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Abstract

Telocytes (TCs) represent a new cell type recently described in mammalian skeletal muscle interstitium as well as in other organs. These have a
specific morphology and phenotype, both in situ and in vitro. Telocytes are cells with long and slender cell prolongations, in contact with other
interstitial cells, nerve fibres, blood capillaries and resident stem cells in niches. Our aim was to investigate the potential contribution of TCs to
micro-vascular networks by immunofluorescent labelling of specific angiogenic growth factors and receptors. We found that in human skeletal
muscle TCs were constantly located around intermediate and small blood vessels and endomysial capillaries. Epi-fluorescence and laser confo-
cal microscopy showed that TCs express c-kit, platelet-derived growth factor receptor (PDGFR)-b and VEGF, both in situ and in vitro. Telocytes
were constantly located in the perivascular or pericapillary space, as confirmed by double staining of c-kit/CD31, PDGFR-b/CD31 and PDGFR-b/
a-smooth muscle actin, respectively. Electron microscopy (EM) differentiated between pericytes and other cell types. Laminin labelling showed
that TCs are not enclosed or surrounded by a basal lamina in contrast to mural cells. In conclusion, a) PDGFR-b could be used as a marker for
TCs and b) TCs are presumably a transitional population in the complex process of mural cell recruitment during angiogenesis and vascular
remodelling.
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Introduction

During the last few years, we identified and characterized a new type
of interstitial cell, the TC, in a large variety of mammalian organs [1–
3], including skeletal muscle [4]. Telocytes can be recognized, both
in situ and in vitro, by their particular morphology—cells with a small
cell body and long cell prolongations, usually very thin, below the
resolving power of light microscopy. We named these prolongations
as telopodes (Tp). Telocytes represent an ubiquitous population of
any interstitium [4–22]. As in the case of the other organs, TCs from
skeletal muscle interstitium are preferentially distributed around blood
vessels, especially small ones [15].

Numerous pre-clinical studies have shown that pro-angiogenic
factors such as VEGF could significantly stimulate neovascularization
in ischemic myocardium and skeletal muscles [23, 24] by recruiting

endothelial cells to form ‘tubes’. Previous studies [6, 15–17] already
demonstrated that TCs express VEGF. Therefore, TCs might function
as a cell population involved in the process of mural cell recruitment
in angiogenesis during development and tissue remodelling. Telo-
cytes might belong to a hypothetical continuum of phenotypes that
starts from extracellular matrix secreting fibroblasts [25] to contrac-
tile phenotypes associated with blood vessels, such as pericytes and
smooth muscle cells (SMC) [26–29].

Besides VEGF, other specific intercellular signals are required as
mediators of endothelial and mural cell function and of vascular sta-
bility. Platelet-derived growth factor B polypeptide (PDGF-B) is
secreted by the endothelial cells and drives the formation of the sur-
rounding muscular wall by recruiting nearby mesenchymal cells [30,
31]. Its receptor, PDGFR-b is crucial for vascular stability. A recent
study proved that VEGF-induced new blood vessels completely lacked
detectable signals for both PDGFR-a and PDGFR-b [32]. Hence, even
though VEGF can initiate angiogenesis, the newly formed endothelial
tubes should be able to further recruit and maintain their mural coat
by PDGF/PDGFR-b interaction.
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Both cell types that form blood vessel mural coat (SMC and peri-
cytes) are strongly positive for a-SMA and PDGFR-b [32] and are inti-
mately assembled around the endothelial tubes [29, 33], enclosed by
a basal lamina. Smooth muscle cells have their own basal lamina and
are arranged in layers. Pericytes are embedded within the basement
membrane of the capillaries, with cytoplasmic processes extending
along and encircling the endothelial tube.

Here, we report that TCs are PDGFR-b immunopositive and there-
fore could be involved in microvessel cell recruitment and angiogenesis.

Materials and methods

Samples

Human skeletal muscle samples were obtained from two patients under-

going quadriceps muscle biopsy for diagnosis, and muscle pathology

was ruled out. Mouse skeletal muscle samples were obtained from

4-month-old C57 black mice. Before all procedures, the mice were an-
aesthetized by giving an injection consisting of a mixture of dormicum

and hypnorm in the ratio of 1:1 and were killed with a lethal dose of

CO2 at the end of the experiments.
This study was approved by the Bioethics Committee of the “Victor

Babe” National Institute of Pathology, Bucharest, according to generally

accepted international standards.

In situ immunostaining and confocal analysis

Frozen skeletal muscle cryosections (10-lm thick) were fixed in 4% form-
aldehyde for 15 min., washed for 30 min. in PBS, pH 7.4, and blocked

with 2% bovine serum albumin (BSA). The samples were then incubated

for 30 min. with 2% normal goat serum (Sigma-Aldrich, St. Louis, MO,

USA) overnight at 4°C in PBS either with rabbit anti c-Kit (1:50; DAKO,
Glostrup, Denmark), anti-PDGFR and anti-VEGF antibodies (1:75 or 1:150,

respectively; both from Abcam, Cambridge, UK) or mouse anti-a-SMA,

CD31 or laminin (all from DAKO) or combinations for double immuno-

staining labelling. After washing in PBS with 0.1% (vol/vol) Triton X-100,
the sections were incubated with Alexa Fluor-conjugated secondary goat

anti-rabbit or goat anti-mouse antibodies (Invitrogen, Molecular Probes,

Eugene, OR, USA) for another 2 hrs, at room temperature. Following an
extensive washing step, the nuclei were stained with 1 lg/ml 4′,6-diamidi-

no-2-phenylindole (DAPI; Sigma-Aldrich).

Negative controls were obtained by omitting the primary antibody, in

an otherwise similar protocol. Three to five immunolabelled sections
from each case were examined by laser scanning microscopy, with

Nikon A1 laser microscope on ECLIPSE Ti-E inverted microscope

(Nikon, Tokyo, Japan). The confocal images were collected using Plan

Fluor 609 oil objective, 1.25-NA water (z-axis step 0.16 lm).
The following lasers and emission filters were used: Ar laser at

488 nm (used for the excitation of Alexa Fluor 488); emission filter

500–550 nm; 561.2 nm G-HeNe laser (for Alexa Fluor 546); emission
filter 570–620 nm, and 405 nm laser diode and 425–475 nm emission

filter for DAPI.

A

C

B

Fig. 1 Human skeletal muscle; laser scan-

ning confocal microscopy; three-dimen-

sional shadow projection image. Double
immunofluorescence labelling shows

CD117/c-kit-positive cells (red) distributed

around small blood vessels (arrowheads)

(A) or capillaries (B) visualized by CD31
endothelial marker (green) in the perimy-

sial and endomysial interstitial spaces.

Nuclei are counterstained with 4′,6-diami-
dino-2-phenylindole (blue). Original mag-

nification: 6009. (C) Electron microscopy.

A telocyte with two telopodes (Tp1, Tp2)

is located next to a pericyte which is visi-
ble in a twist of a capillary. Small frag-

ments from pericytes (P) border the

capillary. The basal lamina edges the peri-

cytes. Telopodes (Tp3, Tp4, Tp5) belong
to other telocytes.
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To improve image quality, the original laser scanning microscopy
data were subjected to digital deconvolution and three-dimensional

reconstruction using Imaris 964 (version 6.3.1.) from Bitplane AG

(Zürich, Switzerland).

Cell cultures and immunostaining

Adult C57 black mice were first treated with 1000 U/kg heparin and
subsequently killed by cervical dislocation. Mouse thigh was dissected

under the stereomicroscope and the entire medial package was trans-

ferred in transport medium and processed for cell cultures.

To obtain cell cultures highly enriched in interstitial cells, the sam-
ples were mechanically minced into small pieces of about 1 mm3. Tis-

sue fragments were first incubated in 0.05% trypsin/0.02% EDTA

(Biochrom AG, Berlin, Germany) at 37°C for 5 min. and then placed in

35-cm2 Petri dishes and left to adhere. After 5 min., the explants were
covered with DMEM/F12 culture medium supplemented with 10% foetal

calf serum and 100 U/ml penicillin–100 mg/ml streptomycin (all from
Sigma-Aldrich). After 10 days, the migrated cells were detached from

the culture vessel and re-plated on glass cover slips for immunolabel-

ling.

Cells grown on cover slips were fixed in 2% paraformaldehyde for
10 min., washed in PBS, then incubated in PBS containing 2% BSA for

another 10 min. Afterwards, the cells were permeabilized with 0.075%

saponin for 10 min. (all reagents were from Sigma-Aldrich). Incubation
with the primary antibodies was performed overnight, at 4°C, with rat

anti-c-kit/ACK45 (1:25; BD Biosciences, San Jose, CA, USA), rabbit anti-

PDGFR-b or VEGF (1:50 or 1:200, respectively; both from Abcam) and

mouse anti-a-SMA (1:100; Neo Markers). After three serial rinses, the
primary antibodies were detected with secondary anti-rabbit or anti-

mouse conjugated to Alexa Fluor fluorophores (Molecular Probes).

Finally, the nuclei were counterstained with 1 mg/ml DAPI (Sigma-

Aldrich). Samples were examined under a Nikon TE300 microscope
equipped with a Nikon DX1 camera, Nikon PlanApo 1009 objectives

and the appropriate fluorescence filters.

A B C

Fig. 2 Human skeletal muscle; laser scanning confocal microscopy; volume reconstruction. Double immunofluorescence labelling shows co-localiza-
tion (A) for CD117/c-kit (B, red) and VEGF (C, green) in endomysial interstitial cells nuclei are counterstained with 4′,6-diamidino-2-phenylindole

(blue). Original magnification: 6009.

A B C

Fig. 3 Human skeletal muscle; laser scanning confocal microscopy; three-dimensional shadow projection image. Immunofluorescence labelling
shows platelet-derived growth factor receptor (PDGFR)-b expression (red) in mural cells and a perivascular interstitial cell (arrowhead), especially

along the long, thin cell prolongation (A). Same perivascular cell (arrowhead) is positive for c-kit (green); mural cells are marked by a-SMA (red)

(B); co-localization for PDGFR-b and c-kit appears as yellow areas (arrowhead) (C). Nuclei are counterstained with 4′,6-diamidino-2-phenylindole

(blue). Original magnification: 6009.
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Results and discussion

We show here, based on in situ double immunolabelling, the
presence of c-kit-positive TCs in skeletal muscle, surrounding
small blood vessels marked by the endothelial marker CD31
(Fig. 1A), or located in the vicinity of endomysial capillaries
(Fig. 1A and B), results confirmed by electron microscopy

(Fig. 1C). As shown previously, perivascular TCs synthesize VEGF
(Fig. 2).

All mural cells (pericytes and vascular SMCs) exhibited strong
positive signals for PDGFR-b (Fig. 3A). In addition, we constantly
detected PDGFR-b expression on perivascular cells with TC
appearance, showing long and extremely thin cell processes,
which correspond to TC morphology, in the connective tissue sur-
rounding skeletal muscle blood vessels (Fig. 3A and C). These

A B C

Fig. 4 Human skeletal muscle; laser scanning confocal microscopy; three-dimensional shadow projection images. Double immunofluorescence label-

ling shows co-localization (A) for CD117/c-kit (B, green) and platelet-derived growth factor receptor-b (C, red) in endomysial interstitial cells (arrow-

heads). Nuclei are counterstained with 4′,6-diamidino-2-phenylindole (blue).

A B

Fig. 5 Human skeletal muscle; laser scanning confocal microscopy; basal laminae are visualized by laminin expression (green). c-kit-positive cells

(A) and pericapillary platelet-derived growth factor receptor-b-positive cells (B) are clearly located in the interstitial space (arrowheads), between

two adjacent skeletal muscle fibres enclosed by basal laminae. Nuclei are counterstained with 4′,6-diamidino-2-phenylindole (blue).

A B

Fig. 6Mouse skeletal muscle explant culture. Epi-fluorescence microscopy shows platelet-derived growth factor receptor (PDGFR)-b-positive cells

(red) with a typical aspect of telocytes, with very long and thin, moniliform prolongations. Nuclei are counterstained blue with 4′,6-diamidino-2-

phenylindole. Note the PDGFR-b-negative cells (asterisks). Original magnification: 6009.
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cells also co-expressed c-kit (Fig. 3B and C) as demonstrated by
PDGFR-b, a-SMA and c-kit simultaneous labelling. Such cells were
also detected in the thin layer of endomysial connective tissue,
not related to the blood vessel wall (Fig. 4).

Telocytes located outside the blood vessel wall expressing c-kit
(Fig. 5A) or PDGFR-b (Fig. 5B), were not covered by a basal lamina,
compared with SMC and pericytes, as proven by double immuno-
staining for either c-kit/PDGFR-b and laminin, an universal compo-
nent of basal laminae.

Immunofluorescent labelling showed that PDGFR-b-positive cells
represented the major population in cell cultures obtained from ex-

plants of mouse skeletal muscle tissue. Some of the PDGFR-b-posi-
tive cells exhibited a typical TC morphology (Fig. 6A and B) and
expressed c-kit, especially along their long, thin cell processes
(Fig. 7A). Consistent with in situ findings such cells also expressed
VEGF (Fig. 7B). We also tested samples for a-SMA expression. Even
though TCs were weakly positive, a-SMA did not form stress fibres in
their cytoplasm as in SMC (Fig. 8).

Most probably, the cells identified so far as pericytes by their
immunophenotype might also include other types of interstitial
cells, such as TCs. Furthermore, TCs might represent a heteroge-
neous and versatile cell population capable of acquiring different

A B

Fig. 7Mouse skeletal muscle explant cul-
ture; laser scanning confocal microscopy;

three-dimensional shadow projection

images. Double immunofluorescence

labelling shows co-localization (A) for
CD117/c-kit (green) and platelet-derived

growth factor receptor-b (red) and (B)
CD117/c-kit (green) and VEGF (red) in

cells with long, thin cell prolongations that
correspond to telocyte morphology. Nuclei

are counterstained with 4′,6-diamidino-2-

phenylindole (blue). Original magnification:
6009.

A B

Fig. 8Mouse skeletal muscle explant cul-

ture. Phase-contrast microscopy (A) telo-
cyte (TC) in primary culture (day 8). The

same microscopic field was analysed by

epi-fluorescence microscopy (B). Telocyte
is weakly positive for SMA (green); the
actin filaments are homogenously distrib-

uted and do not form stress fibres as in

SMC, but they are strongly positive for
platelet-derived growth factor receptor-b
(red). Nuclei are counterstained with

4′,6-diamidino-2-phenylindole (blue). Pho-

tographic reconstruction; original magnifi-
cation: 10009.
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fates depending on location and tissue distribution, including mi-
crovessel recruitment and pericyte differentiation. Interestingly,
very recently Ardeleanu and Bussolatti [34] suggested that TCs
could be the origin of gastrointestinal stromal tumour and peri-
vascular epithelioid cell tumours as TCs and pericytes share
phenotypic characteristics. An apparently opposite scenario of phe-
notype change was recently documented by Göritz et al. [25],
who showed that a peculiar pericytes population can migrate from
the vessel walls and differentiate into cells involved in scar forma-
tion in the spinal cord. However, in our view these data taken
together suggest that interstitial cells form a reservoir used for
cell replacement depending on intercellular signalling.

Conclusions

In conclusion, our results indicate that TCs might represent
important players in the complex process of angiogenesis and

vascular development. Clinical trial designs have not always taken
into consideration the basic mechanisms of angiogenesis, arterio-
genesis and blood vessel stability [35]. The formation of a
mature, well-organized, stable vasculature is a key goal in tissue
engineering, regenerative medicine, therapeutic angiogenesis and
in the treatment of vascular diseases.
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