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Abstract

Background: We recently demonstrated that tyrosine sulfation is an important contributor to monocyte recruitment and
retention in a mouse model of atherosclerosis. P-selectin glycoprotein ligand-1 (Psgl-1) is tyrosine-sulfated in mouse
monocyte/macrophages and its interaction with P-selectin is important in monocyte recruitment in atherosclerosis.
However, whether tyrosine sulfation is required for the P-selectin binding function of mouse Psgl-1 is unknown. Here we
test the function of native Psgl-1 expressed in leukocytes lacking endogenous tyrosylprotein sulfotransferase (TPST) activity.

Methodology/Principal Findings: Psgl-1 function was assessed by examining P-selectin dependent leukocyte rolling in
post-capillary venules of C57BL6 mice transplanted with hematopoietic progenitors from wild type (WTRB6) or Tpst1;Tpst2
double knockout mice (Tpst DKORB6) which lack TPST activity. We observed that rolling flux fractions were lower and
leukocyte rolling velocities were higher in Tpst DKORB6 venules compared to WTRB6 venules. Similar results were
observed on immobilized P-selectin in vitro. Finally, Tpst DKO leukocytes bound less P-selectin than wild type leukocytes
despite equivalent surface expression of Psgl-1.

Conclusions/Significance: These findings provide direct and convincing evidence that tyrosine sulfation is required for
optimal function of mouse Psgl-1 in vivo and suggests that tyrosine sulfation of Psgl-1 contributes to the development of
atherosclerosis.
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Introduction

Atherosclerosis is a chronic inflammatory disease of the arterial

wall [1,2]. It is initiated by vascular endothelial injury that leads to

endothelial dysfunction and intramural accumulation of oxidized

LDL. This causes the elaboration of signalling molecules and

induction of adhesion receptors that promotes recruitment of

monocytes into the vessel wall, a dominant factor in the initiation

and progression of atherosclerosis [3].

We recently examined the importance of tyrosine sulfation in

the development of atherosclerosis in a model in which lethally-

irradiated Ldlr2/2 mice were rescued with hematopoietic

progenitors lacking tyrosylprotein sulfotransferase (TPST) activity

[4]. We observed substantial reductions in aortic root lesion size

and the number of macrophages in lesions in hyperlipidemic

Ldlr2/2 recipients transplanted with TPST deficient progenitors

compared to controls. These data indicate that tyrosine sulfation of

one or more proteins expressed in hematopoietic cells has a major

impact on the development of atherosclerosis. The identities and

the relative importance of the tyrosine-sulfated proteins involved

are unknown. However, P-selectin glycoprotein ligand-1 (Psgl-1),

along with the chemokine receptors Ccr2, Ccr5, and Cx3cr1 are

likely candidates [4,5].

Psgl-1 is a homodimeric mucin that is broadly expressed on

hematopoietic cells [6]. In mice lacking P-selectin or Psgl-1,

leukocyte rolling is virtually absent in a model of trauma induced

P-selectin expression in post-capillary venules [7,8]. Thus, Psgl-1 is

the major physiologic ligand for P-selectin [9]. Psgl-1 is also a key

player in the development of atherosclerosis. Psgl-1 expressed on

Ly-6Chi monocytes is a major mediator of monocyte recruitment

into atherosclerotic lesions in mice, and aortic root lesions are

<40% smaller in hyperlipidemic ApoE2/2; Selplg2/2 mice

compared to ApoE2/2 mice [10]. In addition, transient P-selectin

or Psgl-1 blockade using mAbs reduces macrophage influx and

neointima formation in a model of arterial injury in ApoE2/2

mice [11].

Structure-function relationships for human PSGL-1 have been

defined in great detail. The P-selectin binding site spans <15

residues near the N-terminus of the mature polypeptide, it

contains sulfotyrosine residues at positions 5, 7, and 10 and a

core 2 O-glycan terminating with sialyl-Lex linked to Thr16

[12,13,14,15]. Together these structural features are both
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necessary and sufficient for P-selectin binding. However, for

mouse Psgl-1 the structure-function relationships are not as clearly

defined. Like human PSGL-1, the P-selectin binding site of mouse

Psgl-1 is near the N-terminus as defined by function blocking

mAbs, but its amino acid sequence is considerably different than

that of human PSGL-1 (Fig. 1) [16,17].

Mouse Psgl-1 has two threonine residues (Thr14 and Thr17)

near the N-terminus that are possible sites for O-glycan addition.

P-selectin dependent rolling is severely impaired in fucosyltrans-

ferase VII (FucTVII) and core 2 b(1,6)-N-acetylglucosaminyl-

transferase-I (C2GlcNAcT-I) deficient mice indicating that mouse

Psgl-1 requires a(1,3)fucosylated, core 2 O-glycan for optimal P-

selectin binding in vivo [18,19]. Furthermore, mouse Psgl-1

endogenously expressed in murine WEHI-3 cells carries core 2 O-

glycan capped with sialyl-Lex and site-directed mutagenesis studies

implicate Thr17 as a site of O-glycan addition [20,21].

In contrast to the substantial evidence for the importance of O-

glycosylation, the importance of tyrosine sulfation of mouse Psgl-1

for P-selectin binding has not been definitely demonstrated.

Indeed, it was only recently that mouse Psgl-1 was shown to be

tyrosine-sulfated [4]. Tyr13 and Tyr15 are the only possible

sulfation sites because they are the only tyrosine residues in the

extracellular domain. The only study addressing the potential

importance of tyrosine sulfation for mouse Psgl-1 is that of Xia et

al who examined the function of recombinant mouse Psgl-1

expressed in Chinese hamster ovary (CHO) cells stably expressing

human FucTVII and human C2GlcNAcT-I in vitro [21]. They

observed that TyrRPhe substitution at position 13, but not at

position 15, impaired P-selectin binding and rolling of CHO cells

on P-selectin in vitro, suggesting that Tyr13 was sulfated.

However, the authors noted that their results should be interpreted

cautiously because amino acid substitutions might impair function

indirectly.

We therefore sought to directly examine the functional

importance of tyrosine sulfation of native mouse Psgl-1 by testing

its function in leukocytes lacking endogenous TPST activity in

vivo. To accomplish this, mice were transplanted with hemato-

poietic progenitors from mice lacking both the Tpst1 and Tpst2

genes, the only TPSTs expressed in mice, and the rolling

behaviour of TPST deficient leukocytes was examined in well-

characterized, physiologically relevant assays. We found that

TPST deficient leukocytes roll on P-selectin in vivo and in vitro.

However, rolling of TPST deficient leukocytes was less efficient

than wild type leukocytes despite equivalent surface expression of

Psgl-1.

Methods

Ethics statement
All procedures involving vertebrate animals were reviewed and

approved by the Institutional Animal Care and Use Committee at

the Oklahoma Medical Research Foundation (Protocol #W0070).

Antibodies
PE-conjugated anti-mouse Psgl-1 mAb 2PH1 (rat IgG1-k), anti-

mouse Psgl-1 mAb 4RA10 (rat IgG1-k), FITC-CD45.1 mAb A20

(mouse IgG2A-k), PE-CD45.2 mAb 104 (mouse IgG2A-k), anti-

mouse P-selectin mAb RB40.34 (rat IgG1-l), and anti-mouse

CD16/CD32 mAb 2.4G2 (rat IgG2B-k, Mouse BD Fc BlockTM)

were from BD Pharmingen. Anti-mouse Psgl-1 mAb 4RB12 (rat

IgG2A) was provided by Dietmar Vestweber (Max Planck Institute

for Molecular Biomedicine, Münster, Germany). Goat anti-mouse

CD16/CD32 polyclonal antibody was from R&D Systems.

Hematopoietic transplantation
Tpst1;Tpst2 double knockout (Tpst DKO) mice were generated

and characterized as previously described [22,23]. These mice

have severely impaired post-natal viability. Therefore, fetal livers

were used as the source of hematopoietic progenitors. Lethally-

irradiated B6.SJL-Ptprca Pep3b/BoyJ recipients (B6.SJL, The

Jackson Laboratory, Stock #002014) were transplanted with

E15.5 fetal liver cells from wild type 129S6 or Tpst DKO mice,

which are in the 129S6 background as described previously [4].

These groups are abbreviated as WTRB6 and Tpst DKORB6,

respectively. All studies were conducted 16–24 weeks after

transplantation. Complete blood counts were determined at the

time of experimentation as previously described [4].

Intravital microscopy
Mice were anesthetized, placed on a warmed microscope stage,

and a catheter was placed in the left carotid artery for injections

and blood sampling. Exteriorization of the cremaster muscle was

used to induce P-selectin-dependent leukocyte rolling [24,25]. The

cremaster muscle was mounted on an observation portal and

continuously bathed with Hank’s balanced salt solution or

131.9 mM NaCl, 18 mM NaHCO3, 4.7 mM KCl, 2.0 mM

CaCl2 and 2 mM MgSO4, pH 7.2 equilibrated with 79% N2

and 16% CO2 and 5% O2 at 36uC. All data collection was

completed within 20 min of exteriorization of the cremaster

muscle.

Observations of post-capillary venules were made using a Nikon

Eclipse E600-FN microscope equipped with a water immersion

objective (40x/0.80 W). Images were recorded using a CCD

camera (DC-330E, Dage-MTI) and centerline velocities (vCL) were

measured using an optical doppler velocimeter (Microvessel

Velocity OD-RT, CircuSoft Instrumentation). Vessel diameter

and the distance leukocytes rolled were determined from recorded

images using a digital image processing system (SGI O2

workstation running Inovision ISEEH v5.24 software) and freeze-

frame advancing.

Rolling flux fractions were calculated by dividing leukocyte

rolling flux, defined as the number of rolling leukocytes passing a

line perpendicular to the vessel axis over a period of 1 min, by

total leukocyte flux estimated as WBC N vb N p N (d/2)2, where WBC

is total leukocyte count, vb is mean blood flow velocity (vCL N 0.625)

and d is vessel diameter [26]. Rolling velocities for 10 leukocytes

passing a line perpendicular to the vessel axis were measured in the

same venules as rolling flux fractions. Leukocytes were analyzed

for a period of 1 s (30 frames). Mean rolling velocity was calculated

by dividing the distance travelled by the elapsed time.

Leukocyte interaction with the vessel wall was considered as

rolling and not free flowing when velocities were below the critical

velocity estimated as vcrit = vb N e N (2 - e), where e is the ratio of the

leukocyte diameter to vessel diameter [27]. The leukocyte

diameter is taken to be 7 mm [28]. Wall shear rates (cw) were

estimated as cw = 4.9 (8 vb /d) where 4.9 is a correction factor

Figure 1. Sequence alignment of the N-terminal P-selectin
binding sites of human and mouse P-selectin glycoprotein
ligand-1.
doi:10.1371/journal.pone.0020406.g001
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obtained from velocity profiles determined using microparticle

image velocimetry in microvessels [29,30,31].

Parallel plate rolling assays
Polystyrene 35-mm dishes were coated with anti-human IgM Fc

mAb (20 mg/ml, clone MH15-1, Accurate Chemical & Scientific)

in HBSS overnight at 4uC. Dishes were washed with HBSS, 0.1%

human serum albumin (HSA), blocked with HBSS, 1% HSA for

2 h and then incubated for 1 h at 37uC with media from COS-7

cells transfected with plasmids encoding mouse P-selectin/IgM or

mouse CD45/IgM chimera. The plasmids were from by John B.

Lowe (University of Michigan) and the conditioned media was

kindly provided by Dr. Lijun Xia and John Michael McDaniel

(Oklahoma Medical Research Foundation). P-selectin site densities

were determined using 125I-labeled RB40.34 [32]. In some

experiments dishes were pre-incubated with blocking P-selectin

mAb RB40.34 (20 mg/ml, 1 h).

Bone marrow cells were flushed from femurs and passed through

a 40 mm filter. Erythrocytes were lysed and cells were pelleted and

resuspended in HBSS, 0.5% HSA at 0.56106 cells/ml. Cells were

drawn through a parallel plate flow chamber (GlycoTech) using a

PHD 200 syringe pump (Harvard Apparatus). Rolling leukocytes

were observed using a Zeiss Axiovert 200 microscope equipped with

a 20x/0.3 Ph1 objective. After 5 minutes, images were recorded

using a CCD camera (XC-77, Hamamatsu Photonics) and analyzed

using the image processing system described above. For each

experiment, rolling leukocytes were analyzed in 4 fields in a vertical

line perpendicular to the direction of flow. The number of rolling

cells was converted to cells/mm2 and the mean rolling velocities of

10 cells in each field were calculated by dividing the distance

travelled by the elapsed time.

Flow cytometry
The degree of donor hematopoiesis in B6.SJL recipients

(CD45.1+) transplanted with wild type or Tpst DKO (CD45.2+)

hematopoietic cells was assessed by flow cytometry. Leukocytes

were collected from bone marrow or peripheral blood into 2 mM

EDTA. Erythrocytes were lysed and cells were pelleted and

resuspended in HBSS, 1% FBS, 0.02% NaN3. Cells were incubated

in mouse Fc block (10 mg/ml) followed by FITC-CD45.1 (10 mg/

ml) and PE-CD45.2 (10 mg/ml). Following washing, cells were fixed

with 1% paraformaldehyde in HBSS, 0.02% NaN3 and analyzed in

a FACSCaliburTM flow cytometer (Becton Dickinson).

To quantitate Psgl-1 surface expression, cells were incubated

with goat anti-mouse Fc block followed by PE-2PH1 (5 mg/ml) or

4RB12 (5 mg/ml) followed by FITC rabbit anti-rat IgG (10 mg/ml,

Vector Labs). To assess P-selectin binding, cells were incubated

with mouse P-selectin/IgM or control CD45/IgM and bound

chimera was detected with FITC goat anti-human IgM (10 mg/ml,

Chemicon). Analyses were gated on the neutrophil and monocyte

population of donor (CD45.2+) origin. In some experiments,

blocking mAbs against mouse P-selectin (RB40.34, 20 mg/ml) or

mouse Psgl-1 (4RA10, 30 mg/ml) were included.

Statistical Analysis
Differences in rolling velocity and rolling flux fraction were

determined using independent samples t-tests using SPSS (SPSS

for Mac, rel. 18.0). In addition to the p-values for the t-test, we

present the effect size, Cohen’s d, which measures the magnitude

of the difference between the two group means expressed in terms

of standard deviation. A Cohen’s d value $0.8 represents a large

effect size [33]. All tests were two-tailed and an a #0.05 was set for

statistical significance. All results are represented as the mean 6

S.E.M.

Results

Hematopoietic reconstitution
To assess the efficiency of reconstitution of Tpst DKO hemato-

poiesis in B6.SJL recipients, complete blood counts and the

percentage of donor (CD45.2+) cells were determined at the time of

experimentation at 16–24 weeks after transplantation. We observed

that the total leukocyte, neutrophil, lymphocyte, monocyte, erythro-

cyte and platelet counts were normal and that there were no

significant differences between the two transplant groups (Table 1).

For in vivo rolling and P-selectin binding studies using

peripheral blood, 96.260.7% (n = 10) of circulating neutrophils

and monocytes in WTRB6 mice and 94.761.2% (n = 17) in Tpst

DKORB6 mice were CD45.2+ at the time of experimentation.

For in vitro rolling and P-selectin binding studies using bone

marrow leukocytes, 97.460.5% (n = 4) of bone marrow leukocytes

in WTRB6 mice and 96.561.2% (n = 6) in Tpst DKORB6 mice

were CD45.2+ at the time of experimentation.

Mice appeared normal with no clinical signs of graft vs. host disease

(i.e. diarrhea). Furthermore, body weights of the WTRB6 group

(22.060.4 g, n = 13) were similar to the Tpst DKORB6 group

(23.160.5 g, n = 13). Taken together, these data demonstrate efficient

reconstitution of donor hematopoiesis in the B6.SJL recipients,

confirming the histocompatibility of the donor-recipient pair.

P-selectin-dependent leukocyte rolling in vivo
P-selectin-dependent leukocyte rolling in post-capillary venules

was induced by exteriorization of the cremaster muscle. Rolling

flux fractions were quantitated in 49 venules in 7 WTRB6 mice

and 39 venules in 7 Tpst DKORB6 mice and leukocyte rolling

velocities were determined for an average of 8.5 rolling cells in

each venule (Fig. 2A and B). Hemodynamic and microvascular

parameters including venule diameter, centerline velocity and wall

shear rates were comparable in WTRB6 and Tpst DKORB6

mice (Table 2).

Table 1. Complete blood counts.

Experimental Group
Leukocytes
(61023/ml)

Neutrophils
(61023/ml)

Lymphocytes
(61023/ml)

Monocytes
(61023/ml)

Erythrocytes
(61026/ml)

Platelets
(61023/ml)

WTRB6 4.8760.76 1.2860.17 3.2160.57 0.3060.08 8.3860.25 645658

Tpst DKORB6 5.6460.70 1.2560.19 3.9860.47 0.3060.08 7.8260.28 632656

p-value 0.461 0.896 0.304 0.973 0.152 0.872

Complete blood counts 16–24 weeks post-transplant are expressed as the mean 6 S.E.M. (n = 13). Statistical differences between the groups were assessed using a
Student’s two-tailed t-test with unequal sample variance.
doi:10.1371/journal.pone.0020406.t001

Tyrosine Sulfation of Psgl-1

PLoS ONE | www.plosone.org 3 May 2011 | Volume 6 | Issue 5 | e20406



We observed that rolling flux fractions were lower in Tpst

DKORB6 venules (8.361.1%, n = 39 venules) compared to

WTRB6 venules (18.061.8%, n = 49 venules). We also observed

that leukocyte rolling velocities were higher in Tpst DKORB6

venules (88.664.8 mm/s) compared to WTRB6 venules

(33.161.8 mm/s). Statistical analysis showed that rolling flux

fraction in Tpst DKORB6 venules were significantly lower

(p,0.0001, d = 0.96) and rolling velocities were significantly higher

in the Tpst DKORB6 group compared to the WTRB6 group

(p,0.0001, d = 2.4).

In some experiments, blocking mAbs to P-selectin or Psgl-1

were administered after initial data collection and venules were re-

examined for rolling leukocytes. In each of these experiments

observations were made before and immediately after mAb

administration in a single venule and then in an additional 2–7

venules in each animal. We observed that rolling leukocytes,

defined as those with velocities less than vcrit, were undetectable

after administration of 10 mg of P-selectin mAb RB40.34 in both

WTRB6 and Tpst DKORB6 mice (n = 3). In a separate series of

experiments, rolling leukocytes were also undetectable in WTRB6

and Tpst DKORB6 mice (n = 3) after administration of 10 mg of

Psgl-1 mAb 4RA10.

P-selectin-dependent leukocyte rolling in vitro
To study P-selectin-dependent rolling in a more defined system,

leukocyte rolling was observed on P-selectin coated dishes in a

parallel plate flow chamber. The number of rolling leukocytes and

leukocyte rolling velocities were quantitated in three independent

experiments comparing leukocytes harvested from wild type and

Tpst DKORB6 mice. Bone marrow leukocytes were harvested

and drawn over dishes coated with mouse P-selectin/IgM at a

shear stress of 1 dyn/cm2 as described in Methods.

For wild type leukocytes, we observed 176615 rolling cells/

mm2, whereas for Tpst DKORB6 leukocytes we observed only

9766 rolling cells/mm2 (n = 12 fields from 3 independent paired

experiments) (Fig. 3A). Statistical analysis showed that the number

of rolling cells in the Tpst DKORB6 group was significantly lower

than the WT group (p,0.0001, d = 2.1).

In the same experiments, the velocities of 10 individual leukocytes

in each of the 4 fields observed were measured. We found that wild

type leukocytes rolled with a mean velocity of 1.660.1 mm/s. In

contrast, Tpst DKORB6 leukocytes had mean rolling velocities of

2.460.1 mm/s (Fig. 3B). Statistical analysis showed that rolling

velocities were significantly higher in the Tpst DKORB6 group

compared to the WT group (p,0.0001, d = 2.3). No detectable

leukocyte rolling was observed on dishes coated with mouse CD45/

IgM or when dishes coated with P-selectin/IgM were pre-incubated

with the P-selectin blocking mAb RB40.34 (data not shown).

P-selectin binding and Psgl-1 expression
P-selectin binding to Psgl-1 on neutrophils in peripheral blood

was determined using flow cytometry. Neutrophils were gated

based on their forward and orthogonal light scattering properties

and on donor origin (CD45.2+). We observed that the mean

fluorescence intensity (MFI) of P-selectin binding to WTRB6 cells

was 1,3226138 (n = 3) and 557664 for Tpst DKORB6 cells

(n = 7) (Fig. 4A & B). This difference is highly significant

(p = 0.016). Pre-incubation of cells with P-selectin blocking mAb

RB40.34 or Psgl-1 blocking mAb 4RA10 completely blocked

binding of the P-selectin/IgM to levels equivalent to that for

CD45/IgM (data not shown).

These samples were also analyzed by flow cytometry using the

Psgl-1 blocking mAb 2PH1, to investigate whether the reduced

rolling of Tpst DKO cells and reduced binding of P-selectin to Tpst

DKO neutrophils was due to altered surface expression of Psgl-1.

We observed that MFI of 2PH1 binding to neutrophils from

WTRB6 mice (3,4886169, n = 3) and Tpst DKORB6 mice were

indistinguishable (3,3226123, n = 7, p = 0.47) (Fig. 4C & D). We

also examined Psgl-1 expression on leukocytes from a rare Tpst

DKO mouse at post-natal day 14 using 4RB12, a non-blocking

antibody to Psgl-1. 4RB12 binding to peripheral blood neutrophils

and bone marrow leukocytes from the Tpst DKO mouse was

indistinguishable from an age-matched wild type mouse examined

in parallel (data not shown).

Discussion

We recently reported that transplantation of Ldlr2/2 mice with

Tpst DKO hematopoietic progenitors drastically attenuated

Figure 2. P-selectin dependent rolling in vivo. Surgical exterior-
ization of the cremaster muscle was used to induce P-selectin-dependent
leukocyte rolling in post-capillary venules. (A) The rolling flux fraction in
49 venules from 7 WTRB6 mice and 39 venules from 7 Tpst DKORB6
mice was determined. (B) Mean rolling velocities were determined from
an average of 8.5 leukocytes/venule in the same venules as the rolling
flux fractions. All values are reported as mean 6 S.E.M.
doi:10.1371/journal.pone.0020406.g002

Table 2. Hemodynamic and microvascular parameters.

Experimental Group
Mice
(n)

Venules
(n)

Diameter
(mm)

Centerline velocity
(mm/s)

Wall shear rate
(s21)

WTRB6 7 49 30.061.0 1369686 949666

Tpst DKORB6 7 39 29.961.1 1123685 12296104

Values are expressed as the mean 6 S.E.M.
doi:10.1371/journal.pone.0020406.t002
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development of atherosclerosis [4]. This result indicated that

tyrosine sulfation of one or more proteins expressed in hemato-

poietic cells has a major impact on the development of

atherosclerosis. Psgl-1 is one likely candidate because it is known

to be tyrosine-sulfated in the mouse and its role in monocyte

recruitment in atherosclerosis is well established [4,10,11]. We

therefore sought to directly examine the functional importance of

tyrosine sulfation for Psgl-1 in vivo.

To address this question, mice were transplanted with

hematopoietic progenitors from mice lacking endogenous TPST

activity and the rolling behaviour of TPST deficient leukocytes

was examined in a well-characterized model of trauma induced P-

selectin expression in post-capillary venules in the cremaster

muscle. We observed that significantly fewer TPST deficient

leukocytes rolled in post-capillary venules in the Tpst DKORB6

group compared to wild type leukocytes in the WTRB6 group

and TPST deficient leukocytes rolled at significantly higher

velocities than wild type leukocytes. These observations were

confirmed in two well-defined in vitro assay systems. First, in a

parallel plate adhesion assay, fewer TPST deficient leukocytes

rolled on P-selectin and they rolled at higher velocities compared

to wild type leukocytes under physiologically relevant shear stress.

In addition, in a flow cytometry assay, binding of fluid-phase P-

selectin to TPST deficient peripheral blood and bone marrow

leukocytes was significantly lower than binding to wild type

leukocytes. Importantly, we showed that impaired rolling in vivo

and in vitro and impaired binding of fluid-phase P-selectin to

TPST deficient leukocytes was not due to differences in surface

expression of Psgl-1. Finally, antibody blocking experiments in

Tpst DKORB6 mice showed that anti-Psgl-1 mAb abolished P-

selectin dependent rolling in vivo. Taken together these observa-

tions demonstrate that tyrosine sulfation enhances the binding

capacity of mouse Psgl-1, but is not an absolute requirement for

Psgl-1 function in vivo. These findings, in conjunction with our

previous report that atherosclerosis is attenuated in hyperlipidemic

Ldlr2/2 mice with Tpst DKO hematopoiesis, suggest that

tyrosine sulfation of Psgl-1 may contribute to lesion development.

It is formally possible that impaired rolling of TPST deficient

leukocytes is due to differences in O-glycosylation of Psgl-1

compared to wild type leukocytes. However, it is difficult to

envision how O-glycosylation, that occurs in an earlier Golgi

compartment, could be impacted by the presence or absence of

tyrosine sulfation that occurs in the trans-Golgi network [34,35].

In our studies, leukocyte rolling was completely abrogated by

injection of a blocking P-selectin antibody. This is consistent with

published data that leukocyte rolling in this model is entirely

dependent on P-selectin expression on the post-capillary venules

[25]. Psgl-1 is the predominant ligand for P-selectin is the early

phases (,30 min) after trauma-induced inflammation in the

mouse cremaster. However, previous studies indicate that a minor

component of P-selectin-dependent rolling in this model is Psgl-1-

independent [16,19,36,37]. For example, Yang et al reported that

rolling flux fraction was severely reduced but detectable in Psgl-1

deficient animals (1.2%) compared wild type controls (20.9%) [8].

In addition, Sperandio et al reported that administration of the

anti-Psgl-1 mAb 4RA10 to wild type mice reduced rolling flux

fraction from 27% to 8% and increased rolling velocities from 44

to 110 mm/sec. In our study, rolling was abolished by 4RA10 in

both WTRB6 and Tpst DKORB6 mice. Thus, we do not detect a

Psgl-1-independent component of P-selectin-dependent rolling

that has been reported by others.

Our findings provide strong support for previous in vitro

observations by Xia et al, who examined the effects of site-directed

mutagenesis and sodium chlorate on mouse Psgl-1 function in

CHO cells stably expressing human FucT-VII and C2GlcNAcT-I

Figure 3. P-selectin dependent leukocyte rolling in vitro. Bone
marrow leukocytes from wild type (n = 3) and Tpst DKORB6 (n = 3) mice
were isolated and their rolling on immobilized mouse P-selectin/IgM
(site density = 100 sites/mm2) was observed at 1 dyn/cm2. (A) For each
animal, the number of rolling cells in 4 fields of view were averaged. (B)
Rolling velocities of 10 leukocytes were determined in the same 4 fields
of view as the number of rolling cells. Values are reported as mean 6

S.E.M.
doi:10.1371/journal.pone.0020406.g003

Figure 4. Binding of fluid-phase P-selectin and Psgl-1 expres-
sion. Binding of P-selectin/IgM to peripheral blood leukocytes from (A)
WTRB6 mice or (B) Tpst DKORB6 mice. Shaded histograms represent
binding of CD45/IgM. Binding of the anti-Psgl-1 mAb 2PH1 to
peripheral blood leukocytes from (C) WTRB6 mice or (D) Tpst DKORB6
mice. Shaded histograms represent binding of isotype control mAb.
Panels A & C are same samples analyzed on the same day and are
representative of 3 WTRB6 mice. Panels B & D are also same samples
analyzed on the same day and are representative of 7 Tpst DKORB6
mice. All analyses were gated on the neutrophil and monocyte
population based on forward and orthogonal light scattering properties
and on donor origin (CD45.2+).
doi:10.1371/journal.pone.0020406.g004
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[21]. Sodium chlorate inhibits synthesis of the sulfate donor PAPS

and therefore blocks the action of all sulfotransferases [38]. They

reported that mutagenesis of Tyr13, but not Tyr15, to Phe or

incubation of cells with sodium chlorate impaired, but did not

abolish P-selectin binding and rolling of the transfected CHO cells.

Although this implicates Tyr13 as a potential site for sulfation,

these observations do not prove that Tyr13 is sulfated and that

Tyr15 is not, because Tyr to Phe substitution(s) might impair

function indirectly by altering the protein conformation or may

affect sulfate addition at the nearby non-mutated tyrosine. Thus,

further studies are necessary to directly determine the precise

location and stoichiometry of sulfation.

In summary, we examined the functional role for tyrosine

sulfation of mouse Psgl-1 using physiologically relevant assay

systems in a unique model in which mice were transplanted with

hematopoietic progenitors from mice lacking TPST activity. This

model enabled examination of mouse Psgl-1 function in a native

mouse leukocyte modified by endogenous mouse glycosyltransfer-

ases without altering the amino acid sequence of the protein. Our

studies provide direct and convincing evidence that tyrosine

sulfation is required for optimal function of mouse Psgl-1 in vivo.
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