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Abstract

Background. Different strategies toward implementing competing risks in discrete-event simulation (DES) models are
available. This study aims to provide recommendations regarding modeling approaches that can be defined based on
these strategies by performing a quantitative comparison of alternative modeling approaches. Methods. Four model-
ing approaches were defined: 1) event-specific distribution (ESD), 2) event-specific probability and distribution
(ESPD), 3) unimodal joint distribution and regression model (UDR), and 4) multimodal joint distribution and
regression model (MDR). Each modeling approach was applied to uncensored individual patient data in a simulation
study and a case study in colorectal cancer. Their performance was assessed in terms of relative event incidence differ-
ence, relative absolute event incidence difference, and relative entropy of time-to-event distributions. Differences in
health economic outcomes were also illustrated for the case study. Results. In the simulation study, the ESPD and
MDR approaches outperformed the ESD and UDR approaches, in terms of both event incidence differences and
relative entropy. Disease pathway and data characteristics, such as the number of competing risks and overlap
between competing time-to-event distributions, substantially affected the approaches’ performance. Although no con-
siderable differences in health economic outcomes were observed, the case study showed that the ESPD approach
was most sensitive to low event rates, which negatively affected performance. Conclusions. Based on overall perfor-
mance, the recommended modeling approach for implementing competing risks in DES models is the MDR
approach, which is defined according to the general strategy of selecting the time-to-event first and the corresponding
event second. The ESPD approach is a less complex and equally performing alternative if sufficient observations are
available for each competing event (i.e., the internal validity shows appropriate data representation).
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The use of discrete-event simulation (DES) for evaluating
health care interventions is expected to increase due to
the complexity of many novel personalized treatment
options.1 In particular its ability to model dynamic path-
ways based on patient-level histories and patient charac-
teristics makes DES particularly useful for representing
personalized treatment processes.2,3 Besides dynamic
model structures and flexibility toward defining different

levels of abstraction throughout a model, DES embodies
alternative approaches for modeling the occurrence of
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events. In contrast to more commonly applied patient-
level discrete-time state transition models (STMs),4 DES
does not require time to be defined by fixed discrete
cycles but allows for parametric distributions to be
directly implemented to represent patient-level time-to-
event variation. Uncertainty in parametric distributions’
parameters can be accounted for in probabilistic sensitiv-
ity analyses, so that both stochastic uncertainty (i.e.,
first-order uncertainty) and parameter uncertainty (i.e.,
second-order uncertainty) are reflected.5 Although para-
metric distributions can also be used to populate STMs,
this requires an additional discretization step, that is, eva-
luation of the cumulative density functions at fixed time
points, to obtain discrete-time transition probabilities.

Health economic models that are informed with
individual patient data (IPD) and employ DES for
patient-level simulations are subject to several design
choices,6 one of which relates to the approach taken to
implement competing risks. Since competing risks are
present in every clinical pathway and may affect the
observation of outcomes in clinical studies, it is impor-
tant to appropriately represent competing risks in
health economic models.7 Modelers are provided with
a high degree of flexibility with regard to selecting one
or multiple strategies for implementing competing risks
in DES models. According to Barton et al.,8 4 general
strategies are available: 1) simulating times for all com-
peting events and selecting the event that is the first to
occur, 2) selecting the event to occur first and the cor-
responding time-to-event second, 3) selecting the time-
to-event first and the corresponding event second, and
4) using discretized cyclic probabilities to resemble
discrete-time STM.

According to the Professional Society for Health
Economics and Outcomes Research (ISPOR) and
Society for Medical Decision Making (SMDM) modeling
good research practices guidelines, the recommended strat-
egy toward implementing competing risks in DES models
is Strategy 3 as proposed by Barton et al.8: selecting
the time-to-event first, based on a joint time-to-event

distribution, and then selecting the corresponding event.6

However, a thorough quantitative comparison of the strate-
gies available has not yet been performed, which might
increase variation in approaches taken to represent compet-
ing risks in published health economic DES models. For
example, recently published studies used approaches based
on the strategy of using discretized cyclic probabilities,9,10

selecting the event first and the time-to-event second,11,12 or
selecting the event that is the first to occur.13–15 Moreover,
the specification and motivation of the approach taken to
implement competing risks are not always made explicit in
modeling publications.16,17 This may be due to space limita-
tions or, alternatively, due to limited awareness of the avail-
ability of different approaches.

The objective of this study is to describe, illustrate,
and compare different approaches for handling compet-
ing risks in DES models informed by uncensored IPD.
The comparison will ideally lead to generalized recom-
mendations, so modelers can make informed and delib-
erative decisions regarding the handling of competing
risk data in DES models. To achieve this objective,
approaches are compared in a simulation study to assess
their accuracy in representing the incidence of competing
events and corresponding event-specific time-to-event
distributions, in terms of bias and relative entropy,
respectively. Subsequently, the approaches are applied in
a case study based on uncensored patient-level data
obtained from the randomized controlled CAIRO3
trial18 to illustrate potential differences in health eco-
nomic outcomes of a cost-effectiveness analysis in color-
ectal cancer.

Methods

We focus on 3 general strategies for handling competing
risks identified by Barton et al.8: 1) select the event that
is the first to occur, 2) select the event first and the time-
to-event second, and 3) select the time-to-event first and
the event second. The strategy of using discretized cyclic
probabilities was deliberately not included, as this
approach would discard major advantages of using DES
and resemble a STM. Moreover, this would require arbi-
trary decisions about the cycle length and time depen-
dency of transition probabilities, creating the need to
also assess the impact of these decisions on simulation
outcomes. Based on the 3 included strategies, 4 specific
modeling approaches for implementing competing risks
in DES models informed by uncensored IPD were
defined, which are described below in more detail.
Pseudo-algorithms for data analysis and simulation
according to these modeling approaches are provided in
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Boxes 1, 2, 3, and 4. Additional code illustrating how
these approaches can be implemented in R Statistical

Software19 is provided online at www.personex.nl/research/
competing-risks.

Box 3 Unimodal Joint Distribution and Regression Model Approach

Data Analysis (see Table 1)
3.1 For all competing events combined, fit a joint unimodal time-to-event distribution D:
� Include the observations of all patients
� Select a unimodal distribution to represent the time-to-event T for all competing events
� Estimate n parameters b1, . . ., bn that define distribution D

3.2 Fit a (multinomial) logistic regression model f to predict the competing event to occur:
� Estimate the parameters b1, . . ., bn of (multinomial) logistic regression model f that predicts the probabilities pe of each

competing event e to occur (dependent variable) based on the time-to-event t (independent variable)
Simulation
3.3 Obtain a time-to-event for the event to occur:
� Draw a time t for the event to occur by performing a random draw from the joint distribution D

3.4 Select the competing event to occur:
� Obtain probabilities pe for each competing event to occur based on time-to-event t, using (multinomial) logistic regression

model f
� Draw a random number r from a Uniform distribution U[0,1]
� Select the event k to occur by comparing event probabilities pe and random number r

3.5 Simulate the selected event k at the corresponding time t

Box 2 Event-Specific Probability and Distribution Approach

Data Analysis (see Table 1)
2.1 For each competing event e, estimate the probability pe this event occurs:
� Estimate probability pe as the proportion of patients experiencing competing event e

2.2 For each competing risk e, fit a time-to-event distribution De:
� Only include observations of patients who experienced event e
� Select a distribution type to represent the time-to-event Te for competing event e
� Estimate n parameters be1, . . ., ben that define distribution De

Simulation
2.3 Select the competing event to occur:
� Draw a random number r from a Uniform distribution U[0,1]
� Select the event k to occur by comparing event probabilities pe and random number r

2.4 Obtain a time-to-event for the selected event:
� Draw a time t for selected event k by performing a random draw from the corresponding distribution Dk

2.5 Simulate the selected event k at the corresponding time t

Box 1 Event-Specific Distribution Approach

Data Analysis (see Table 1)
1.1 For each competing event e, fit a time-to-event distribution De:
� Observations of patients are censored (C) at the time a competing event occurs
� Select a distribution type to represent the time-to-event Te for competing event e
� Estimate n parameters be1, . . ., ben that define distribution De

Simulation
1.2 Obtain time-to-events for each competing event:
� Draw a time te for each competing event e by performing a random draw from the corresponding distribution De

1.3 Select the competing event to occur:
� Select event k with the lowest time-to-event across all events (i.e., the first event to occur)

1.4 Simulate the selected event k at the corresponding time tk
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Modeling Approach 1: ESD

The ESD approach implements a cause-specific hazards
model20,21 and uses event-specific time-to-event distribu-
tions to draw random times at which the competing
events would occur and subsequently selects the first
event to occur to be simulated. To estimate the event-
specific distributions, observations of competing events
are considered censored observations because those com-
peting events prohibit observing the event of interest.21

Box 1 reviews how IPD is analyzed according to the
ESD modeling approach and how the resulting event-
specific time-to-event distributions can be implemented
in simulation models. To illustrate this for the illustrative
data presented in Table 1, a distribution De needs to be
fitted for each competing event e by estimating n para-
meters b1, . . ., bn that define De, resulting in separate
distributions for both the time-to-death and time-to-pro-
gression. When estimating the time-to-death distribution
DDeath, the 3 patients who died (i.e., Patient 1, Patient 5,
and Patient 6) are considered observations and those
who progressed are considered right-censored observa-
tions (C), as these patients would have died from the ini-
tial state at some point in time if they would not have
progressed.20 In the corresponding simulation model, a
time te to each of the competing events e needs to be
drawn randomly from each time-to-event distribution
De. Subsequently, the event that is the first to occur (i.e.,
the event e corresponding to the lowest drawn time-to-
event te) is selected and will be simulated.

Modeling Approach 2: ESPD

The ESPD approach implements a subdistribution hazards
model20,21 and first selects the event to be simulated based
on event-specific probabilities, and it subsequently draws
the time at which that event will occur from an event-
specific time-to-event distribution. Box 2 reviews how IPD
is analyzed according to the ESPD modeling approach
and how the resulting event-specific probabilities and time-
to-event distributions can be implemented in simulation
models. Event-specific probabilities pe are defined as the
cumulative incidence function limit,20 simply representing
the probability that corresponding competing event e
occurs, which is 3 out of 9 for death in the exemplary data
of Table 1. Notice that probabilities pe of competing events
always add up to 1 over the lifetime of a patient. The
event-specific time-to-event distributions De are estimated
solely based on observations of patients who experienced
competing event of interest e. Considering the data in
Table 1, this indicates that the time-to-death distribution
DDeath is estimated based on the time-to-events of the 3
patients who died (i.e., Patient 1, Patient 5, and Patient 6).

In the corresponding simulation model, a random number
r needs to be compared to the event-specific probabilities
pe to select the event k that a hypothetical patient will expe-
rience. Subsequently, a time-to-event t needs to be drawn
randomly from distribution Dk corresponding to the
selected event k.

Modeling Approach 3: UDR

The UDR approach first selects the time at which an
event will be simulated based on a joint time-to-event
distribution, representing all competing events, and
selects the event corresponding to the selected time-to-
event using a (multinomial) logistic regression model.
Multinomial logistic regression models are required for
cases involving more than 2 competing risks, as standard
logistic regression models can only account for binary
data (i.e., 2 competing risks). When estimating the joint
time-to-event distribution, the UMR approach assumes
the joint time-to-event distribution to be unimodal. Box
3 reviews how IPD is analyzed according to the UDR
modeling approach and how the resulting time-to-event
distribution and (multinomial) logistic regression model
can be implemented in simulation models. For the
exemplary data presented in Table 1, this indicates that
to represent time-to-event distribution D, for example, a
single Weibull distribution22 is estimated based on all
time-to-event observations. Next, logistic regression
model f,23 predicting the type of event (dependent vari-
able), needs to be estimated based on the time-to-event
(independent variable). In the corresponding simulation
model, a random time-to-event t needs to be drawn from
the joint distribution D, which then can be used together
with a random number r to select the corresponding
event k to occur using probabilities pe obtained from the
logistic regression model f.

Modeling Approach 4: MDR

The MDR approach is similar to the UDR approach,
except for the fact that the MDR approach does not
assume the time-to-event data to be unimodal distributed
but allows the joint time-to-event distribution MD to be
multimodal. This implies that, for example, a phase
type24 or mixture25 distribution can be estimated to rep-
resent the patient-level variation in time-to-event values.
Box 4 reviews how IPD is analyzed according to the
MDR modeling approach and how the resulting time-to-
event distribution and (multinomial) logistic regression
model can be implemented in simulation models. Except
for the type of distribution used to represent the time-to-
event data, the data analysis and simulation processes
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are the same as those for the UDR modeling approach
illustrated in Box 3.

Simulation Study to Compare the Performance
of the Modeling Approaches

A simulation study was performed to compare the accu-
racy of the approaches and assess whether data and dis-
ease pathway characteristics, such as the number of
competing risks, affect the performance. This simulation
study included the analysis and simulation of the inci-
dence and time-to-event distributions of competing risks
from an initial health state (Figure 1a). As illustrated in
the simulation study overview presented in Figure 2 and
as reviewed in Box 5, the simulation study was run for
i = 9 different patient populations Pi, which were

simulated according to unique combinations of the num-
ber of competing risks (i.e., 2, 3, or 4 competing risks)
and the degree of overlap between the corresponding
competing time-to-event distributions (i.e., low ; 10%,
medium ; 50%, and high ; 90% overlap). Figure 3
illustrates the different levels of overlap for a population
defined by 3 competing risks. Details on the exact popu-
lation definitions and calculation of overlap between dis-
tributions are provided in Supplementary Materials 1.1
and 1.2, respectively. In addition, the simulation study
was performed for different hypothetical trial arm sam-
ple sizes nsample (nsample = 50, 100, 200, 500) to assess
sample size impact on the performance of the
approaches, resulting in a total of 36 unique scenarios.

A total of j = 10,000 simulation runs were performed
for each unique population Pi and sample size nsample

Box 4 Multimodal Joint Distribution and Regression Model Approach

Data Analysis (see Table 1)
4.1 For all competing events combined, fit a joint multimodal time-to-event distribution MD:
� Include the observations of all patients
� Select a multimodal distribution to represent the time-to-event T for all competing events
� Estimate n parameters b1, . . ., bn that define distribution MD

4.2 Fit a (multinomial) logistic regression model f to predict the competing event to occur:
� Estimate the parameters b1, . . ., bn of (multinomial) logistic regression model f that predicts the probabilities pe of each

competing event e to occur (dependent variable) based on the time-to-event t (independent variable)
Simulation
4.3 Obtain a time-to-event for the event to occur:
� Draw a time t for the event to occur by performing a random draw from the joint distribution MD

4.4 Select the competing event to occur:
� Obtain probabilities pe for each competing event to occur based on time-to-event t, using (multinomial) logistic regression

model f
� Draw a random number r from a Uniform distribution U[0,1]
� Select the event k to occur by comparing event probabilities pe and random number r

4.5 Simulate the selected event k at the corresponding time t

Figure 1 Overview of (a) the structure of the discrete-event simulation (DES) model used in the simulation study and (b) the
structure of the case study DES model.
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Figure 2 Overview of the simulation study. ESD, event-specific distribution; ESPD, event-specific probability and distribution;
MDR, multimodal joint distribution and regression model; UDR, unimodal joint distribution and regression model.

Degeling et al. 63



combination. In each of these runs, a hypothetical trial
arm sample pijn of the applicable sample size nsample was
randomly sampled from the corresponding population

Pi. Next, the hypothetical trial sample pijn was analyzed
according to the m = 1, 2, 3, 4 modeling approaches,
based on which the incidence and time-to-event

Figure 3 Illustration of the different levels of overlap between competing time-to-event distributions used in the simulation study.
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distributions were simulated for nsim= 10,000 new
patients to obtain simulation sample sijnm. Finally, the
performance of the approaches was assessed by compar-
ing the event incidence and time-to-event distributions in
these newly simulated patients sijnm to those in the popu-
lation Pi (i.e., external validation) and hypothetical trial
sampled from this population pijn (i.e., internal valida-
tion). Regarding the incidence of events, the bias in terms
of relative incidence difference (%) and relative absolute
incidence difference (%) of the approaches in sijnm com-
pared to the population Pi and trial sample pijn were
assessed. The performance with regard to the simulated
time-to-event distributions was obtained by comparing
the simulated event-specific distributions in sijnm to those
of the population Pi and trial sample pijn based on the
relative entropy (i.e., the Kullback-Leibler divergence).26

The relative entropy is a measure of the difference
between 2 probability distributions, for which lower val-
ues indicate a better performance. To summarize the
relative absolute incidence difference and Kullback-
Leibler divergence for each of the 36 scenarios (i.e., com-
binations of Pi and nsample), event-specific performance
outcomes were weighted according to event incidences in
the population. Event-specific relative incidence differ-
ences were not weighted to obtain summarized perfor-
mance measures, because weighing relative incidence
differences based on the incidence does not result in
meaningful outcomes (i.e., outcomes of approximately
zero).

The simulation study was performed in R Statistical
Software version 3.3.2.19 All time-to-event data were
simulated and analyzed using Weibull distributions22 to
rule out potential bias due to mismatching distributions.
Weibull distributions were selected to represent patient-
level time-to-event variation in the simulation study,
because these distributions are commonly used in sur-
vival analysis and accurately represent the IPD of the
case study. Univariate Weibull distributions were esti-
mated using the fitdistrplus package27 for the ESD,
ESPD, and UDR approaches. For the MDR approach,
the mixtools package28 was used to estimate Weibull
mixture distributions, providing the parameter estimates
of the ESPD approach as starting values to increase the
likelihood of convergence. If the algorithm for estimating
a mixture distribution did not converge in a specific
simulation run, the parameter estimates of the ESPD
approach were used to define the corresponding mixture
distribution. The nnet29 package was used to estimate
(multinomial) logistic regression models. The Kullback-
Leibler divergence was determined using the flexmix
package.30–32

Illustration of Competing Risks Modeling
Approaches in Colorectal Cancer

To assess the modeling approaches’ potential perfor-
mance and impact on health economic outcomes in real-
word scenarios, a case study was performed based on an
anonymized data set from the randomized phase 3
CAIRO3 study (NCT00442637) of the Dutch Colorectal
Cancer Group. The CAIRO3 study randomized 558
metastatic colorectal cancer patients with stable disease
or better after 6 cycles of capecitabine, oxaliplatin, and
bevacizumab (CAPOX-B) induction therapy to either
capecitabine and bevacizumab (CAP-B) maintenance
treatment (intervention) or observation (control) until
progression of disease.18 For both the maintenance and
observation strategy, CAPOX-B treatment was to be
reinduced upon progression and continued until second
progression (PFS2), the primary end point of the study.
The original health economic evaluation of the CAIRO3
study was based on a discrete-time cohort STM and has
been published elsewhere.33

A previously developed DES model5 was implemen-
ted in R Statistical Software version 3.3.2,19 according to
the structure of the CAIRO3 study: postinduction, rein-
troduction, salvage, and death (Figure 1b). Model state
postinduction refers to observation (control) or CAP-B
maintenance treatment (intervention) after 6 cycles of
CAPOX-B. Reintroduction of CAPOX-B refers to mod-
eling state reintroduction for both treatment strategies
(i.e., observation and CAP-B maintenance treatment). If
patients progress from the reintroduction state (i.e.,
the cancer no [longer] responds to reintroduction of
CAPOX-B), salvage therapy (i.e., alternative treatment
options) is provided, which refers to the salvage state. As
illustrated in Figure 1b, patients were subject to compet-
ing risks progression and death while in the postinduc-
tion state and to second progression and death in the
reintroduction state. The original DES model handled
these competing risks according to the ESPD approach;
here, 3 alternative versions of the model were created to
reflect the other approaches (i.e., ESD, UDR, and
MDR). For the case study, all modeling approaches
were implemented using the same R packages as were
used for the simulation study.

Stochastic uncertainty (i.e., patient-level variation) in
health state durations was accounted for by using
Weibull (mixture) distributions. Parameter uncertainty
in probabilities, parametric distributions, and regression
models used to reflect time-to-event evidence according
to the 4 approaches was accounted for by bootstrapping
the CAIRO3 data set,5 averting potential bias by apply-
ing all approaches to the exact same bootstrap samples.

Degeling et al. 65



For the other model parameters, parameter uncertainty
was accounted for as in the original health economic eva-
luation of the CAIRO3 study.33 Probabilistic sensitivity
analysis was performed based on 10,000 runs of 10,000
patients per treatment strategy in each run.

Clinical relevant subgroup analyses were performed
to illustrate potential sample size impact on modeling
outcomes for the different approaches. A total of 8 sub-
groups with sample sizes ranging from 50 to 410 were
defined according to patient characteristics that were
found relevant in the evaluation of the CAIRO3 study,18

that is, treatment response (stable disease [SD] v.
complete or partial response [CR/PR]) and stage of dis-
ease (synchronous v. metachronous) (Supplementary
Materials 1.3). This stratification strategy resulted in
subgroups for which events were observed only once, or
not all, which resembles the personalized medicine
context.

For all subgroups, the accuracy of the approaches was
compared based on the internal validity in terms of rela-
tive incidence difference (%), relative absolute incidence
difference (%), and Kullback-Leibler divergence over all
probabilistic sensitivity analysis runs. To obtain these
performance measures, simulations according to the
approaches were compared to the bootstrap sample
based on which of the approaches’ parameters had been
estimated. Incremental cost-effectiveness planes and cost-
effectiveness acceptability curves presented the health
economic outcomes.

Results

Simulation Study to Compare the Performance
of the Modeling Approaches

Mean weighted results for the relative absolute incidence
difference and relative entropy over all runs of the simu-
lation study are presented in Table 2. Detailed event-
specific results for the relative absolute incidence differ-
ence and relative incidence difference are not presented
in this article to enhance readability but are available in
Supplementary Materials 2.

The bias in terms of relative incidence difference is
substantially better for the ESPD and MDR approaches
compared to the ESD and UDR approaches. Using the
ESD or UDR approach results in a substantial amount
of bias for higher numbers of competing risks and lower
overlap between their corresponding time-to-event distri-
butions. For example, for the population defined by 4
competing risks and low overlapping distributions, the
ESD and UDR approaches yield up to approximately
60% and 50% bias, respectively, whereas the ESPD and
MDR approaches yield up to approximately 5% bias.
For all approaches, bias is lower when simulation out-
comes are compared to the hypothetical trial (i.e., inter-
nal validation) rather than the simulated population (i.e.,
external validation). Furthermore, overall performance is
better for lower numbers of competing risks, higher over-
lap between time-to-event distributions, and larger sam-
ple sizes, although performance of the ESD and UDR

Box 5 Simulation Study (Also See Figure 2)

5.1 Simulate different patient populations according to the number of competing risks and time-to-event distribution overlap:
� Define patient population i as Pi for i = 1, 2, . . ., 9
� Each Pi represents a combination of 2, 3, or 4 competing risks and a small, medium, or large overlap of time-to-event

distributions (see Figure 3)
� Simulate npop = 100,000 hypothetical patients to define Pi according to the number of competing risks and time-to-event

distribution overlap
5.2 For each population Pi (i = 1, 2, . . ., 9):
5.3 For different trial sizes nsample = 50, 100, 200, 500:
5.4 For j = 10,000 simulation runs:
5.5 Sample a hypothetical trial of size nsample from patient population Pi:
5 � Define pijn as the jth trial sample of size nsample of population Pi

5.6 Analyze pijn according to each modeling approach (see Boxes 1, 2, 3, and 4)
5.7 Simulate a sample of size nsim = 10,000 patients according to each modeling approach (see Boxes 1, 2, 3, and 4):

� Define sijnm as the jth simulation sample according to modeling approach m (m = 1, 2, 3, 4) based on a sample
pijn of size nsample and population Pi

5.8 Assess the performance of each modeling approach:
� Calculate the relative incidence difference, relative absolute incidence difference, and relative entropy based on

internal and external validation
� Internal validation: compare simulation samples sijnm for m = 1, 2, 3, 4 to trial sample pijn
� External validation: compare simulation samples sijnm for m = 1, 2, 3, 4 to population Pi
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approaches is much more sensitive to changes in these
data and disease pathway characteristics.

Although the bias in terms of relative absolute event
incidence difference shows less extreme outcomes for the
ESD and UDR approaches, these approaches are again
outperformed by the ESPD and MDR approaches.
Furthermore, overall performance is better with regard
to the hypothetical trial (i.e., internal validation) than
the simulated population (i.e., external validation). Also,
with respect to the bias in terms of relative absolute inci-
dence difference, mainly the ESD and UDR approaches
benefit from lower numbers of competing risks, higher
overlap between the competing time-to-event distribu-
tions, and higher sample sizes.

The performance in terms of relative entropy shows
the same trends in differences between approaches. The
ESPD and MDR approaches strongly outperform their
ESD and UDR equivalents, although the Kullback-
Leibler divergence also shows that the ESPD approach
slightly outperforms the MDR approach. Once more,
the performance in terms of internal validity is better
compared to the external validity, and especially the per-
formance of the ESD and UDR approaches benefits
from lower numbers of competing risks, higher overlap
between the competing time-to-event distributions, and
higher sample sizes.

Illustration of Competing Risks Modeling
Approaches in Colorectal Cancer

Mean results for the relative incidence difference and
relative entropy for the case study over all runs of the
probabilistic sensitivity analysis are presented in Table 3.
Results for the relative absolute incidence difference are
not presented in the article but are available in
Supplementary Materials 1.4. The relative absolute inci-
dence differences showed negligible differences compared
to the absolute value of the relative incidence differences,
indicating that the approaches underestimated or overes-
timated the event incidences systematically.

The internal validation of the approaches shows simi-
lar trends for the case study as for the simulation study.
The ESPD and MDR approaches overall yield slightly
better relative incidence differences and relative absolute
incidence differences. For example, for the cohort analy-
sis (Subgroup 0), the mean relative incidence difference
in the probability of progression from the postinduction
state for the control group is 1.9%, 0.0%, 0.9%, and
0.4% for the ESD, ESPD, UDR, and MDR approaches,
respectively. Interestingly, the results also suggest that
the performance in terms of bias for the ESPD approach

is more sensitive to low event rates compared to the other
approaches, which is illustrated by the mean relative inci-
dence differences for the intervention group of Subgroup
6. Only 2 of 17 patients in this subgroup died during the
reintroduction state (Supplementary Materials 1.3),
resulting in a mean relative incidence difference in the
probability of progression from the reintroduction
state of 0.1%, 5.1%, 0.0%, and 0.1% for the ESD,
ESPD, UDR, and MDR approaches, respectively.
With regard to the relative entropy, the ESPD and
MDR approaches generally outperformed the ESD and
UDR approaches. Comparing the ESPD and MDR
approaches, they both alternately outperformed the
other, making it difficult to state which is the best-
performing approach overall.

The extent to which health economic modeling out-
comes are affected by differences in performance is illu-
strated by cost-effectiveness planes for selected subgroup
analyses in Figure 4 and in cost-effectiveness planes and
cost-effectiveness acceptability curves for all subgroup
analyses in Supplementary Materials 1.5 and 1.6, respec-
tively. The cost-effectiveness planes show that cost-
effectiveness point estimates are similar for large sample
sizes (e.g., n = 300 or larger), illustrated by the over-
lapping points representing the incremental cost-
effectiveness estimate for the different approaches. For
analysis Subgroup 0 (i.e., based on the complete patient
cohort), incremental cost-effectiveness ratios are
e177,317, e166,997, e172,811, and e169,024 per quality-
adjusted life year (QALY) gained, which translates to a
net monetary benefit of –e26,601, –e26,656, –e26,579,
and –e26,503 at a willingness to pay of e20,000 per
QALY for the ESD, ESPD, UDR, and MDR
approaches, respectively. However, the point estimates
of the incremental costs and effects show small differ-
ences between approaches for smaller sample sizes, which
is illustrated by the results for Subgroup 4 in Figure 4,
for example. For this subgroup analysis, incremental
cost-effectiveness ratios are e494,517, e342,726,
e420,222, and e322,343 per QALY gained, which trans-
lates to a net monetary benefit of –e29,854, –e29,966,
–e29,195, and –e29,939 at a willingness to pay of e20,000
per QALY for the ESD, ESPD, UDR, and MDR
approaches, respectively. With regard to the uncertainty
surrounding the point estimates, represented by the con-
fidence ellipses, small differences are observed for certain
subgroup analyses (e.g., Subgroup 4). In agreement, the
cost-effectiveness acceptability curves show modest dif-
ferences between approaches (Supplementary Materials
1.6), of which the magnitude increases when sample sizes
decrease.
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Discussion

This article provides a thorough quantitative comparison
of strategies available for implementing competing risks
in DES models informed by uncensored IPD and,
thereby, contributes to the general, already existing gui-
dance.6 According to these general modeling good
research practices guidelines, the preferred modeling
approach is based on the strategy of selecting the time-
to-event first, from a joint time-to-event distribution,
and then to select the corresponding event, which corre-
sponds to the UDR and MDR approaches illustrated in
this article. Although the results for the UDR approach
question this recommendation, the results for the MDR
approach, which attempts to reflect the true nature of the
data by allowing for multimodal joint distributions, sup-
port this recommendation. Interestingly, the results also
show that the ESPD approach, which might be considered
more straightforward for the novice, provides an attractive
alternative to the rather complex MDR approach.

The superior performance of the ESPD and MDR
approaches can be explained by the assumptions under-
lying the ESD and UDR approaches. For the ESD
approach, observations of competing events are consid-
ered censored observations when estimating the event-
specific time-to-event distributions. Given that the analy-
sis of censored time-to-event data is more complex com-
pared to uncensored data, the resulting increase in
uncertainty is likely to negatively affect performance.

The main assumption for the UDR approach is that the
joint time-to-event data, representing all competing risks,
is unimodal distributed. Consequently, the (negative)
impact of this assumption is illustrated in the simulation
study, as the performance of the UDR approach deterio-
rates stronger compared to the performance of the
ESPD and MDR approaches when overlap between
time-to-event distributions decreases.

Based on the performance in the simulation study and
internal validity in the case study, the ESPD and MDR
approaches are expected to yield more accurate health
economic outcomes. However, relatively small differ-
ences in cost-effectiveness point estimates and magnitude
of the uncertainty surrounding these estimates between
approaches are observed for the case study, which can be
explained by the characteristics of the CAIRO3 data.
First of all, the maximum number of competing risks for
a specific state in the CAIRO3 model is 2 (Figure 1b).
For health economic models in which the number of
competing risks is higher, more substantial differences in
health economic outcomes are expected, as the simula-
tion study shows that differences in the approaches’ per-
formance increase according to higher numbers of
competing risks. Second, the CAIRO3 study represents a
relatively large sample size (i.e., n = 558), which contri-
butes to the overall performance of the approaches.
Third, time-to-event distributions for the case study sub-
stantially overlap (e.g., 81% for the reintroduction state).
Larger differences in health economic outcomes are

Figure 4 Cost-effectiveness planes based on the probabilistic sensitivity analysis for selected subgroup analyses. ESD, event-
specific distribution; ESPD, event-specific probability and distribution; MDR, multimodal joint distribution and regression
model; UDR, unimodal joint distribution and regression model.
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expected for models informed by IPD comprising lower
overlap between competing time-to-event distributions.
Finally, health economic models defined by more health
states may yield more substantial differences in health
economic outcomes due to a cumulative effect of subse-
quent competing risks including states.

Based on the performance in the simulation study,
either the ESDP or MDR approach would be recom-
mended for implementing competing risks in DES mod-
els. However, the case study illustrates that the ESPD
approach might be more sensitive to low event rates in
practice. Contrarily, if it is infeasible to apply the MDR
approach (e.g., due to difficulties with regard to estimat-
ing a joint multimodal distribution that appropriately
represents the observed IPD), the ESPD approach is a
legitimate alternative. Regarding the complexity of
implementing the approaches, the flexible multimodal
distributions and multinomial regression models required
for the MDR approach are more difficult to estimate and
implement compared to the event-specific probabilities
and distributions of the ESPD approach. Consequently,
the ESPD approach would be preferred over its MDR
equivalent if the IPD comprises sufficient observations
for each competing event. However, a general definition
of ‘‘sufficient observations’’ cannot be stated and mode-
lers should, therefore, ensure that applying the ESPD
approach is appropriate by internal validation. If the
internal validity of the ESPD approach indicates its use
might be inappropriate (e.g., due to substantial differ-
ences in event incidence), both the ESPD and MDR
approaches should be applied and their internal validity
compared to select the best-performing modeling
approach. If time does not allow for such a comparison,
modelers are advised to apply the MDR approach.
Except if there are evident reasons for using the ESD or
UDR approach, the use of either of these approaches is
advised against.

All methods presented in and findings of this study
are applicable to data sets in which a competing event is
observed for each patient (i.e., the data are uncensored).
Although clinical trial data may often be right censored
due to limited time horizons, certain clinical trials do
capture all (competing) events of interest for each
patient. Examples of clinical contexts for which uncen-
sored clinical trials are generally feasible include nausea
and vomiting after surgery and metastatic cancers, as
was illustrated in the current case study. In addition, ret-
rospective data sets (e.g., from registries) are potentially
uncensored for specific cohorts of patients. Performance
of the modeling approaches may be different for cen-
sored IPD (e.g., because all modeling approaches will

include survival analysis of censored data), whereas this
only applies to the ESD approach for uncensored IPD
or because a different implementation of the ESPD
approach is required to calculate event-specific probabil-
ities if a competing event is not observed for each
patient. Consequently, the current focus on uncensored
IPD is relevant due to a lack of interchangeability of the
modeling approaches’ implementation and performance
for censored and uncensored IPD. Furthermore, this
highlights a need for comparing modeling approaches
toward implementing competing risks in DES models
informed by censored IPD, which is part of a subsequent
study.

Besides general limitations relating to the external
validity of simulation studies and single-case studies, this
study has certain additional limitations. Findings and
conclusions presented in this article apply to DES model-
ing studies informed by uncensored IPD and for which a
decision on the approach taken to implement competing
risks needs to be made. If aggregated data (e.g., from lit-
erature) are used to populate a model, this evidence is
structured according to a specific approach and can only
be implemented accordingly. In addition, Weibull distri-
butions were used in the simulation study to simulate
and represent patient-level time-to-event variation, which
allowed unbiased comparison of the modeling
approaches. On the other hand, this design choice limits
the generalizability of the results, as in practice, underly-
ing distributions are unknown and performance of the
approaches may vary, depending on their flexibility to
describe the actually observed data. Using different types
of distributions, such as Gamma or lognormal distribu-
tions, therefore, may affect the performance of the mod-
eling approaches. Finally, mixture models are used to
reflect the multimodality induced by competing underly-
ing time-to-event distributions in the joint distributions
for the MDR approach, whereas alternative strategies
are available, such as phase-type distributions.

Conclusion

Substantial differences were observed in the accuracy of
the competing risks modeling approaches in terms of
event incidence and time-to-event distributions. The per-
formance of the approaches is strongly conditional upon
various data and disease pathway characteristics, such as
the numbers of competing risks and overlap between
competing time-to-event distributions. Performance dis-
similarities between approaches, however, did not result
in substantially different health economic outcomes in
this specific case study. The recommended modeling
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approach for implementing competing risks in DES mod-
els informed by uncensored IPD is the MDR approach,
which is based on the strategy of selecting the time-to-
event first, based on a joint multimodal time-to-event dis-
tribution, and then selecting the corresponding event
using probabilities obtained from a (multinomial) logistic
regression model. However, if sufficient observations of
all competing events are available, or if use of the MDR
approach is infeasible, use of the less complex ESPD
approach, which is based on the strategy of selecting the
event to occur first and the corresponding time-to-event
second, is also appropriate.

Supplementary Material

Supplementary material for this article is available on the
Medical Decision Making Web site at http://journals.sagepub
.com/home/mdm.
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