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For decades, N-methyl-D-aspartate (NMDA) receptors have been known to play a
critical role in the modulation of both acute and chronic pain. Of particular interest
are NMDA receptors expressed in the superficial dorsal horn (SDH) of the spinal cord,
which houses the nociceptive processing circuits of the spinal cord. In the SDH, NMDA
receptors undergo potentiation and increases in the trafficking of receptors to the
synapse, both of which contribute to increases in excitability and plastic increases in
nociceptive output from the SDH to the brain. Research efforts have primarily focused on
postsynaptic NMDA receptors, despite findings that presynaptic NMDA receptors can
undergo similar plastic changes to their postsynaptic counterparts. Recent technological
advances have been pivotal in the discovery of mechanisms of plastic changes in
presynaptic NMDA receptors within the SDH. Here, we highlight these recent advances
in the understanding of presynaptic NMDA receptor physiology and their modulation
in models of chronic pain. We discuss the role of specific NMDA receptor subunits in
presynaptic membranes of nociceptive afferents and local SDH interneurons, including
their modulation across pain modalities. Furthermore, we discuss how barriers such as
lack of sex-inclusive research and differences in neurodevelopmental timepoints have
complicated investigations into the roles of NMDA receptors in pathological pain states.
A more complete understanding of presynaptic NMDA receptor function and modulation
across pain states is needed to shed light on potential new therapeutic treatments for
chronic pain.

Keywords: dorsal horn, primary afferent, presynaptic, NMDAR, pain, spinal cord, sex differences, developmental
timepoints

INTRODUCTION

Pain
Acute pain is a critical protective mechanism that alerts the body to tissue damage. The
somatosensory nociceptive system is comprised of peripheral sensory neurons, circuits in the
superficial dorsal horn (SDH) of the spinal cord and many target brain regions. The peripheral
sensory neurons and the SDH are responsible for transducing and modulating nociceptive input;
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once afferent signals are processed in the brain, conscious
perception of nociception results in the multifaceted experience
of pain. As a complex network of brain areas are involved in
integrating and modulating pain [for review see Almeida et al.
(2004)], a practical treatment approach is to target nociceptive
input before it reaches the brain.

Nociception in the Spinal Dorsal Horn
The cellular organization of the SDH lends itself to plastic
changes that can increase network excitability and nociceptive
output. Lamina I and II, the outer-most laminae of the SDH,
are the main sites of entry for high-threshold nociceptive
primary afferents (Todd, 2010; Peirs and Seal, 2016; Peirs et al.,
2021). Aδ fibers are small-diameter, myelinated primary afferent
fibers that synapse onto lamina I and lamina IIouter neurons.
C fibers also have a small diameter but are unmyelinated
and synapse onto lamina I-II neurons. Most neurons in
laminae I and III, and virtually all neurons in lamina II,
are interneurons, meaning that they make local synaptic
connections exclusively within the SDH. Interneurons can be
divided into two general subtypes: excitatory (glutamatergic)
and inhibitory [GABAergic (γ-aminobutyric acid-ergic) and/or
glycinergic] (Todd, 2017). In addition to input from primary
afferents, the SDH receives input from descending efferents
from the brain (Kato et al., 2006; Todd, 2010, 2015). The
final neuronal subpopulation within the SDH is a small
number of projection neurons (Todd, 2015). Given this
convergence of interconnected synaptic inputs from primary
afferents, descending efferents, and local interneurons onto
SDH projection neurons, targeting molecular determinants of
excitability within this network can readily lead to altered
nociceptive output.

N-Methyl-D-Aspartate Receptors in
Spinal Nociception and Hyperexcitability
Excitatory glutamatergic N-methyl-D-aspartate receptors
(NMDARs) are critical regulators of SDH plasticity and
excitability. The seminal discovery of windup, which is
characterized by progressively increased amplitude of SDH
neuronal depolarization and firing during a course of repeated
C-fiber stimulation (Mendell and Wall, 1965), paved the way
for investigating the role of NMDARs in acute nociceptive
processing. Both competitive and non-competitive NMDAR
antagonists can block windup (Woolf and Thompson, 1991).
Selective NMDAR antagonists also reverse increased excitability
in SDH neurons in the subcutaneous formalin injection model
of acute pain (Coderre and Melzack, 1992).

Dysregulated processing of nociceptive input results in
pathological pain through hyperexcitability of the SDH (Woolf,
2011), which is dependent upon NMDAR activation (Bourinet
et al., 2014). Early studies found that intrathecal injection
of the NMDAR antagonist MK-801 reduced mechanical and
heat hyperalgesia, while leaving acute nociception unaltered
in sham-treated animals (Chapman and Dickenson, 1992;
Yamamoto and Yaksh, 1992a,b). In later studies, selective

knockdown of the obligatory NMDAR subunit, GluN1, in
the SDH through intrathecal viral injections prevented the
induction of pain hypersensitivity induced by injury but did
not affect pain thresholds in uninjured animals (South et al.,
2003; Garraway et al., 2007). Importantly, NMDARs can be
located on both the pre- and postsynaptic membrane, and yet
early research into the nociceptive roles of NMDARs has not
made this critical distinction between pre- and postsynaptic
receptors in the SDH.

Purpose
Historically, the role of presynaptic NMDARs has been
overshadowed by their postsynaptic counterparts. For
example, many of the processes mediating chronic pain
have exclusively focused on postsynaptic changes. In recent
years, it has become evident that presynaptic NMDARs
(preNMDARs) contribute to the etiology of pathological pain.
Here, we will explore how preNMDARs are modulated in
the SDH and contribute to pain signaling. Further, we will
highlight gaps in the literature regarding the nociceptive
roles of preNMDARs.

PRESYNAPTIC
N-METHYL-D-ASPARTATE RECEPTORS

Studies in the 1990s discovered that exogenous application
of NMDA resulted in increased neurotransmitter release from
monoaminergic terminals in the striatum (Krebs et al., 1991).
This finding provided some of the first evidence for functional
preNMDARs that modulate the release of neurotransmitters
(Krebs et al., 1991). Electron microscopy with an antibody
targeting the GluN1 NMDAR subunit in male adult Sprague
Dawley rats showed extensive labeling of the presynaptic terminal
in the SDH, revealing for the first time that NMDARs are
present presynaptically in the dorsal horn of the spinal cord
(Liu et al., 1994). In the SDH, nearly one-third of NMDARs are
found to be presynaptic and are located immediately adjacent
to the vesicle release site at the active zone (Liu et al., 1994).
PreNMDARs in primary afferent terminals are translated in
dorsal root ganglia neurons and are transported along the axon
to the afferent terminal (Liu et al., 1994). The localization
of NMDARs in the axon terminals of primary afferents,
adjacent to the vesicle release site, allows them to influence
the release of glutamate and peptide neurotransmitters from
primary afferents, thus directly modulating the first nociceptive
input to the central nervous system (Liu et al., 1994; Duguid
and Smart, 2008; Abraira et al., 2017; Zimmerman et al.,
2019).

Properties of Presynaptic
N-Methyl-D-Aspartate Receptors
The type of NMDAR subunits that make up receptors in the
presynaptic terminal gives insight into the function of these
receptors, as well as an opportunity to selectively inhibit a
subpopulation of NMDARs. Interestingly, all subunit types
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(GluN2A-D and GluN3A-B) can assemble into preNMDARs
in the nervous system (Bouvier et al., 2015; Oshima-Takago
and Takago, 2017). Primary afferent terminals have been
found to contain functional GluN2B subunits in adult rats
(Boyce et al., 1999; Chen et al., 2010; Zhao et al., 2012; Yan
et al., 2013). However, further studies are needed to fully
characterize the expression of specific subunits in preNMDARs
in the spinal cord.

Presynaptic NMDARs have different properties than their
postsynaptic counterparts. Canonical postsynaptic NMDARs
are blocked by Mg2+ at rest; they, therefore, require neuronal
depolarization along with glutamate binding to become
functionally active. Presynaptic NMDARs, on the other hand,
can promote spontaneous neurotransmitter release in the
absence of neuronal depolarization (Kavalali, 2015; Dore et al.,
2017; Wong et al., 2021). This suggests that these NMDARs
can be activated by endogenous glutamate without relief of the
Mg2+ block (Mayer et al., 1984; Kunz et al., 2013; Kavalali,
2015). Studies in the cortex and hippocampus have identified
GluN2C/GluN2D subunit-containing preNMDARs, which
convey low Mg2+ sensitivity and low calcium-permeability to the
NMDAR (Banerjee et al., 2009; Andrade-Talavera et al., 2016).
Studies of NMDAR subunit expression patterns have identified
GluN2D expression in the spinal cord (Dunah et al., 1996; Temi
et al., 2021), however, further research is needed to identify
if these subunits are incorporated into SDH preNMDARs.
PreNMDARs in the visual cortex have been found to contain
GluN1/GluN3A/GluN2B triheteromers (Larsen et al., 2011).
This type of triheteromer is presumed to be less sensitive to
Mg2+ and have lower Ca2+ permeability than diheteromeric
GluN1/GluN2B NMDARs (Paoletti et al., 2013). GluN3A
subunits have also been found in the spinal cord, however,
it is unknown if they are present in SDH synaptic terminals
(Figure 1; Kehoe et al., 2013).

Another factor that may explain preNMDAR Mg2+

insensitivity and associated functions in the absence of neuronal
depolarization is metabotropic NMDAR signaling (Dore et al.,
2017; Wong et al., 2021). In addition to ionotropic functions,
NMDARs can signal via ion-flux-independent mechanisms
(Dore et al., 2015, 2017). Metabotropic preNMDAR signaling has
recently come to light during investigations into differences in
mechanisms governing spontaneous and evoked vesicle release.
Contrary to classical theories of synaptic transmission, the
release of vesicles in spontaneous and evoked neurotransmission
may occur by independent mechanisms that rely on different
types of NMDAR function. Abrahamsson and colleagues found
that, in pyramidal cells of the visual cortex, Mg2+-sensitive
preNMDARs upregulate the readily-releasable vesicle pool
during high-frequency firing through Rab3-interacting molecules
(RIMs), which provide scaffolding at presynaptic active zones.
Conditional RIM1αβ deletion abolished the upregulation of
vesicle replenishment, but preNMDAR-mediated spontaneous
vesicle release was unaffected, even when preNMDAR ionotropic
function was blocked by the channel-pore blocker MK-801
(Abrahamsson et al., 2017). Spontaneous vesicle release was
found to be mediated by Mg2+-insensitive preNMDARs that

signal metabotropically through c-Jun N-terminal kinase (JNK),
indicating that evoked and spontaneous vesicle release occurs
through distinct processes (Figure 1; Abrahamsson et al., 2017;
Bouvier et al., 2018).

PRESYNAPTIC MODULATION OF
PLASTICITY BY PRESYNAPTIC
N-METHYL-D-ASPARTATE RECEPTORS

The trafficking and function of NMDARs are regulated by
protein tyrosine kinases such as Src-family kinases (SFKs).
Indeed, SFK-dependent phosphorylation of NMDARs has been
intricately tied to SDH plasticity (Xie et al., 2016; Suo et al.,
2017) as well as the development of both inflammatory and
neuropathic pain (Salter and Kalia, 2004; Liu et al., 2008; Sorge
et al., 2011; Hildebrand et al., 2014, 2016). Although most
studies have focused on NMDAR modulation exclusively at
postsynaptic sites, SFKs have also been implicated in regulating
preNMDARs in primary afferents. PreNMDAR activity at
primary afferent terminals can be indirectly measured by
neurokinin 1 (NK1) receptor internalization, which occurs as
a result of presynaptic release of substance P (SP) (Marviźon
et al., 1997). High-frequency stimulation (100 Hz) of the
dorsal root induces the release of SP (a nociception-specific
neuropeptide) and subsequent NK1 receptor internalization in
NK1R-positive neurons in laminae I and II-outer. This NK1R
internalization is also induced by administering NMDA and
is abolished using AP5, a selective NMDAR antagonist, but
is unaffected by the AMPAR and kainate receptor antagonist,
CNQX, indicating that SP release in the SDH is regulated
by NMDARs (Marviźon et al., 1997). Interestingly, NMDA-
induced SP release does not require the firing of primary
afferents or the opening of Ca2+ channels, supporting the
notion that preNMDARs result in SP release via their own
influx of Ca2+ into primary afferent terminals (Chen et al.,
2010) or through metabotropic signaling (Dore et al., 2015;
Bouvier et al., 2018). PreNMDAR-mediated SP release can be
attenuated by blocking SFKs using PP1 or dasatinib (Chen et al.,
2010). In addition, another study examining the role of SFKs
in SP release found that intrathecal administration of NMDA
only caused NK1 internalization when pretreated with BDNF
(Chen W. et al., 2014). To investigate the role of SFKs in
NK1 internalization, Chen W. et al. (2014) incubated spinal
cord slices in BDNF for 60 minutes, followed by incubation
in NMDA and either dasatinib, PP2 (both are SFK inhibitors),
or PP3 (an inactive PP2 analog). They found that NK1R
internalization resulting from preNMDAR-mediated SP release
is blocked by inhibiting SFKs (using PP2 or dasatinib) and
is unaffected by PP3 (Chen W. et al., 2014). Moreover, in
mossy fibers of dentate granule cells, preNMDAR activation
results in BDNF release from axon terminals, further promoting
plastic changes (Lituma et al., 2021). These results suggest
that regulating SFKs in primary afferent terminals could help
modulate aberrant incoming nociceptive signals to the CNS in
pathological pain states.
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FIGURE 1 | Properties of presynaptic N-methyl-D-aspartate receptors (preNMDARs) in the superficial dorsal horn (SDH). 1. GluN2A and GluN2B-containing
preNMDARs in primary afferents have been implicated in pain models. Low Mg2+ sensitivity suggests a potential role of GluN2D or GluN3-containing preNMDARs.
2. PreNMDARs may contribute to signaling in the SDH by either direct cation influx, or 3. By metabotropic signaling. 4. To date, preNMDARs have been found to
contribute to both neuropathic pain and opioid-induced hyperalgesia, but not to non-pathological nociception. Figure was created using BioRender.com.

ROLE OF PRESYNAPTIC
N-METHYL-D-ASPARTATE RECEPTORS
IN PATHOLOGICAL PAIN MODELS

Presynaptic N-Methyl-D-Aspartate
Receptors in Neuropathic Pain Models
Neuropathic pain is chronic pain that occurs following damage
to neurons in the nociceptive pathway. To understand the
role of preNMDARs in neuropathic pain, Yan et al. (2013)
examined adolescent male rats subjected to the spinal nerve
ligation (SNL) model of neuropathic pain. They found that
evoked EPSC amplitudes in neuropathic rats were higher than
sham animals. They also found a decrease in the paired-
pulse ratio of neuropathic rats, indicating that SNL increased
the probability of neurotransmitter release from presynaptic
terminals (Yan et al., 2013). PreNMDARs that are upregulated
in this model were found to be predominantly GluN2B subunit-
containing (Figure 1; Yan et al., 2013). This has interesting
implications, as studies have found that GluN2B NMDARs
mediate baseline dorsal horn postsynaptic NMDAR responses in
naïve rats as well as spinal hyperexcitability in a neuropathic pain
model, but these studies did not examine the role of GluN2B-
containing preNMDARs (Hildebrand et al., 2014, 2016; Tong
and MacDermott, 2014). Increases in preNMDAR activation
are dependent on activation of protein kinase C (PKC), as

demonstrated by reversal with the PKC inhibitor GF109203 in
spinal slices from SNL rats (Yan et al., 2013). Activation of
preNMDARs was also linked to increased release of substance
P, increased frequency of miniature EPSCs and associated
pain hypersensitivity in multiple models of neuropathic pain,
including the chronic constriction injury (CCI) and SNL models,
in adolescent or young adult male rats (Chen W. et al., 2014;
Chen S. R. et al., 2014; Li et al., 2016).

In addition to the CCI and SNL models of neuropathic
pain, preNMDARs have been implicated in the development
of paclitaxel-induced neuropathic pain in male rats. Xie and
colleagues found similar preNMDAR-induced increases in
mEPSC frequency and a reduction in paired-pulse ratio in
paclitaxel-treated rats (Xie et al., 2016). However, unlike the
peripheral nerve injury models (Yan et al., 2013), the increase in
preNMDAR activity by PKC in the paclitaxel model was mediated
through phosphorylation of GluN2A-containing NMDARs (Xie
et al., 2016) instead of GluN2B. Interestingly, glutamate release
in sham animals was not regulated by presynaptic NMDARs
in any of the above-described experiments. This suggests
that neuropathic injury results in recruitment of preNMDAR
regulation pathways to enhance glutamate release and drive
an increase in excitability in the SDH and that preNMDARs
are not involved in neurotransmitter release in uninjured male
adolescent animals (Figure 1; Yan et al., 2013; Li et al., 2016;
Xie et al., 2016). In support of this, selective knockdown of
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primary afferent NMDARs did not affect phase I, the acute
phase, of the formalin model of pain (McRoberts et al., 2011).
Importantly, presynaptic glutamate receptors may still be a target
of anesthetics (Kubota et al., 2020), but further research is needed
to understand the role of preNMDARs in non-pathological
nociceptive SDH signaling.

Gabapentin is a common pain therapeutic; although it has
been used for decades to treat pain, new mechanisms of
action are still being uncovered (Kukkar et al., 2013). One of
gabapentin’s targets, α2δ-1, a voltage-activated calcium channel
subunit, has recently been shown to interact with preNMDARs to
augment glutamatergic input to the SDH. Nerve injury increases
the expression of α2δ-1 in the DRG and spinal dorsal horn
(Luo et al., 2001; Huang et al., 2019). Recent studies have
shown that the C-terminal of α2δ-1 interacts with preNMDARs
to promote synaptic/plasma membrane trafficking of α2δ-1-
bound NMDARs (Chen et al., 2018; Huang et al., 2020).
Blocking NMDARs reverses the SNL-mediated over-expression
of α2δ-1 and the increase in frequency of mEPSCs in male rats.
Gabapentin disrupts the interaction of α2δ-1 with NMDARs
and thus blocks nerve injury-induced potentiation of presynaptic
and postsynaptic NMDAR activity in the SDH (Chen et al.,
2018; Zhang et al., 2021). Interestingly, this suggests clinical
use of gabapentin may be modulating preNMDARs in human
neuropathic pain.

Presynaptic N-Methyl-D-Aspartate
Receptors in Opioid-Induced
Hyperalgesia
Prolonged exposure to opioids results in paradoxical opioid-
induced hyperalgesia. This phenomenon has long been tied
to NMDAR signaling. In a study on the role of preNMDARs
in opioid-induced hyperalgesia, Zeng et al. performed whole-
cell patch clamp recordings on lamina I neurons while
using the NMDAR antagonist MK-801 to block postsynaptic
NMDARs. They perfused NMDA onto spinal slices from
unsexed opioid-tolerant juvenile rats and found an increase in
mEPSC frequency. Morphine-tolerant animals also had increased
numbers of SDH primary afferents containing NMDARs, as
determined using immunogold labeling of GluN1 subunits
and electron microscopy (Zeng et al., 2006). Furthermore, the
effects of preNMDARs on opioid tolerance was blocked by
PKC inhibitors in male rats, suggesting that PKC may be
potentiating preNMDARs to increase glutamate, resulting in
opioid-induced hypersensitivity (Zhao et al., 2012). Moreover,
co-administration of NMDAR antagonists with opioids also
attenuates the development of opioid tolerance (Figure 1;
Chapman and Dickenson, 1992; Zeng et al., 2006; Shen et al.,
2018).

Inflammatory Pain
Presynaptic N-methyl-D-aspartate receptors are known to play a
role in both neuropathic pain and opioid-induced hyperalgesia,
however, they do not seem to be involved in inflammatory pain.
In a study examining the effects of inflammatory pain modeled
by plantar injection of complete Freud’s adjuvant (CFA) in young

adult male rats, increased glutamatergic input to lamina I (but
not lamina II) was found to occur via presynaptic TRPA1 and
TRPV1, as opposed to preNMDARs (Deng et al., 2019; Huang
et al., 2019). This study looked at animals 10-16 days following
injection of CFA. This is noteworthy because Weyerbacher
and colleagues have previously shown, using both sexes of
mice, that the maintenance of inflammatory pain occurs via an
NMDAR-independent mechanism. They show, using knockout
of GluN1 subunits in SDH neurons, that 96 h post-CFA
injection, knockout animals are no longer protected from
the effects of CFA, indicating that although NMDARs are
involved in the development of inflammatory pain, they are
not involved in its maintenance (Weyerbacher et al., 2010).
Unfortunately, this study did not specifically evaluate the role of
preNMDARs. To investigate the potential role of preNMDARs
in the initiation of inflammatory pain hypersensitivity, future
studies that include timepoints during the “induction phase”
(1–3 days post-CFA injection) (Fehrenbacher et al., 2012); of
CFA-induced inflammatory pain are needed.

UNANSWERED QUESTIONS ON
PRESYNAPTIC
N-METHYL-D-ASPARTATE RECEPTORS

Presynaptic N-Methyl-D-Aspartate
Receptors Across Development
The expression pattern of NMDARs in the CNS varies across the
lifespan, enabling distinct NMDAR subunit-specific mechanisms
of plasticity at discrete developmental stages. For example, in the
prenatal and early postnatal brain, there is a high expression of
GluN2B and GluN2D NMDARs (Crair and Malenka, 1995; Hsia
et al., 1998). The properties of GluN2B and GluN2D subunits
promote temporal summation and integration at developing
synapses due to their slow deactivation kinetics (Paoletti et al.,
2013). In the weeks following birth, there is a developmental
switch in the brain that promotes GluN2A-NMDAR expression,
while expression and synaptic localization of GluN2B and
GluN2D are decreased. This results in decreased synaptic
strength and dampens the probability of further NMDAR-
dependent functional circuit reorganization in the adult brain
(Gray et al., 2011). However, the GluN2B/GluN2D to GluN2A
developmental switch does not occur in the SDH of male rats
(females have not been studied) (Mahmoud et al., 2020). Instead,
the relative contributions of GluN2A- and GluN2B-mediated
NMDAR postsynaptic responses at lamina II synapses remain
constant throughout early postnatal development in male rats
(Mahmoud et al., 2020). Consistent with this, the GluN2A,
GluN2B, and GluN2D subunits are all found to be expressed in
the SDH of male and female juvenile rats (Temi et al., 2021).
However, many foundational findings from both the brain and
spinal cord do not separate pre- from postsynaptic NMDARs,
which is problematic given the differential functions of these
populations in synaptic physiology.

Of the available evidence on preNMDARs in nociceptive
processing, results from early postnatal animals appear to
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contrast with findings from adolescent and adult models.
For example, inhibiting NMDARs in the SDH of SNL or
opioid-tolerant adult rats reduced the frequency of mEPSCs, and
did not affect mEPSC frequency in naïve animals (Zhao et al.,
2012; Yan et al., 2013). This suggests that in mature animals
preNMDARs increase glutamatergic vesicle release in some
pathological pain states, and do not affect baseline transmission.
However, in naïve postnatal day 12–17 rats, Zeng and colleagues
found that application of NMDA to activate preNMDARs
reduced mEPSC frequency and reduced the amplitude of evoked
EPSCs (Zeng et al., 2006). Additionally, Bardoni et al. (2004)
showed that bath application of NMDA to spinal slices from
postnatal day 6–12 rats caused an increase in synaptic latency,
as well as the failure of monosynaptic AMPAR EPSCs in lamina
I, with some heterogeneity in responses between individual
neurons (Bardoni et al., 2004). They also found that NMDA
application decreased the amplitude of the AMPAR EPSCs, which
was attenuated by the NMDAR antagonist D-APV, suggesting
that preNMDAR stimulation decreases glutamate release in these
young animals (Bardoni et al., 2004). Since NMDAR expression
and subunit composition varies greatly throughout development
(Ewald and Cline, 2008), studies examining preNMDAR function
across development can address the disparity between these
studies. This is necessary for a complete understanding of the
role preNMDARs play in the control of neurotransmitter release
both in normal physiological conditions and in pathological

pain (Figure 2). An important clinical consideration relating
to these studies is that specific pain conditions affect patients
of discrete ages. For example, osteoarthritis primarily affects
older adults (Zhang and Jordan, 2010), and thus, adult rodent
models best represent that pathology (Bapat et al., 2018). The
varied function of NMDARs across development, combined
with age-specific pain pathologies requires using age-appropriate
rodent models to accurately study preNMDAR contribution to
pathological pain.

Potential Sex Differences in
Pain-Processing Presynaptic
N-Methyl-D-Aspartate Receptors
Building on age-related developmental differences in NMDAR
function, recent studies have highlighted the importance of
considering sex and sex-hormone-related factors in pain models
(Sorge et al., 2015; Mapplebeck et al., 2019; Dedek et al.,
2021). Specifically, some of these differences have been tied to
NMDAR function and regulation (Mogil et al., 1993; Dedek et al.,
2021). For example, we found a sex-hormone-dependant sexual
dimorphism in postsynaptic NMDAR potentiation in CFA-
mediated inflammatory and ex vivo BDNF-treatment models of
pathological pain, which is conserved from rodents to humans
(Dedek et al., 2021). Additionally, we identified differences in
baseline NMDAR localization within the SDH between male

FIGURE 2 | Barriers to understanding the role of presynaptic N-methyl-D-aspartate receptors (preNMDARs) in superficial dorsal horn (SDH) nociception. (A).
Existing literature on preNMDARs in the SDH spans several developmental timepoints. This makes comparison between studies problematic, as NMDAR expression
and composition may change throughout development. (B). Almost all studies on preNMDARs in the SDH have been conducted in male or unsexed animals.
Because data in recent years has demonstrated substantial sex differences in not only pain and nociception, but in the role of NMDARs in pain, it is critical for future
studies to examine preNMDARs in females. (C). The complex circuitry and unknown connectivity of the SDH makes interpreting overall output from the contributions
of preNMDARs difficult. Increased mapping of the connectivity of distinct neuronal subpopulations, such as primary afferent terminals, inhibitory and excitatory
interneurons, as well as projection neurons, in addition to understanding the distinct contributions of axo-dendritic and axo-axonic connections, will be vital to fully
understand the role of preNMDARs in nociception in the SDH. Figure was created using BioRender.com.
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and female juvenile rats: GluN2B and GluN2D are preferentially
localized to the SDH in males, but in females only GluN2B is
preferentially localized to the SDH, and in males, but not females,
GluN2B expression was enhanced in the medial SDH (Temi et al.,
2021; Figure 2). Almost the entire body of the above-discussed
literature on preNMDARs in the SDH is based on studies in male
or unsexed rodents, and thus a critical gap exists in addressing
possible sex differences in the roles of SDH preNMDARs in
physiological and pathological pain processing.

Complex Superficial Dorsal Horn
Circuitry
A final barrier to fully understanding the role of preNMDARs
in mediating nociceptive spinal cord signaling is the complex
connectivity making up SDH circuitry. Unlike some other areas
of the CNS where circuitry has been mapped out with knowledge
of the exact connectivity between defined neuronal populations,
like in the hippocampus, the exact connectivity within the SDH
is unknown. With high collateralization of primary afferents and
a complex network of modulatory interneurons that are either
inhibitory or excitatory, inferring the effect on SDH output from
specific molecular inputs is extremely difficult (Figure 2). For
example, at first glance, it may seem straightforward that an
increase in vesicle release from primary afferents would always
have an overall excitatory effect in the SDH. However, primary
afferents make axo-axonic connections that have been found to
result in depression of primary afferent vesicle release. These
mechanisms are not yet fully understood (Hochman et al., 2010).
In addition, preNMDARs can contribute to the release of a
diverse array of neurotransmitter-containing vesicles in either a
spontaneous or depolarization-evoked manner (Pittaluga, 2021).
Across various regions of the brain, NMDA application results
in an increased spontaneous release of dopamine and glutamate,
while having no effect on spontaneous GABA release (Pittaluga,
2021). In the SDH, studies performed in juvenile animals suggest
a role of preNMDARs in mediating long-term depression (LTD)
and presynaptic inhibition of primary afferent terminals (Bardoni
et al., 1998, 2004, 2013; Zimmerman et al., 2019; Comitato and
Bardoni, 2021), but further investigation is needed across the
developmental spectrum. It is also important to consider that
the majority of cells in the SDH are locally synapsing excitatory
and inhibitory neurons (Todd, 2017), and that preNMDARs are
found in the terminals of both of these classes of interneurons

(Liu et al., 1994). PreNMDARs are thus likely to regulate the local
release of excitatory and inhibitory neurotransmitters within
SDH nociceptive networks. For this reason, it is necessary to
understand the neuronal identities and connections within the
SDH to paint a complete picture of the role of preNMDARs in
nociceptive signaling and shed light on potential new therapeutic
interventions for the treatment of pain.

CONCLUSION

Though preNMDARs have been known to exist for decades, only
recently has their contribution to spinal cord physiology come
into the spotlight. Thus far, it is clear that preNMDARs play a
critical role in modulating the release of glutamate from primary
afferents by directly permitting Ca2+ entry to the presynaptic
terminal and/or by metabotropic signaling. Although progress
has been made in understanding the role of preNMDARs in
the SDH, several critical barriers remain. Further exploration
of potential differences in preNMDARs by sex and across
development is needed, as well as integrating this information
into the rapidly evolving understanding of the complex molecular
and cellular circuitry of the SDH.
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