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BACKGROUND: The epithelial cell adhesion molecule (EpCAM) is overexpressed on carcinomas, and its downregulation inhibits the
oncogenic potential of multiple tumour types. Here, we investigated underlying mechanisms of epcam overexpression in ovarian
carcinoma.
METHODS: Expression of EpCAM and DNA methylation (bisulphite sequencing) was determined for ovarian cancer cell lines. The
association of histone modifications and 16 transcription factors with the epcam promoter was analysed by chromatin
immunoprecipitation. Treatment with 5-Aza-20-deoxycytidine (5-AZAC) was used to induce EpCAM expression.
RESULTS: Expression of EpCAM was correlated with DNA methylation and histone modifications. Treatment with 5-AZAC induced
EpCAM expression in negative cells. Ten transcription factors were associated with the epcam gene in EpCAM expressing cells, but
not in EpCAM-negative cells. Methylation of an Sp1 probe inhibited the binding of nuclear extract proteins in electromobility shift
assays; such DNA methylation sensitivity was not observed for an NF-kB probe.
CONCLUSION: This study provides insights in transcriptional regulation of epcam in ovarian cancer. Epigenetic parameters associated
with EpCAM overexpression are potentially reversible, allowing novel strategies for sustained silencing of EpCAM expression.
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The epithelial cell adhesion molecule (EpCAM; CD326) is a
transmembrane glycoprotein, highly overexpressed on most
carcinomas. Recently, EpCAM also gained interest as a signal
transducer (Maetzel et al, 2009) and as a marker of cancer-
initiating cells (Visvader and Lindeman, 2008). The role of EpCAM
in the development of cancer and in tumour progression is
dependent on the tumour type as recently reviewed by us (van der
Gun et al, 2010b). For example, in breast cancer, high EpCAM
expression correlates with poor prognosis (Spizzo et al, 2004), and
downregulation of EpCAM has been shown to decrease the
oncogenic potential (Osta et al, 2004). In contrast, high EpCAM
expression in, for example, primary renal cell carcinomas is
associated with improved patient survival (Seligson et al, 2004;
Klatte et al, 2009). In other types of carcinoma such as ovarian
cancer, the role of EpCAM is not clear and contradictory results
have been reported.

In normal ovary and benign ovarian tumours, EpCAM
expression is lower compared with malignant ovarian tumours
(Kim et al, 2003). Numerous studies confirmed the EpCAM
overexpression in ovarian carcinomas (Heinzelmann-Schwarz
et al, 2004; Spizzo et al, 2006; Kobel et al, 2008), turning EpCAM

into a well-established ovarian tumour marker (Spizzo et al, 2011).
The role of EpCAM in ovarian tumour progression, however,
is unclear; one study reported that FIGO stage III/IV showed
lower EpCAM expression than stage I (Kim et al, 2003), while in
another study, FIGO stage III/IV showed higher EpCAM expres-
sion than stage I/II disease (Heinzelmann-Schwarz et al, 2004).
Importantly, metastatic and recurrent tumours were found to
express significantly higher levels of EpCAM protein when
compared with primary ovarian carcinomas (Bellone et al, 2009).
Despite some contradictory results, the observations suggest a
promoting rather than a protecting role for EpCAM in ovarian
cancer. This promoting role is further confirmed for patients with
stage III/IV disease, for whom EpCAM overexpression was shown
to correlate significantly with decreased overall survival (Spizzo
et al, 2006).

Besides its possible prognostic role in ovarian cancer, EpCAM is
used as a therapeutic immunotarget for the treatment of malignant
ascites. For example, catumaxomab is a trifunctional monoclonal
antibody (anti-EpCAM � anti-CD3) approved to treat ovarian
cancer patients with malignant ascites (Bokemeyer, 2010).
Recently, it has been reported that catumaxomab treatment might
also have an effect on tumour cells in blood of ovarian cancer
patients (Wimberger et al, 2009). Similarly, the human monoclonal
antibody MT201 could effectively eliminate malignant cells in
metastic tumour specimens from patients with ovarian cancer
(Xiang et al, 2003).
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For various tumour types, EpCAM overexpression has been
associated with DNA hypomethylation of the promoter and
treatment of EpCAM-negative cells with a DNA methylation
inhibitor induced EpCAM expression (Spizzo et al, 2007; Tai et al,
2007; van der Gun et al, 2008). Alternatively, we also demonstrated
that endogenous EpCAM expression can be actively downregulated
by nuclear delivery of a DNA methyltransferase (van der Gun et al,
2008). Here, we investigate epigenetic mechanisms and transcrip-
tion factors underlying the overexpression of EpCAM in ovarian
cancer. Unlike genetic mutations, epigenetic mutations are
reversible; a better understanding of the regulation of EpCAM
gene expression may thus provide new opportunities for cancer
therapy, based on reversing epigenetic marks.

MATERIALS AND METHODS

Cell culture and 5-AZAC treatment

Ovarian cancer cell lines (H134S, SKOV3, CaOV3, OVCAR3) were
cultured in DMEM (BioWhittaker, Walkersville, MD, USA) and
A2780 in RPMI-1640 (BioWhittaker) with 50 mg ml�1 gentamicin
sulphate, 2 mM L-glutamine and 10% FBS. Culture medium of
A2780 contained also 1 mM Na-pyruvaat and 0.05 mM b-mercap-
toethanol. For DNA methylation inhibition studies, H134S and
A2780 were cultured in their appropriate media with a final
concentration of 5 mM 5-Aza-20-deoxycytidine (5-AZAC; Sigma, St
Louis, MO, USA). Everyday, freshly prepared 5-AZAC was added,
and after 3 days, cells were harvested for extraction of protein and
mRNA.

EpCAM protein expression

EpCAM protein was detected by mouse Mab MOC31 hybridoma
supernatant, followed by RaM-F(ab)2-FITC (DAKO, Glostrup,
Denmark) or mouse CD326-APC (Biolegend, Uithoorn, the
Netherlands). The mean fluorescence intensity (MFI) was
measured on a Calibur flow cytometer (Beckton Dickinson
Biosciences, San Jose, CA, USA).

Quantitative gene expression analysis by real-time RT–PCR

RNA was isolated using Rneasy Mini Kit (Qiagen, Venlo, The
Netherlands); 1 mg was reverse-transcribed (RevertAid cDNA
Synthesis Kit (Fermentas, Leon-Rot, Germany). The Q-PCR
analysis was performed (ABIPrism 7900HT, Applied Biosystems,
Nieuwekerk, the Netherlands) for EpCAM (Hs00158980_m1,
Applied Biosystems) and GAPDH (F50-CCACATCGCTCAGACAC
CAT-30, R50-GCGCCCAATACGACCAAAT-30, probe: CGTTGACTC
CGACCTTCACCTTCCC (Eurogentec, Maastricht, the Netherlands))
in triplicate. Relative gene expression levels were calculated
based on the comparative cycle treshold (Ct) method (DCt¼Ct

EpCAM�Ct GAPDH). To compare EpCAM expression of different
samples, the differences in DCt of individual samples (DDCt) were
used (A2780 was set at 1).

DNA methylation analysis

EZ DNA Methylation-Gold Kit (Baseclear Lab Products, Leiden,
the Netherlands) was used to modify 1 mg of DNA. DNA
methylation analysis was performed as described (van der Gun
et al, 2010a). Bisulphite primer sequences for regions A and B are
depicted in Figure 1A. The correlation between EpCAM expression
and DNA methylation was assessed by Spearman’s correlation test.

Chromatin immunoprecipitation

Histone marks were determined according to the Upstate
Biotechnology (Lake Placid, NY, USA) protocol and association

of transcription factors was detected as described (Weinmann
and Farnham, 2002) (see Supplementary Materials and Methods).
Real-time PCR was performed using AbsoluteQPCR SYBRGreen-
ROXMix (Abgene, Surrey, UK), ABI7900HT. The % input was
expressed as AE(Ct input�Ct ChIP)� Fd � 100%, where Fd is a dilu-
tion compensatory factor and AE represents the primer efficiency.
Primers for regions A1, B1, B2 and C are depicted in Figure 1A and
underlined in Figure 1B.

Electromobility shift assay

OVCAR3 nuclear extract was prepared using an NE-PER kit
(Pierce Biotechnology, Etten-Leur, the Netherlands). RDY681-
labelled probes (Isogen, De Meern, the Netherlands) are depicted
in Figure 1B. Probes were incubated with 4 mg nuclear extract in
20 ml binding buffer (Pierce Biotechnology) for 200 at RT. For
competition assays, a 100-fold excess of unlabelled competitor was
premixed with RDY681-labelled probe and added to the binding
mixture. Probes were in vitro methylated by M.SssI (New England
Biolabs, Ipswich, MA, USA). Unmethylated probes were treated
similarly but in the absence of methyl donor. Non-denaturing 4%
polyacrylamide gels were visualised using Odyssey Scanner
(Westburg, Leusden, the Netherlands).

RESULTS

EpCAM expression in correlation with DNA methylation
in ovarian cancer

Ovarian cancer cell lines were selected based on their EpCAM
protein expression levels: two EpCAM-negative lines (H134S,
A2780; MFI: 4.6±0.05, 2.6±0.14, respectively), SKOV3 with an
intermediate EpCAM expression level (MFI: 104±3) and two cell
lines (CaOV3, OVCAR3) with a high EpCAM expression level
(MFI: 461±30; 496±24, respectively) (Figure 2A). The protein
data are in line with the EpCAM mRNA levels (Figure 2B). To
determine the role of DNA methylation in silencing EpCAM
expression, the EpCAM-negative cell lines were treated with a DNA
methylation inhibitor. Indeed, treatment with 5-AZAC resulted in
induction of EpCAM expression in the EpCAM-negative cell lines
H134S and A2780, both on protein and mRNA level (Figures 2A
and B). To further investigate the correlation between EpCAM
expression and DNA methylation, the methylation status of the
epcam promoter and part of exon 1 was analysed. In the EpCAM-
negative cell lines, the 61 CpGs present in region A were
hypermethylated (A2780: 100±0%; H134S: 89±23%), whereas
region A in EpCAM-positive cell lines was hypomethylated
(SKOV3: 1±3%; CaOV3: 0.5±3%; OVCAR3: 0±2%) (Figure 2C,
Table 1). Interestingly, low to undetectable EpCAM-expressing
normal epithelial ovarian cancer cells (HOSE) (Kim et al, 2003;
Bellone et al, 2009) displayed a variable DNA methylation level of
15±21% (n¼ 10 clones). For region B (18 CpGs), the DNA
methylation levels were 99±2, 56±17, 9±13, 3±6, 1±5% for
A2780, H134S, SKOV3, CaOV3, OVCAR3, respectively, (Figure 2C,
Table 1). In the cell lines, an inverse correlation between EpCAM
expression and DNA methylation was found (Spearman r¼�0.97,
P¼ 0.02, Region A).

Histone modifications associated with EpCAM expression

In EpCAM-positive cells, regions C and B2 were associated with
acetylated histone 4 (acH4), acetylated histone 3 (acH3) and with
trimethylation of lysine 4 of histone 3 (H3K4me3) (Figures 3A
and B, Table 1). For region A1 covering the TSS, the presence of
these active marks was even more pronounced (Figure 3C). In
EpCAM-negative cells, association of these histone modifications
was not detected, except for low levels of acH3 up to 1% of input
DNA at region A1 (Figure 3D).
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The repressive histone modifications H3K9me3 as well as
H3K27me3 were not detected in EpCAM-positive cells. Interest-
ingly, in the EpCAM-negative cells, region A1 was associated
with repressive marks: in A2780, region A1 was associated with
H3K9me3; whereas in H134S the promoter was associated with
H3K27me3 (Figure 3D, Table 1).

In vivo epcam gene occupancy by transcription factors

Locations of transcription factor binding sites in the epcam
promoter as described in literature (Linnenbach et al, 1993;

McLaughlin et al, 2004; Yamashita et al, 2007; Sankpal et al, 2009),
as well as additional putative sites obtained by Genomatix
MatInspector are shown in Figure 1B. The transcription factors
screened for in vivo association with the epcam promoter were
selected based on evidence for a biological role in epcam regulation
(Gires et al, 2001; Tai et al, 2007; Yamashita et al, 2007; Sankpal
et al, 2009) and their potential role in ovarian cancer (Anttila et al,
2000; Reimer et al, 2007; Min and Wei-hong, 2009; Oettgen, 2010).

In the EpCAM-positive OVCAR3 cells, the promoter was
associated with Sp1, NF-kB, LEF-1, E2F2, Ets1 and Ets2 for both
regions tested (Table 2 and Figure 4), whereas E2F4, p53, AP2a and
STAT3 were only associated with region B1. In the EpCAM-

RegionA

Region B2

ChIP

Bisulphite sequencing

–610

ATG

+282

TSS
Sp1bSp1a

–159 +282

Region B
–130–443

Region C
–564 –376

Region A1
+65–138

–432 –253

–332 –185
Region B1

5’-AGTGTTTTGGAAGGTTTTTTGT-3’ 5’-AAATTAAAAAAATAAATAAACTCCC-3’

5'-GGAGGGGAGTTTATTTATTTTT-3’ 5’-CACAACTCTACTCCAATC-3’

Region C

-617.TAGAAATGCT TATGAAAACG AAAAAAGAAT TATTAAGAGT AATTATAAAG AAACACTCAT TTTCTTCCCA AGAGAGCCAA  

PU1.01/Ets         LEF1              LEF1

-537.GATTTCTTCT TTCCTCTTCT TTCTTTTTTT TTTCTTTCTA ATTTCAAAGG AGTATAATTA AATTGCCAGG TAAAAGCTCA

Start region B B2  PU1.01/Ets  C   STAT1

-457.AAGGTCTTTT TTATAGTGTT CTGGAAGGTT CTCTGCCTGT GTTTGTATTT CCTTTAGCCT CCACGTTCCT CTATCCAGTT

    E2F4 AP-2 B1 PEA3

-377.CCCGCACCCT TCCCCCCAGG CCCCATTCTT CAAGGCTTCA GAGCAGCGCT CCTCCGGTTA AAAGGAAGTC TCAGCACAGA

                  LEF1    B2                     Sp1/Sp1a

-297.ATCTTCAAAC CTCCTCGGAG GCCACCAAAG ATCCCTAACG CCGCCATGGA GACGAAGCAC CTGGGGCGGG GCGGAGCGGG

B1 RNApolIIB             Sp1   Start region A

-217.GCGCGCGGGC CCACACCTGT GGAGAGGGCC GCGCCCCAAC TGCAGCGCCG GGGCTGGGGG AGGGGAGCCT ACTCACTCCC

A1     Sp1     AP-1             STAT1/3/Ets  

-137.CCAACTCCCG GGCGGTGACT CATCAACGAG CACCAGCGGC CAGAGGTGAG CAGTCCCGGG AAGGGGCCGA GAGGCGGGGC

Sp1b                      TSS

 -57.CGCCAGGTCG GGCAGGTGTG CGCTCCGCCC CGCCGCGCGC ACAGAGCGCT AGTCCTTCGG CGAGCGAGCA CCTTCGACGC

NFκB-p50      A1      HIF1 

 +23.GGTCCGGGGA CCCCCTCGTC GCTGTCCTCC CGACGCGGAC CCGCGTGCCC CAGGCCTCGC GCTGCCCGGC CGGCTCCTCG

+103.TGTCCCACTC CCGGCGCACG CCCTCCCGCG AGTCCCGGGC CCCTCCCGCG CCCCTCTTCT CGGCGCGCGC GCAGCATGGC

+183.GCCCCCGCAG GTCCTCGCGT TCGGGCTTCT GCTTGCCGCG GCGACGGCGA CTTTTGCCGC AGCTCAGGAA GGTGAGGCGC

+263.GGATTGGAGC AGAGTTGTG 

NFκB

Figure 1 Part of the epcam gene under investigation. (A) Schematic overview: nucleotide position �610 to þ 282 relative to the transcription starting
site (TSS); the ATG start codon is shown; CpGs are depicted by vertical bars. Regions A and B were analysed for DNA methylation, region C, B2 and A1 for
histone modifications, and region B1 and A1 for transcription factors. Open circles represent putative Sp1 and NF-kB binding sites. (B) Nucleotide positions
�617 to þ 282 relative to the TSS are shown; the ATG start codon is depicted in bold. The start site of regions A and B is indicated in blue and PCR
primers are underlined. Putative transcription factor binding sites analysed by in silico analysis (Genomatix, MatInspector version 7.7.3.1) are indicated in red.
Probes for EMSA to investigate interference of Sp1 and NF-kB binding by DNA methylation are in bold and italic. The color reproduction of the figure is
available at the British Journal of Cancer journal online.
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positive CaOV3 cells, the promoter was associated with the same
transcription factors as for OVCAR3, except that for p53 and
STAT3 no association was detected. The transcription factors
LEF-1 and Ets1 were associated with region A1, whereas
association of Sp1, E2F2, Ets2 and again AP-2a were only found
in region B1. In the EpCAM-negative cells A2780 and H134S, no
association of any of the transcription factors with region A1 nor
with region B1 was detected (Table 2). In addition, no association
of ESE-1, SNAI1, SLUG, PEA3 and PDEF was detected neither in
EpCAM-positive nor in EpCAM-negative cells (data not shown).

Interference on binding of transcription factors by DNA
methylation

The ChIP data suggest a role for NF-kB and Sp1 in regulating
epcam gene expression. Our bisulphite sequencing revealed that
the CpG next to the putative binding site of NF-kB (located at

þ 27, NF-kB in Figure 1B) was methylated in all clones of the
epcam-negative cells and not methylated in the EpCAM-positive
cells. Similarly, for the CpG present in a putative binding site for
Sp1 (located at �32, Sp1b in Figure 1B), complete methylation in
all clones was observed in the EpCAM-negative cells, whereas in
the EpCAM-positive cells this particular CpG was not once
methylated. Also the 2 CpGs present in two putative binding sites
for Sp1 (located at �231 and �226, Sp1a in Figure 1B), were both
methylated in the EpCAM-negative cells (A2780: 22/22 clones,
H134S: 14/20 clones), whereas in the EpCAM-positive cells, these
two CpGs were not methylated (SKOV3 and CaOV3: 1/20 clones,
OVCAR3: 0/20 clones).

To investigate whether the observed DNA methylation actually
interferes with binding of the transcription factors to the epcam
promoter, EMSA competition studies were performed. Shift assay
with unmethylated probe Sp1a (Figure 1B) and nuclear protein
extract of OVCAR3 cells revealed two bands (aþ b) (Figure 5A).
Both bands were also observed for the methylated Sp1a probe, but
the binding of nuclear protein to the methylated probe was less
efficient than to the unmethylated probe (lane 2 compared with 6).
Also competition with an excess of cold unmethylated Sp1a probe
was more efficient than with a methylated probe, indicating that
Sp1 binds preferentially to the unmethylated Sp1a binding site
within the epcam promoter. Shift assay with the Sp1b probe and
nuclear extract of OVCAR3 cells revealed two bands with the
unmethylated probe as well as with the methylated probe
(Figure 5B). One of the bands is not specific (NS), as the band
intensity was not reduced with an excess of competitor. The other
band indicated with an S, showed competition with both an excess
of unmethylated as well as an excess of methylated probe,
indicating that for this particular sequence the transcription factor
binds to the Sp1b probe, regardless of DNA methylation status of
the CpGs within this probe. Also for the NF-kB probe, no
difference in binding patterns to the methylated and unmethylated
NF-kB probes was observed (data not shown).

DISCUSSION

Epigenetic aberrations, including DNA methylation and histone
modifications, are well established in the development and
progression of ovarian cancer (Barton et al, 2008; Balch et al,
2009). A number of protein-coding genes are overexpressed in
ovarian cancer because of loss of DNA methylation, including
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Figure 2 EpCAM expression in correlation with DNA methylation in ovarian cancer. To compare EpCAM expression between the different cell lines,
untreated A2780 was set at 1. (A) The average (±s.d.) of the relative mean fluorescence intensity of one representative staining performed in triplicate is
shown. (B) Quantitative RT–PCR analysis showing relative EpCAM mRNA levels. (C) The % of DNA methylation represents the number of methylated
CpGs divided by the total number of CpGs present in the region. For each cell line the number of clones analysed is indicated between brackets.

Table 1 Epigenetic marks associated with EpCAM expression

A2780 H134S SKOV3 CaOV3 OVCAR3

EpCAM expression � � + ++ ++

Active histone marks, region C/B2
acH4 � � + + +
acH3 � � + + +
H3K4me3 � � + + +

Active histone marks, region A1
acH4 � � ++ ++ ++
acH3 � � ++ ++ ++
H3K4me3 � � ++ ++ ++

Repressive histone marks, region C/B2
H3K9me3 � � � � �
H3K27me3 � � � � �

Repressive histone marks, region A1 �
H3K9me3 + � � � �
H3K27me3 � + � � �

DNA methylation
Region B/A

+++ ++ +/� � �

Transcriptional regulation of the epcam gene

BTF van der Gun et al

315

British Journal of Cancer (2011) 105(2), 312 – 319& 2011 Cancer Research UK

G
e
n

e
ti

c
s

a
n

d
G

e
n

o
m

ic
s



maspin, claudin-3 (Honda et al, 2007) and claudin-4 (Barton et al,
2008). In addition, overall loss of the repressive histone mark
H3K27me3 has been associated with poor prognosis in ovarian
cancer (Wei et al, 2008). In this study, we set out to unravel the
epigenetic marks underlying EpCAM overexpression in ovarian
cancer.

In our ovarian cancer cell line panel, EpCAM expression was
inversely correlated with the DNA methylation status of the
promoter and part of exon 1, as reported for several other tumour
types (Spizzo et al, 2007; Tai et al, 2007; Yu et al, 2008; van der Gun
et al, 2008). Interestingly, treatment of our EpCAM-negative
ovarian cancer cells with a DNA methylation inhibitor induced
EpCAM expression, both on mRNA and protein level. The role of
DNA methylation in silencing epcam has been previously
published by us for the intermediate epcam expressing SKOV3
ovarian cancer cells, and is in line with observations in other
tumour types (Spizzo et al, 2007; Tai et al, 2007; van der Gun et al,
2008). In normal cells (HOSE), we did not find DNA hypermethy-
lation, even though in several ovarian cancer cell lines, including
SKOV3, CaOV3 and OVCAR3, EpCAM mRNA was reported to be
3 log higher compared with HOSE cells (Kim et al, 2003). Also on
protein level, HOSE cultures showed negative to negligible levels
of EpCAM expression (Bellone et al, 2009). This unexpected
low DNA methylation level for EpCAM in HOSE cells is in line
with data of differentiating human embryonic stem cells,
where epcam silencing was not associated with increased DNA
methylation (Lu et al, 2010). In these cells, epcam silencing was
associated with a reduction of active histone marks and an
enhancement of repressive histone marks (Lu et al, 2010).
Also in our panel of EpCAM-negative cell lines, we found the
silenced epcam promoter to be associated with repressive marks
(H3K9 or H3K27 trimethylation), and relative low levels of active
histone marks (H3/H4 acetylation, H3K4 trimethylation) were
observed.

The epigenetic marks found in the EpCAM-negative cells
indicate a closed chromatin conformation, which might explain
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Figure 3 Histone modifications associated with EpCAM expression. Histone modifications associated with region C (A), region B2 (B) and A1 (C and D)
within the epcam gene in EpCAM-negative (�) and -positive (þ ) cells. The absence of antibody (no Ab) and rIgG were used as negative controls. The bars
represent the mean of three or more independent ChIP experiments±the s.e.m.

Table 2 Transcription factors associated with the epcam gene
(+¼ association, �¼ no association)

Sp1 NF-jB LEF-1 E2F2 E2F4 Ets1 Ets2 p53 AP2a STAT3

OVCAR3
A1 + + + + � + + � � �
B1 + + + + + + + + + +

CaOV3
A1 � + + � + + � � � �
B1 + + � + + � + � + �

A2780
A1 � � � � � � � � � �
B1 � � � � � � � � � �

H134S
A1 � � � � � � � � � �
B1 � � � � � � � � � �

Region B1 (147 bp)

CaOV3

OVCAR3

Region A1 (203 bp)

NF-κB p53 AP2α STAT3

CaOV3

OVCAR3

200

100

bpH2O10% IgG Sp1 LEF-1 E2F2 E2F4 Ets1 Ets2

NF-κB p53 AP2α STAT3 bpH2O10% IgG Sp1 LEF-1 E2F2 E2F4 Ets1 Ets2

Figure 4 Transcription factors associated with the epcam gene. ChIP
analysis on EpCAM-positive (OVCAR3, CaOV3) cells performed with the
indicated antibodies, IgG was used as a negative control, 10%¼ 10% of
input; PCR was performed with primers for regions A1 and B1.
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the absence of association of any of the tested transcription factors
with the epcam gene in H134S and A2780 cells. Out of the 16 tested
transcription factors, 10 were associated with the promoter in the
EpCAM-expressing cells. We are the first to show association of
AP2a, Ets1, Ets2, E2F2, E2F4 and STAT3 with the epcam gene. Of
special interest are the associations found for nuclear AP2a and
Ets1, as high levels of these transcription factors have been related
to poor prognosis in ovarian cancer (Anttila et al, 2000; Oettgen,
2010). Similarly, a high E2F2 to E2F4 ratio was reported to be of
prognostic value for ovarian cancer-free survival (Reimer et al,
2007). Also STAT3 is overexpressed in ovarian cancer compared
with normal or benign ovarian tumour tissue, and its expression
was significantly higher in FIGO stage III/IV compared with stage
I/II (Min and Wei-hong, 2009). Although our data indicate that the
relation between transcription factors and clinical parameters
might partially take place via EpCAM expression regulation, the
direct biological significance needs to be further established.

For the transcription factors, p53, NF-kB, Sp1 and LEF-1
(Yamashita et al, 2007), evidence for regulating EpCAM expression
was previously demonstrated in other tumour types. Although
wild-type p53, but not mutant p53, has been reported to repress
EpCAM expression (Sankpal et al, 2009), we did not observe p53
association in EpCAM-negative cells. The observed association of

p53 in the EpCAM-positive, p53-mutant OVCAR3 cells (Kolfschoten
et al, 2002) is in agreement with the acetylated histones associated
with the promoter in these cells, as mutant p53 recruits the histone
acetyl transferase p300 (Strano et al, 2007). In the presence of
p300, the repressive action of NF-kB on epcam promoter activity
was abolished (Gires et al, 2001), which might explain the
association of NF-kB and acetylated histones with the EpCAM
promoter in EpCAM-positive cells. Also Sp1 has previously been
reported to be involved in EpCAM transcription (Tai et al, 2007).
Interestingly, our observation that the CpGs located around �230
within the Sp1 binding sites were methylated in EpCAM-negative
ovarian cell lines and unmethylated in the EpCAM-positive lines
was also reported for several other types of tumours (Yu et al,
2008). Together with our in vitro finding that methylation of these
particular CpGs affects Sp1 binding, this region is currently
explored by us for targeted DNA methylation approaches (van der
Gun et al, 2010a).

Apart from DNA methylation and histone modifications, other
epigenetic mechanisms, including non-coding RNAs, may be
(directly and indirectly) involved in epcam gene regulation. In this
respect, microRNA-181 has been shown to upregulate epcam gene
expression, possibly via a positive feedback loop between miR-181
and Wnt/b-catenin signalling (Ji et al, 2011). These observations
are in line with our data showing association of the Wnt-pathway
transcription factor LEF-1 with the active epcam promoter.
Alternatively, several endogenous non-coding RNAs have been
reported to be capable of modulating gene expression directly on
the transcriptional level, for example, by inducing DNA methyla-
tion (Morris, 2011).

At present, EpCAM is exploited as therapeutic target in several
antibody-based clinical trials. Recently, the European Medicines
Agency approved the use of catumaxomab for the intraperitoneal
treatment of malignant ascites (Bokemeyer, 2010). The oncogenic
role of EpCAM broadens the interest to use EpCAM not only as an
immunotarget but also as a target for epigenetic silencing. In this
respect, transient siRNA-mediated silencing of EpCAM expression
has been shown to reduce the oncogenic potential of breast (Osta
et al, 2004), gastric (Du et al, 2009), hepatocellular (Yamashita et al,
2009) and oral squamous cell (Yanamoto et al, 2007) carcinomas.

To silence gene expression in a more sustained way, targeted
DNA methylation has been achieved by fusing a DNA methyl-
transferase to a DNA binding domain like zinc-fingers (Smith et al,
2008). Similarly, transcription effector domains fused to zinc-
fingers targeting the epcam promoter modulated epcam promoter
activity (Gommans et al, 2007). Recently, we showed that an
EpCAM-specific triple helix-forming oligonucleotide coupled to a
methyltransferase variant is able to target methylation predomi-
nantly to a specific CpG in the epcam promoter (van der Gun et al,
2010a). Interestingly, targeted methylation in living cells induced
dense methylation up to 380 bp on both sides of the target site (Li
et al, 2007), suggesting that initial DNA methylation might serve as
a trigger for DNA methylation spreading. Elucidating the
regulation mechanisms of epcam in ovarian cancer as presented
here thus opens up new possibilities to exploit EpCAM as a
therapeutic target.
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