 
DRB1*09:01, was identified in another [17]. Of note, 
HLA-A*11:01 was also associated with severe outcome in 

Table 1 

Summary of HLA associations with COVID-19 outcomes.           

Allele OR (CI 95%) p-value corrected p-value Country Association with Reference  

Class I HLA-Aa11:01 3.41 (1.50–7.73)  3.34E-03 Japan Severe disease [16] 
HLA-Aa11:01 2.33 8.51E-03  Japan Severe disease [18] 
HLA-Aa30:02 2.2 (1.4–3.6) 1.70E-03 1.00E-02 USAa Infection [22] 
HLA-Ba15  1.00E-02  Egypt Survival [23] 
HLA-Ba15:01 2.4 (1.54–3.64) 5.67E-05 1.70E-03 USA Asymptomatic infection [21] 
HLA-Ba51:01 3.38 0.007017  Japan Severe disease [18] 
HLA-Ca04:01 5.4 (1.9–15.1) 1.10E-04 7.40E-03 Germany Severe disease [15] 
HLA-Ca14:02 4.75 3.03E-03  Japan Severe disease [18] 

Class II HLA-DQB1a06:02  1.00E-04 1.60E-03 Italy Infection [24] 
HLA-DRB1a04 0.289 5.00E-03  Iran Mild disease [20] 
HLA-DRB1a04:01  3.00E-03  UK Asymptomatic infection [19] 
HLA-DRB1a08:02 9.0 (2.2–37.9) 1.00E-02 3.00E-02 USAb Infection [22] 
HLA-DRB1a09:01 3.62(1.57–8.35) 2.51E-03  Japan Severe disease [17] 
HLA-DRB1a15:01  1.50E-03 4.80E-02 Italy Infection [24] 

OR = odds ratio; CI = confidence interval. 
a African American. 
b Hispanic.  
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a Chinese cohort [18], further supporting that observa-
tion. In less severe disease, asymptomatic infection is 
particularly interesting, as it suggests the capacity for 
early viral clearance. Langton et al. [19] found a sig-
nificant association of HLA-DRB1*04:01 in asympto-
matic patients with European ancestry relative to those 
with severe disease. Interestingly, this allele was re-
cently associated with milder disease in an Iranian pa-
tient population [20]. Likewise, in our own work, we 
identified HLA-B*15:01, a class I allele in strong linkage 
disequilibrium with HLA-DRB1*04:01, as strongly asso-
ciated with asymptomatic infection in patients with 
European ancestry [21]. Discrepancies across studies 
may be attributed to differences in the definition of 
disease phenotypes, study population, and often limited 
sample sizes. Thus, while the results are mixed, some 
consistent patterns are beginning to emerge with respect 
to HLA associations in SARS-CoV-2 infection, and may 
serve as a basis for interpreting studies related to antigen 
presentation. 

Immunoinformatics prediction of SARS-CoV- 
2 peptide-binding affinity to human leukocyte 
antigen 
A series of early in silico analyzes pointed to HLA as a 
relevant molecule for SARS-CoV-2 risk and an important 
target for vaccine development [25–28]. Interestingly, it 
was shown that HLA-B4601 has a low predicted binding 
of peptides for SARS-CoV-2. This observation suggests 
that individuals expressing this molecule may be more 
vulnerable to COVID-19 [27], which corroborated pre-
vious results showing HLA-B*46:01 association with 
SARS risk [29]. In contrast, HLA-B1503 was predicted 
to protect against COVID-19 by having the greatest 
ability to present highly conserved SARS-CoV-2 pep-
tides to T cells [27]. 

Most protein-level mutations in all recently discovered 
SARS-CoV-2 strains are concentrated in the Spike pro-
tein (Figure 1), the main target for COVID-19 vaccines  
[30,31] owing to its high antigenicity and capacity to 
induce robust immune responses [32,33]. Not surpris-
ingly, variation in SARS-CoV-2 strains can also affect 
HLA binding and antigen presentation, whereby a given 
HLA allotype that may efficiently present a wild-type 
peptide has differential capacity to present a mutant 
strain (Figure 2). NetMHCpan-4.1 and NetMHCIIpan- 
4.0 are tools that use tailored machine learning strategies 
to integrate predictors trained on binding affinity data 
and mass spectrometry experiments [34]. Leveraging 
these tools, Nersisyan et al. have created a tool that 
comprehensively tracks how SARS-CoV-2 mutations are 
predicted to affect HLA binding [35]. By curating their 
data, we can observe distinct patterns of HLA affinity to 
different strains (Figure 3a). Delta, highly contagious  
[36], and Omicron, heavily mutated and associated with 

an increased risk of re-infection [37,38], are the two most 
prevalent SARS-CoV-2 variant strains to date. Interest-
ingly, Omicron is the variant that encodes the largest 
number of epitopes predicted to strongly bind both 
HLA class I and class II (Figure 3b), with even more 
pronounced differences for the Spike protein (Figure 
3c). Although the predictions do not necessarily correlate 
with T-cell responses, these data allow us to speculate 
that Omicron mutations, particularly in the spike pro-
tein, may not have a detrimental overall effect on HLA- 
mediated T-cell immunity. HLA class II accounts for 
more than 90% of the stronger binding predictions for all 
SARS-CoV-2 variants. Among HLA class I, HLA-A ac-
counts for most of the stronger binding predictions, 
while HLA-B has the most significant number of weak 
binding predictions (Figure 3d). In HLA class II, HLA- 
DQ is predicted to bind strongly to a small number of 
peptides and accounts for most of the weak binding 
predictions. Omicron’s 29 protein-level mutations in the 
Spike protein are collectively predicted to change the 
affinity of 143 peptide-HLA class I and 85 peptide-HLA 
class II pairs (Supplementary Table 1). On the other 
hand, the mutations observed in Delta have an overall 
less impact on allele-specific HLA–peptide-binding af-
finity than that observed in Omicron. Supplementary 
Table 2 gives the prediction of the most significant in-
teractions between specific HLA molecules and Spike 
proteins lost because of the mutations observed in 
Omicron and Delta. Numerous bioinformatic predictions 
for SARS-CoV-2 T-cell epitopes have also been under-
taken to narrow the search space for relevant epitopes  
[40–42]. Many of these efforts were designed and vali-
dated to predict dominant, promiscuous epitopes, in-
dependent of ancestry and HLA polymorphism [43], 
identifying the most parsimonious set of 25-mers to 
cover the largest population [40]. These immunoinfor-
matic approaches generally compare multiple SARS- 
CoV-2 sequences and use different algorithms to predict 
the HLA affinity for epitopes from the 10 unique SARS- 
CoV-2 proteins. 

Human leukocyte antigen variation in antigen 
presentation and SARS-CoV-2 T-cell immunity 
Although in silico prediction is extremely useful for 
identifying antigenic peptides, several steps in the an-
tigen presentation pathway may represent a limitation 
for this strategy. Examples are the protein degradation in 
the endosomal pathway, degradation of peptides by 
aminopeptidases in the cytosol, and translocation into 
the endoplasmic reticulum [44], which are not always 
integrated into the predictive algorithms. In addition, 
there are other infection-related variables, such as the 
changes that the virus causes in the expression of host 
proteins relevant for antigen presentation machinery, 
including HLA expression itself. 
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However, despite these limitations, studies have de-
monstrated that multiple SARS-CoV-2 peptides pre-
dicted to bind HLA can elicit T-cell responses. Early 
investigations demonstrated that while there is some 
overlap, many SARS-CoV-2 epitopes for CD8 T cells are 
HLA specific [45]. Saini et al. performed a genome-wide 
T-cell epitope mapping and identified 122 immunogenic 
and a subset of immunodominant SARS-CoV-2T-cell 
epitopes [46]. Another study applied peptide-loaded 
HLA tetramers to perform an ex vivo analysis of pre- 

existing induced SARS-CoV-2-specific CD8+ T cells 
and identified a set of immunodominant peptides [47]. 
Analyzing 31 patients with COVID-19, Gangaev et al.  
[48] analyzed peptide-HLA class I complexes restricted 
to 10 common HLA molecules and identified 18 re-
cognized by CD8+ T cells. They further analyzed CD8 
T responses and observed the gene expression patterns 
of constrained T-cell re-activation, in addition to high 
expression of the gene NKG2A and lack of cytokine 
production. More recently, mass spectrometry-based 

Figure 1  

Current Opinion in Immunology

Genome organization, virion structure, and overview of protein-level mutations in SARS-CoV-2 strains. (a) Genomic organization of SARS-CoV-2. 
ORF1a and ORF1b encode 16 nonstructural proteins (NSP1–NSP16). NSP3 and NSP5 (ORF1a) encode the papain-like protease and 3CL-protease, 
respectively. NSP12 encodes RNA-dependent RNA polymerase (RdRp) and NSP13 encodes RNA helicase (ORF1b). The structural genes encode the 
structural proteins: (S) Spike, (E) Envelope, (M) Membrane, and (N) Nucleocapsid. (b) SARS-CoV-2 virion structure. (c) Overview of protein-level 
mutations of SARS-CoV-2 strains [35]. Figure created with Biorender.com.   
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Figure 2  

Current Opinion in Immunology

Variation in both HLA and viral peptides determines antigen presentation and immunogenicity in SARS-CoV-2 infection. Distinct viral strains may result 
in peptides with differential affinity to specific HLA molecules. Variation in the HLA–peptide groove is equally important for determining binding affinity. 
Non-immunogenic peptides do not elicit immunogenic T-cell responses. In this example, we represent different scenarios suggesting how variation in 
both the HLA class I molecule and viral peptide may affect binding. (a) Wild-type peptide binds to HLA and is presented to the T-cell receptor. (b) 
Mutant peptide does not bind to HLA and is not presented to the T-cell receptor. (c) Wild-type peptide does not bind to variant HLA and is not 
presented to the T-cell receptor. (d) Mutant variant binds to variant HLA and is presented to the T-cell receptor. Figure created with Biorender.com. 
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HLA-I immunopeptidomics revealed that SARS-CoV-2 
peptides presented by HLA class I also derive from in-
ternal out-of-frame open reading frames in spike and 
nucleocapsid proteins not captured by current vaccines. 

In addition, this study has shown that early expressed 
SARS-CoV-2 proteins have a larger contribution to 
HLA-mediated immunogenicity [49]. Finally, it has 
been shown that the immune response to SARS-CoV-2 

Figure 3  

Current Opinion in Immunology

Peptides from different SARS-CoV-2 variants have distinctive affinities for HLA molecules. Data extracted from T-cell COVID-19 Atlas [35] determined using 
netMHCpan-4.1 and netMHCIIpan-4.0 [34]. The affinity scores were not directly compared across genes; all plots show absolute numbers of strong or weak 
interactions. (a) Most relevant HLA–peptide interactions across all SARS-CoV-2 variants. The color intensity in each box represents the absolute number of 
strong interactions (IC50 affinity ≤ 50 nM) predicted between specific HLA allotypes and the peptides from each SARS-CoV-2 variant, varying from white 
(zero strong interaction) to dark red (67 strong interactions; HLA class I) and dark blue (656 strong interactions; HLA class II). We included only the allotypes 
with the strongest interactions based on the affinity scores and excluded those HLA variants observed in low frequencies (f < 0.05) in three reference 
populations from 1000 Genomes Dataset (CEU, YRI, and CHB) [39]. Allotypes from each locus are ordered from the most frequent to the least frequent, 
according to the maximum frequency observed in these three reference populations. HLA variants that have been previously associated with COVID-19 are 
shown in bold, with those associated with risk or severe disease shown in red and those associated with asymptomatic or mild infection in green. Omicron is 
the variant predicted to exhibit the highest number of peptides strongly interacting with HLA class I and class II molecules, considering the mutations in (b) 
all viral proteins and also (c) only the Spike protein. (d) Distribution of allotypes predicted to have strong and weak interaction for SARS-CoV-2 stratified by 
locus. On the left, the plot represents the stratification of the top 30% of the strongest interactions with SARS-CoV-2 peptides; on the right, the distribution 
of allotypes in the bottom 30%, representing the HLA molecules with weak or no interaction with SARS-CoV-2 peptides.   
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is distinguished by HLA genotypes, in which the 
dominant immune response in HLA-B*07 was associated 
with a more diverse TCR repertoire compared to the 
response in HLA-A*02, HLA-A*24, and HLA-A*01 al-
lele groups [50]. 

Conclusion 
Two years into the global pandemic, much has been 
learned about the relationship between HLA poly-
morphism, variation in SARS-CoV-2, and the impact that 
this variability has on antigen presentation and im-
munity. However, the rapid appearance of immune- 
evasive strains has rendered a more complete under-
standing of these relationships something of a moving 
target. Likewise, examination of more and diverse po-
pulations is needed to fully comprehend the role of HLA 
in disease outcomes and vaccine response and efficacy. 
In the future, additional large-scale studies will be 
needed to more fully detail the finely tuned relationship 
of the HLA system and continually novel SARS-CoV-2 
strains to improve our understanding of the impact of 
antigen presentation in disease. 
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