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Abstract: Metabolomics methods often encounter trade-offs between quantification accuracy and
coverage, with truly comprehensive coverage only attainable through a multitude of complementary
assays. Due to the lack of standardization and the variety of metabolomics assays, it is difficult to
integrate datasets across studies or assays. To inform metabolomics platform selection, with a focus
on posttraumatic stress disorder (PTSD), we review platform use and sample sizes in psychiatric
metabolomics studies and then evaluate five prominent metabolomics platforms for coverage and
performance, including intra-/inter-assay precision, accuracy, and linearity. We found performance
was variable between metabolite classes, but comparable across targeted and untargeted approaches.
Within all platforms, precision and accuracy were highly variable across classes, ranging from
0.9–63.2% (coefficient of variation) and 0.6–99.1% for accuracy to reference plasma. Several classes
had high inter-assay variance, potentially impeding dissociation of a biological signal, including
glycerophospholipids, organooxygen compounds, and fatty acids. Coverage was platform-specific
and ranged from 16–70% of PTSD-associated metabolites. Non-overlapping coverage is challenging;
however, benefits of applying multiple metabolomics technologies must be weighed against cost,
biospecimen availability, platform-specific normative levels, and challenges in merging datasets. Our
findings and open-access cross-platform dataset can inform platform selection and dataset integration
based on platform-specific coverage breadth/overlap and metabolite-specific performance.

Keywords: posttraumatic stress disorder (PTSD); metabolomics; metabolites; lipidomics; ring trial;
platform comparison; depression; mass spectrometry; nuclear magnetic resonance (NMR); liquid
chromatography–mass spectrometry (LC−MS)

1. Introduction

Metabolomics can characterize the global biochemical activity of a biological entity as
it is shaped by external factors including lifestyle and drug [1,2]. In parallel, the etiology of
psychopathologies is shaped by complex interactions between intrinsic biological features
and external factors, which is exemplified in posttraumatic stress disorder (PTSD) [3]. The
temporal sensitivity of metabolomics is being leveraged to define environmental influences,
pathological mechanisms, and drug-modified clinical states in psychiatric research [4,5].
Thus, metabolomics can provide valuable insights into the discovery of biological markers
of disease states and advance precision medicine efforts through integration with other
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‘omics [6,7]. This can be especially impactful for psychopathologies such as PTSD, which re-
lies on subjective symptom reporting for diagnosis and has no biological markers approved
by the U.S. Food and Drug Administration (FDA). Yet, metabolomic characterization of
the disease is complicated by extensive variations in metabolomic techniques, including
platform-specific metabolite coverage, detection of unknowns, precision and accuracy of
measurements, and measurement variability over time, which can complicate longitudinal
study designs [8]. Here, we took an empirical approach to identify the best fit-for-purpose
metabolomics platform for characterizing pathological mechanisms or biological disease
markers, with a focus on PTSD.

Metabolomics techniques are rapidly advancing, although highly variable. However,
techniques can be organized into two main categories: (1) absolute quantitative (targeted)
approaches and (2) relative quantitative (untargeted/discovery-based) approaches [9].
Targeted approaches enable absolute quantification of a defined set of metabolites, thereby
facilitating longitudinal data collection; however, one inherent caveat is the narrowed
scope of metabolite detection [10]. In contrast, discovery-based approaches can provide
the most comprehensive metabolome coverage; however, present coverage from any single
analytical platform is only a fraction of the 19,174 metabolites detected thus far in blood [11].
One strategy to overcome the limited coverage of any individual metabolomics assay is to
combine datasets from different analytical platforms, but obstacles for merging datasets
include the use of relative measurements rather than absolute quantitative measurements.
For both discovery-based and targeted approaches, the size, type, and number of metabo-
lites captured as well as measurement precision are shaped by sample preparation and
analytical methods (i.e., metabolite extraction, separation, and ionization).

Studies comparing coverage and analytical performance across discovery-based
and targeted metabolomics approaches have focused on metabolite coverage and intra-
assay performance [8,12]. Virtually all platform comparisons report highly platform-
specific metabolite coverage, with several citing the more expansive metabolite coverage of
discovery-based approaches as an advantage [12,13]. Previous cross-platform comparisons
have supported superior precision in targeted approaches [10], although metabolite mea-
surements from targeted and untargeted platforms can be highly correlated [8,10,12,14,15].
To the best of our knowledge, the current study is the first evaluation of inter-assay perfor-
mance across both discovery-based and targeted metabolomics approaches.

Here, we evaluated intra- and inter-assay performance in a longitudinal assessment
of discovery and targeted commercial vendors that are capable of high-throughput, which
is necessary for characterizing metabolomic signatures of heterogenous psychiatric dis-
orders [16]. Given that discovery and targeted approaches differentially resolve method-
ological trade-offs to optimize distinct metrics, we leveraged several metrics relevant to
biomarker discovery, including metabolite coverage and performance metrics in line with
prior cross-platform comparisons [8,12]. To understand how to optimize metabolomics
investigations in psychiatric research, we focused on PTSD as an exemplar of complex
interactions between intrinsic biological features and external factors that precipitate psy-
chopathologies [3]. We first mapped metabolites previously implicated in PTSD with a
review of prior case vs. control metabolomics studies. Understanding the breadth of
metabolomics efforts in PTSD enabled us to evaluate platform-specific coverage for PTSD-
associated metabolites. In parallel, we evaluated the comprehensive platform-specific
performance for all metabolites reported by each vendor. Finally, we considered the per-
formance for PTSD-associated metabolites and limitations of the scope of metabolomics
approaches applied thus far in PTSD. Moving forward, the cross-platform metabolomics
database generated by this study can enable optimization of platform selection for other
clinical states through mapping of performance for putative metabolites and weighing
these details against coverage depth.
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2. Results
2.1. Metabolites Affected in PTSD

To contextualize metabolomics efforts for PTSD in the broader landscape of psychiatric
research, we mapped the use of metabolomics technologies for several psychopatholo-
gies (Figure 1; Supplementary Materials and Methods). Understanding the breadth of
metabolomics techniques that have been applied to a disease state is informative because
analytical methods dictate metabolite coverage, and previous efforts have found overlap
in coverage across techniques as low as 27% [13], 15% [10], or 7% [12]. We found that
evidence of metabolomic differences in published PTSD studies is accruing, but remains
underexplored compared with other psychiatric conditions (Figure 1A,B,D). The breadth
of techniques applied to PTSD have yielded coverage for only a fraction of the currently
measurable portion of the human metabolome and samples size have been low compared
with efforts in other psychiatric disease states. For studies of PTSD, exploratory group sizes
have included 20 [17], 34 [18], 50 [19], 52 [20], and 77 [7] cases. In parallel, cross-cohort
designs have been applied for other psychopathologies leveraging data from 5283 cases [21]
or 22,623 participants [22]. A long-standing limitation for cross-cohort designs has been
the complexity in the integration of metabolomics datasets generated through different
approaches; although studies in PTSD have focused on discovery based approaches, a
number of MS techniques have been utilized which suggests that the integration of cur-
rently available metabolomics data in PTSD would be challenging [23], but see also the
integration of cross-cohort epigenetics with metabolomics in one cohort in [24].

To date, published case-control comparisons have provided valuable insights into the
diverse metabolite classes that are likely to be relevant in PTSD (Supplementary Table S3).
Classes with the highest count of implicated metabolites include amino acids, carnitines,
essential fatty acids, glycerophospholipids, and glycerophosphocholines, with some dis-
crepancy in the direction of effects for specific metabolites, i.e., citrate [7,17,19,20,25].
Currently, overlap in the findings across PTSD populations has been largely restricted to
metabolite classes rather than individual metabolites, to the degree that even discovery
and test groups recruited from the same hospital overlapped for only 2 metabolites out of
a total of 33 implicated metabolites [26]. Additionally, most metabolomics studies in PTSD
thus far have focused on case vs. control comparisons in male veterans, such that the role of
sex and trauma type require further exploration [7,18–20,25] but see the efforts across sexes
and trauma types in [17,24]. Another key consideration is that the emergence of PTSD re-
quires trauma exposure; therefore, case vs. control studies that do not include longitudinal
measurements, including assessments preceding trauma, cannot dissociate predisposing
metabolomic features from consequences of trauma and PTSD etiology [24,27].

Low overlap across prior studies in metabolites associated with PTSD may reflect
variation in population characteristics and methodologies used, including differences in
fasting state, biofluid type and processing methods, time at collection, analytical technology,
and data processing. Key methodological differences can be highlighted by comparing the
landmark case vs. control study by Karabatsiakis et al. [17] with a more recent keystone
metabolomics dataset used in multiple publications [7,25]. Karabatsiakis et al. [17] found
6 metabolite classes affected in individuals with PTSD (55% female; n = 20) compared
with controls with varying degrees of trauma exposure (44% female; n = 18). In this study,
participants were instructed to have regular breakfast and peripheral blood was collected
at 10 am ± 15 min. Extracted serum was then analyzed by LC coupled to quadrupole/time-
of-flight MS (LC-QToF-MS). By comparison, the second dataset is comprised of male
combat-exposed veterans with PTSD (0% female; n = 83) or without PTSD (0% female;
n = 82) [25]. Veterans reported to the laboratory under fasting conditions for peripheral
blood collection at 8 am. Extracted plasma was then analyzed by Metabolon, Inc., using
UHPLC-MS-MS optimized for basic metabolite species and GC-MS. Additional differences
that are likely to shape the two datasets include the prevalence and type of comorbidities,
the severity of the PTSD population, inclusion of ethnic minorities, use of internal standards,
peak annotation methods, and data processing and normalization techniques [25,28,29].
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Numerous metabolomics consortia and large-scale collaborative efforts have been convened
to establish best practices in metabolomics including quality assurance and quality control
practices [30], the use of standards [31,32], metabolite annotation confidence [33], as well
as data processing and statistical approaches [34], and data reporting [35]. These important
challenges are beyond the current scope, but it should be noted that fasting state and
collection time appear to have differential effects across metabolite classes in both discovery-
based and targeted approaches, and reproducibility is suggested to be lower in non-
fasting samples as compared to fasting samples, such that methodological differences add
complexity to the landscape of available PTSD metabolomics datasets [36–38].

Figure 1. Metabolomics techniques and samples sizes in psychiatric research between 2015 and 2020 for four psychiatric
conditions: (A) posttraumatic stress disorder, (B) major depressive disorder, (C) traumatic brain injury, and (D) Alzheimer’s
disease.

Identifying the metabolomic signature of PTSD is likely to require future large-scale
cohort studies or thoughtful integration of distinct cohorts on the same metabolomics
platform, as has been done for depression [21] and Alzheimer’s Disease [22]. Direct
comparison of distinct cohorts could help define population differences derived from
factors previously demonstrated to shape PTSD symptomatology, including gender, trauma
type (e.g., civilian vs. military trauma), early/cumulative trauma load, race/ethnicity, and
education, as well as longitudinal studies to dissociate metabolomic features associated
with risk vs. disease etiology [39,40].
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2.2. Metabolite Coverage across Platforms

Metabolite coverage was highly variable across platforms (Tables 1 and 2); reported
metabolite classes were covered by an average of 1.8 vendors, with further vendor-
specificity in the metabolites represented within each class. Several classes were rep-
resented by only one or few metabolites, emphasizing the expansiveness of the human
metabolome, which is actively being charted and exceeds the scope of any metabolomics
technology [11]. In addition to variation across metabolomics platforms, there was also
variation within platforms across identical shipments (percent change in the number of
metabolites between shipment 1 and shipment 2: Biocrates: −15.8%, HMT: 11.3%, Lipotype:
34.5%, Nightingale: 0%, Metabolon: 61.0% (discovery coverage only)). Metabolite classes
consistently reported across both shipments are reported in Table 2.

Vendor-specific coverage was determined for metabolites previously implicated in
PTSD as a case-study (Figure 2), but review of metabolomics research in PTSD suggests
that current findings are limited by the scope of the metabolome captured and the subpop-
ulations represented (i.e., primarily male, combat trauma, European ancestry). Beyond
case vs. control comparisons of the metabolome, efforts are ongoing to characterize the
metabolomic signature of disease-linked genetic variants, which could represent a transdi-
agnostic approach. For example, metabolites associated with a PARK2 variant have recently
been mapped which may inform the biological mechanisms underpinning associations
between PARK2 and Parkinson’s disease, PTSD, diabetes mellitus, certain cancers, and
inflammation ([41]; reviewed in [42]), see Figure 3. To note, tools to identify metabolites
associated with biological pathways and genes of interest are constrained by currently
available data and a field-wide need to identify unknowns [23].

2.3. Measurement Precision: Intra-Assay and Inter-Assay Coefficients of Variation

Metabolite measurement precision, assessed with technical replicates, was highly
variable across and within metabolomics platforms (Tables 1 and 2). Certain classes of
metabolites were measured with high intra-assay precision (<10 CV%) by all platforms
which measured metabolites in that class, (i.e., amino acids, hormones/steroids, and sph-
ingomyelins). Conversely, some metabolite classes were measured with low intra-assay
precision (>15% CV), in nearly all sample groups for all reporting vendors (i.e., diazines
and fatty acyls). Similarly, certain metabolite classes were challenging to consistently detect
and were reported in only one of the two samples shipment (i.e., diazines, glycerophos-
pholipids, and keto acids and derivatives). Across all platforms, inter-assay precision was
generally lower than intra-assay precision, and several metabolite classes had inter-assay
CV%s greater than 30%. For example, the piperidine class had inter-assay CV%s of 53.4%
and 63.2% but intra-assay CV%s of 14.8% and 16.3% for the PTSD and control group,
respectively. The variability in precision across classes can be exemplified by comparing
two classes of interest in PTSD, amino acids and fatty acids [19,20,25]. The amino acids
class, which contains 10 metabolites implicated in PTSD, were measured with high to
moderate intra- and inter-assay precision for all reporting vendors (4.8% to 14.2%). Con-
versely, for fatty acids, a class encompassing 11 metabolites implicated in PTSD across
4 studies [17,19,20,25], inter-assay precision ranged from 6.6% to 53.3% across all vendors
and sample groups (with coverage differences across vendors). The substantial variability
in precision across metabolite classes could derive from a myriad of challenges known to
affect measurement quality in metabolomics, such as the frequency of isomers, fragmen-
tation patterns, or ionization efficiency [14,43]. Given the substantial class-specificity in
measurement precision, class-specific limitations in current technologies should be consid-
ered in the interpretation of available findings and prospective experimental designs to
enable the dissociation of a biological signal.
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Table 1. Intra-assay Percent Coefficient of Variance (CV%) within Metabolite Classes and CV% Standard Deviation (SD) for Technical Replicates of PTSD and Control Samples in
Shipment 1.

Intra-Assay Precision: Shipment 1

PTSD
Average

CV%

Control
Average

CV%
Count SD

PTSD
Average

CV%

Control
Average

CV%
Count SD

PTSD
Average

CV%

Control
Average

CV%
Count SD

PTSD
Average

CV%

Control
Average

CV%
Count SD

PTSD
Average

CV%

Control
Average

CV%
Count SD

Metabolite Class Biocrates HMT Nightingale Lipotype Metabolon
Acylcarnitines 10.33 9.88 14 15.67 5.66 5.81 35 7.429 9.03 8.39 21 7.70
Amino Acids 3.53 8.12 40 3.14 6.85 6.93 22 2.563 2.78 6.01 9 3.757 8.84 9.56 52 8.22

Amino Acid Related 3.44 8.71 3.21
Carboxylic Acids 3.85 7.20 2 2.25 5.10 5.62 8 2.832 2.99 6.66 3 2.379 11.32 9.13 101 13.59
Cholesteryl ester 8.46 14.69 18 8.44 4.23 13.30 13 6.845 4.63 4.00 26 2.20

Diglycerides 8.46 12.28 14 7.53 4.84 9.80 2 3.385 4.29 4.00 19 2.73
Diazines 21.00 18.45 3 21.16 15.39 13.46 5 12.60

Organonitrogen compounds 7.29 9.37 13 5.02 15.55 11.3 14 12.61
Purine nucleotides 9.69 16.16 5 9.316 14.18 12.48 10 8.09

Organooxygen compounds 12.03 9.63 6 7.347 1.04 6.44 2 4.072 9.19 9.90 6 8.38
Hydroxy acids and derivatives 4.04 6.79 5 2.473 0.88 3.05 1 NA 11.28 11.80 16 10.81

Keto acids and derivatives 1.62 5.52 3 2.244 4.29 26.20 2 18.87 8.35 8.18 13 4.94
Ceramides 6.53 8.60 25 5.33 11.36 10.43 5 4.617 5.03 6.77 2 3.055 7.22 7.10 11 5.55

Lactosylceramide 19.98 15.25 13 13.62 10.15 14.99 12 10.36
Glucosylceramide 21.84 19.55 13 11.15

Dihexosylceramides 10.30 9.78 10 7.5859
Trihexosylceramides 14.16 17.94 6 11.60

Dihydroceramide 19.07 17.15 12 14.73
Hexosylceramide 9.56 11.32 19 5.81 6.28 8.33 12 4.34

Triglycerides 7.33 13.27 235 3.72 4.88 6.49 32 2.463 1.92 5.96 21 2.19
Hormones / Steroids 2.53 6.43 3 2.34 5.88 6.28 9 4.768 8.65 6.18 26 3.79

Fatty Acids 8.10 8.16 7 2.60 6.92 9.11 32 4.975 27.57 3.89 2 15.39 3.58 3.53 29 2.15
Fatty Acyls 28.92 29.75 4 19.76 18.17 13.20 83 12.09

Biogenic Amines 4.74 10.52 3 3.47
Bile Acids 5.84 7.73 12 2.7685 4.66 6.47 4 7.22 11.42 8.94 22 6.95

Indoles and Derivatives 3.36 10.40 3 4.5612 6.51 7.37 1 NA 7.45 5.82 9 3.97
Lysophosphatidyl-cholines (LPC) 13.05 11.32 14 10.659 3.34 3.71 27 1.69 4.38 14.44 6 5.355 7.28 10.10 15 5.14

Glycerophosphocholines 7.09 7.76 19 10.79
Phosphatidyl-cholines (PC) 7.98 9.78 73 9.5617 7.96 11.15 63 5.218 8.12 5.98 18 4.44

Sphingomyelins 3.89 7.68 15 2.6445 5.79 8.62 12 2.892 3.45 3.05 12 1.79
Sphingolipids 14.28 13.47 12 10.86 6.13 7.79 2 2.11
Sphingosine 11.76 12.89 6 9.482

Glycerophospholipids 10.41 9.67 15 8.701 19.61 22.64 7 16.45
Glycerolipids (Monoacylglycerol) 21.69 26.95 25 14.48

Carboximidic acids and derivatives 4.93 4.33 1 NA 15.21 17.34 4 10.22
lyso-Phosphatidylethanolamine (LPE) 10.36 8.40 22 7.947 8.83 15.24 9 5.237 5.18 6.38 8 4.88
Phosphatidylcholine (-ether) (LPC-O) 13.02 16.40 41 8.645

Phosphatidylethanolamine (PE) 9.22 15.06 15 6.791 4.38 8.11 12 6.46
Phosphatidylethanolamine (-ether) (LPE-O) 11.54 15.20 16 7.763

Phosphatidylinositol (LPI) 7.37 8.44 14 6.054 8.95 16.88 15 7.616 10.83 18.82 6 8.90
Lyso-Phosphatidylserine (LPS) 11.21 15.84 7 8.973

Glycerophosphoglycerols (LPG) 9.23 10.92 14 6.708
Vitamins and Cofactors 1.09 10.44 1 NA 2.37 5.87 1 NA

Alkaloids 4.69 13.74 1 NA 3.86 2.48 2 0.80
Amine (Oxides) 6.92 8.23 1 NA 45.46 12.49 1 NA

Carbohydrates and Related 2.50 6.33 1 NA 10.81 14.37 34 13.62
Cresols 2.07 7.14 1 NA

Imidazopyrimidines 11.35 5.44 1 NA 10.32 7.60 17 8.68
5’-deoxyribonucleosides 19.82 18.62 1 NA 7.84 8.63 1 NA

Nucleoside and nucleotide analogues 13.05 3.4 1 NA
Pyrimidine nucleosides 1.33 7.94 1 NA 9.24 9.59 7 7.33

Pyridines and derivatives 6.69 7.90 10 5.76
Quinolines and derivatives 11.85 13.64 3 7.42

Phenols 9.22 4.79 3 5.40
Prenol lipids 17.87 8.77 7 8.13
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Table 1. Cont.

Intra-Assay Precision: Shipment 1

PTSD
Average

CV%

Control
Average

CV%
Count SD

PTSD
Average

CV%

Control
Average

CV%
Count SD

PTSD
Average

CV%

Control
Average

CV%
Count SD

PTSD
Average

CV%

Control
Average

CV%
Count SD

PTSD
Average

CV%

Control
Average

CV%
Count SD

Metabolite Class Biocrates HMT Nightingale Lipotype Metabolon
Imidazole ribonucleosides and

ribonucleotides 12.17 5.5 1 NA

Benzene and substituted derivatives 12.72 9.49 14 10.36
Phenylpropanoic acids 6.52 5.82 9 8.63

Tetrapyrroles and derivatives 3.45 11.6 2 5.43
Cholesterol and derivatives 7.53 9.5 2 4.40

Non-metal oxoanionic compounds 2.94 3.17 2 1.81
Organic sulfuric acids and derivatives 6.1 4.03 22 3.49
Organic sulfonic acids and derivatives 2.47 5.59 2 3.48
Organic carbonic acids and derivatives 6.33 9.48 2 3.88

Organic phosphoric acids and derivatives 9.53 7.87 1 NA
Benzothiazepines 2.29 6.17 2 5.83

Bilirubins 9.03 5.41 2 6.66
Dihydrofurans 6.94 3.07 2 3.68
Alkyl halides 2.9 3.98 2 1.49

Sulfinic acids and derivatives 11.13 16.04 1 NA
Azoles 11.11 10.6 7 5.90

Azolidines 4.34 6.92 1 NA
Cinnamic acids and derivatives 4.07 13.92 1 NA

Peptidomimetics 20.02 14.52 1 NA
Piperidines 14.81 16.27 1 NA
Pyrrolidines 4.09 5.48 1 NA

Coumarins and derivatives 0 14.1 1 NA

Notes: “High” precision is shown in green (≤10%), “moderate” in yellow (10% < x < 20%), and “low” in red (≥20%).

Table 2. Inter-assay Percent Coefficient of Variance (CV%) within Metabolite Classes for Technical Replicates of PTSD and Control Samples across Shipment 1 and Shipment 2.

Inter-Assay Precision: Shipment 1 vs. Shipment 2

PTSD Average
CV%

Control
Average CV%

Standard
deviation (SD)

PTSD Average
CV%

Control
Average CV%

Standard
deviation (SD)

PTSD Average
CV%

Control
Average CV%

Standard
deviation (SD)

PTSD Average
CV%

Control
Average CV%

Standard
deviation (SD)

PTSD Average
CV%

Control
Average CV%

Standard
deviation (SD)

Metabolite Class Biocrates HMT Nightingale Lipotype Metabolon
Acylcarnitines 7.21 11.48 2.78 12.21 12.10 8.64 15.27 13.52 9.93
Amino Acids 5.88 11.95 3.57 9.10 9.79 4.02 4.80 7.37 3.48 12.84 14.21 8.03

Amino Acid Related 7.63 13.90 6.86
Carboxylic Acids 7.54 13.71 4.05 10.60 8.90 5.83 5.92 7.90 1.51 15.38 13.91 12.75
Cholesteryl ester 11.71 14.47 2.58 8.07 8.93 5.25 10.16 8.68 7.77

Diglycerides 17.42 22.27 10.62 9.13 13.25 6.27 10.97 10.06 4.53
Diazines 16.42 21.57 14.04 33.22 29.05 24.92

Organonitrogen compounds 13.31 11.50 8.24 14.25 13.66 7.67
Purine nucleotides 30.06 38.64 18.99 11.49 11.84 5.98

Organooxygen compounds 31.07 37.08 13.17 4.89 6.94 2.62 31.34 26.85 28.72
Hydroxy acids and derivatives 10.88 11.10 6.05 1.88 3.57 NA 17.76 17.90 12.03

Keto acids and derivatives 14.10 16.66 2.83 10.58 19.49 9.58 15.64 13.55 8.45
Ceramides 16.04 19.50 8.65 11.34 15.68 4.34 6.58 6.47 0.78 10.10 7.88 4.44

Lactosylceramide 15.32 16.79 8.06 16.61 17.51 13.28
Glucosylceramide 19.30 23.43 9.77

Dihexosylceramides 11.99 17.82 5.18
Trihexosylceramides 17.08 23.39 4.52

Dihydroceramide 18.63 21.21 12.20
Hexosylceramide 14.23 17.72 6.01 11.44 10.57 3.49

Triglycerides 15.42 19.35 7.56 8.34 6.67 2.20 9.3 7.65 2.61
Hormones / Steroids 15.59 18.54 9.04 8.08 10.35 5.86 15.39 13.53 5.84

Fatty Acids 13.80 18.43 7.40 24.26 27.33 33.29 53.25 9.39 26.15 6.89 6.60 3.39
Fatty Acyls 4.21 4.99 NA 20.94 17.94 9.44

Biogenic Amines 6.37 18.78 10.04
Bile Acids 21.36 23.51 28.05 5.99 10.49 10.09 21.36 20.83 11.05

Indoles and Derivatives 8.60 15.22 4.59 13.11 12.47 5.93
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Table 2. Cont.

Inter-Assay Precision: Shipment 1 vs. Shipment 2

PTSD Average
CV%

Control
Average CV%

Standard
deviation (SD)

PTSD Average
CV%

Control
Average CV%

Standard
deviation (SD)

PTSD Average
CV%

Control
Average CV%

Standard
deviation (SD)

PTSD Average
CV%

Control
Average CV%

Standard
deviation (SD)

PTSD Average
CV%

Control
Average CV%

Standard
deviation (SD)

Metabolite Class Biocrates HMT Nightingale Lipotype Metabolon
Lysophosphatidyl-cholines (LPC) 13.24 17.78 8.17 6.45 8.75 3.38 9.13 8.85 0.77 17.64 17.23 12.98

Glycerophosphocholines 6.56 7.21 2.76
Phosphatidyl-cholines (PC) 10.11 14.43 6.97 10.24 13.18 10.69 13.65 13.98 13.68

Sphingomyelins 9.34 12.99 4.28 6.16 7.19 2.09 6.51 7.58 4.35
Sphingolipids 20.21 20.23 10.83 9.90 12.50 1.60
Sphingosine 19.34 19.49 10.01

Glycerophospholipids 19.51 22.85 25.01 22.79 26.91 17.68
Glycerolipids (Monoacylglycerol) 35.32 34.69 15.53

Carboximidic acids and derivatives 23.26 3.55 NA 12.92 17.33 5.22
lyso-Phosphatidylethanolamine

(LPE) 11.88 13.87 17.60 9.92 9.85 1.89 22.80 19.85 12.54

Phosphatidylcholine (-ether)
(LPC-O) 14.35 15.00 6.39

Phosphatidylethanolamine (PE) 12.50 14.70 6.08 12.16 12.16 8.38
Phosphatidylethanolamine (-ether)

(LPE-O) 10.14 11.68 3.76

Phosphatidylinositol (LPI) 9.81 10.24 6.62 13.27 13.27 7.59 39.03 49.61 11.64
Lyso-Phosphatidylserine (LPS) 19.00 20.64 7.74

Glycerophosphoglycerols (LPG) 12.34 15.52 7.60
Vitamins and Cofactors 7.59 13.77 NA 6.44 13.52 NA

Alkaloids 17.05 46.83 21.81
Amine (Oxides) 6.55 11.15 NA 28.84 24.42 NA

Carbohydrates and Related 6.61 13.25 NA 23.31 22.25 22.84
Cresols 4.39 11.88 NA

Imidazopyrimidines 19.81 26.41 14.25
5’-deoxyribonucleosides 12.33 9.07 5.31 10.04 13.25 NA

Nucleoside and nucleotide
analogues 44.29 15.88 NA

Pyrimidine nucleosides 21.49 19.06 15.04
Pyridines and derivatives 11.51 11.75 5.71

Quinolines and derivatives 20.42 20.85 13.19
Phenols 22.06 21.35 6.87

Prenol lipids 16.43 13.54 6.28
Imidazole ribonucleosides and

ribonucleotides 7.24 7.26 NA

Benzene and substituted
derivatives 23.37 23.26 13.29

Phenylpropanoic acids 17.47 23.77 12.32
Tetrapyrroles and derivatives 9.73 17.57 5.40
Cholesterol and derivatives 8.27 8.43 2.92

Non-metal oxoanionic compounds 4.07 4.04 0.41
Organic sulfuric acids and

derivatives 23.64 25.3 27.37

Organic sulfonic acids and
derivatives 7.08 10.9 6.10

Organic carbonic acids and
derivatives 7.67 9 4.39

Organic phosphoric acids and
derivatives 8.74 8.28 NA

Benzothiazepines 22.99 22.49 2.09
Bilirubins 10.37 13.28 NA

Dihydrofurans 10.09 6.84 2.42
Alkyl halides 7.17 5.97 2.77

Sulfinic acids and derivatives 9.57 21.87 NA
Azoles 17.19 12.88 7.62

Azolidines 14.11 17 NA
Cinnamic acids and derivatives 48.32 49.73 NA

Peptidomimetics 22.76 21.34 NA
Piperidines 53.36 63.22 NA
Pyrrolidines 10.55 13.2 NA

Coumarins and derivatives 30.57 17.89 NA

Notes: “High” precision is shown in green (≤10%), “moderate” in yellow (10% < x < 20%), and “low” in red (≥20%).
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Figure 2. Venn diagram of coverage for PTSD-associated metabolites, for the five commercial
metabolomics vendors assessed in the systematic platform comparison. Metabolites were identified
through systematic review of case vs. control studies in PTSD.

Figure 3. Venn diagram of coverage for metabolites associated with PARK2, for the five commercial
metabolomics vendors assessed in the systematic platform comparison.
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2.4. Measurement Accuracy: Comparison to Known Values in NIST Reference Plasma

Accuracy in metabolite measurements, in comparison to NIST SRM 1950 pooled ref-
erence plasma reference values in the NIST certificate of analysis (COA), are provided in
Table 3. Assessments of accuracy were constrained by (i) the fraction of classes represented
in the NIST COA, (ii) vendor-specific coverage of metabolites, and (iii) the use of relative
units which excluded Metabolon. Accuracy was evaluated for a set of amino acids listed
in the NIST COA, which showed roughly similar high or moderate accuracy across plat-
forms. Contrastingly, fatty acid values reported by Biocrates indicated systematically low
measurements compared with the NIST COA values and values from the NMR platform,
Nightingale. These findings demonstrate that certain metabolites or metabolite classes can
have platform-specific normative values (Figure 4). Although platform-specific normative
levels can impede combining datasets across platforms, measurements of the diluted NIST
SRM 1950 by Biocrates indicated linearity was preserved for these analytes suggesting
that these same metabolites could be reliably measured (see Supplementary Figure S1).
This suggests reported values represented reliable measurements of a set of subspecies.
Thus, normalization methods informed by platform-specific normative levels could inform
efforts to compare or merge datasets across metabolomics approaches. In contrast to the
platform-specificity in normative concentrations, the majority of metabolites across all
platforms were detected with excellent linearity across the dilution curve (i.e., coefficient of
determination values near 1, suggesting that abundance is not a core obstacle in current
metabolomics technologies; depicted in Supplementary Figure S1).

Table 3. Reporting Accuracy (%) compared with NIST Metabolites in Frozen Human Plasma (SRM 1950).

Accuracy (%) Biocrates HMT Nightingale Lipotype

Analyte
NIST
Value
(uM)

Reported
Value
(uM)

Percent
Accuracy

Reported
Value
(uM)

Percent
Accuracy

Reported
Value
(uM)

Percent
Accuracy

Reported
Value
(uM)

Percent
Accuracy

Fatty Acids
C18:1 (Oleic Acid) 1614 158 −90.19%

C18:2 (Linoleic
Acid) 2838 33 −98.84% 2960 4.30%

C20:2 18.8 1.2 −93.65%
C20:4

(Arachidonic Acid) 984 5.0 −99.49%

C22:6
(Docosahexaenoic

Acid (DHA))
118 3.0 −97.47% 136 15.25%

C20:5
(Eicosapentaenoic

Acid (EPA))
38.6 0.35 −99.09%

Amino Acids
Glycine 245 288 17.72% 250 1.97% 240.9 −1.69%

Histidine 72.6 80 10.08% 59 −18.25% 70.1 −3.48%
Isoleucine 55.5 66 18.92% 46 −17.02% 44.6 −19.63%
Leucine 100.4 114 13.05% 102 1.25% 87.8 −12.56%
Lysine 140 151 7.73% 129 −7.60%

Methionine 22.3 22 −0.94% 14 −38.50%
Proline 177 199 12.30% 138 −22.19%
Serine 95.9 98 2.14% 69 −27.57%

Threonine 119.5 127 6.10% 92 −23.08%
Tyrosine 57.3 61 6.48% 49 −13.95% 61.8 7.91%

Valine 182.2 174 −4.40% 152 −16.30% 185.1 1.57%
Arginine 81.4 95 16.45%
Cysteine 44.3 46 4.50%
Cystine 7.8 8.0 2.76%

Phenylalanine 51 57 12.54% 47 −8.27% 53.0 3.97%
Clinical Markers

Creatinine 60 65 7.69% 43 −28.14% 58.2 −3.06%
Glucose 4560 4679.4 2.62%

Homocysteine 8.5 8.5 0.58%
Cortisol 0.23 0.19 −17.92%

Cholesterol 3917 3620 −7.58% 2337.4 −40.33%

Notes: “High” accuracy is shown in green (≤10%), “moderate” in yellow (10% < x < 20%), and “low” in red (≥20%). Accuracy assessed
only for vendors that reported quantitative units and not relative units; accuracy estimated using shipment 1 data. All percent accuracy
values are versus NIST COA values, such that a negative value is below the NIST-provided reference value.
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Figure 4. Platform-specific average metabolite levels in control samples for vendors reporting absolute units; each point
represents mean ± SEM for 11 control samples in total: 9 control samples from 6 individuals (with 3 technical replicates),
and 2 NIST pooled reference plasma samples. Each panel depicts the range of covered metabolites, across all assays, for
an exemplar metabolite class: (A) amino acids, (B) fatty acids, (C) lysophosphatidylcholines (LPC), (D) hydrooxy acids,
(E) ceramides, and (F) triglycerides. Depicted data are from the second sample shipment. NIST = concentrations reported in
the National Institute of Standards and Technology (NIST) SRM 1950 Certificate of Analysis (COA, revised June 2020).
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3. Discussion

Large-scale cohort studies are increasingly looking to advance multi-omics efforts
through the integration of metabolomics, which can provide a summary of cellular activity
as well as key insights into drug/toxin exposures [21,22,44]. Here, we evaluated five
commercial metabolomics platforms that are frequently applied in large-scale metabolomics
studies to characterize the state of current technologies. To do this, we evaluated metabolite
coverage, measurement precision, and accuracy in a range of targeted and discovery
metabolomics platforms including NMR and MS paired with direct infusion, LC, GC, and
CE. This study advances ongoing efforts to evaluate assay performance across biomarker
modalities, which has previously successfully identified highly sensitive platforms for
measuring inflammatory cytokines [45].

Our findings demonstrated that metabolite coverage overlap across platforms was
low, congruent with prior cross-platform comparisons [10,12,13]. Percentage overlap could
not be determined due to irreconcilable differences in metabolite nomenclature and vendor-
specific database harmonization. Platforms pioneering annotation can provide valuable
living datasets; yet merging cohorts across approaches is likely to be impeded in the near
future by challenges in marrying nomenclature and platform-specificity in the subspecies
represented in a metabolite measurement. At the level of metabolite classes, an average
of 1.8 vendors covered each reported class, with further vendor-specificity at the level of
the metabolite. The maximum number of reported metabolites, reaching the 80% rule,
was ~950, while the current estimated metabolite count in the human body is 114,100,
with >19 k of these detected in blood [11]. While comprehensive coverage of the genome
and transcriptome is currently possible, incomplete and platform-specific coverage in
metabolomics is reasonable given the limited availability of metabolite standards and
the extraordinary size and complexity of the human metabolome, which derives from
endogenous sources as well as food, environment, microbes, drugs, etc. [10].

Platform-specific coverage is likely to be a challenge for diseases that are in early
stages of characterizing mechanistic pathways and mapping putative metabolites as the set
of metabolites implicated in a disease state are dependent upon the breadth of techniques
that have been applied. For example, the metabolites currently implicated in PTSD can
nearly be comprehensively covered by Metabolon (Supplementary Table S3). However,
this is not surprising given that Metabolon’s technologies have been applied to PTSD
populations [7,20,25], while platforms with distinct coverage, such as HMT, Lipotype,
and Biocrates, have yet to be applied in large-scale case vs. control cohorts in PTSD, and
could implicate novel metabolites based on their non-overlapping coverage. Given that
researchers must weigh the benefits of applying multiple metabolomics technologies with
cost, biospecimen availability, and challenges in merging datasets across approaches, there
is great utility in vendors linking their internal libraries to prominent metabolite databases
actively updated by the academic community. For example, HMDB links metabolites to
published literature and key available information, including normative data, biological
properties, and known associated diseases. In the future, harmonizing metabolite nomen-
clature is likely to increase in importance as those at the frontier expand annotation of the
human metabolome.

Comparisons of precision and accuracy across absolute and relative quantitative
metabolomics approaches must consider trade-offs in coverage and performance inherent
in current technologies [8], As expected, the lowest coefficients of variation were yielded
by NMR, with a trade-off in coverage breadth [15,46]. Lower precision was found in lipid
classes across platforms, reflecting prior reports that quantification of lipids is difficult due
to lipid solubility, incomplete separation during chromatography, and a variety of other
challenges [47]. Overall, precision in the final normalized dataset was similar between
targeted and untargeted MS approaches. This is consistent with a prior cross-platform
comparison which reported that for overlapping metabolites the “quantitative results
from the nontargeted assay are largely comparable to data derived from classical targeted
assays” [13].
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Conversely, within platforms, precision ranged from “low” to “high” across metabolite
classes for all vendors, both within an assay and across assays. The variation in precision
across metabolite classes likely reflects distinct features that can render certain classes
consistently challenging to measure, including isomers, ionization efficiency, fragmentation,
and the availability of standards [28,48]. For example, the NMR data varied from 0.88%
CV for hydroxy acids to 27.57% CV for fatty acids, in the same plasma samples within the
same assay. This degree of variation between metabolite classes was similar for discovery
approaches. For example, Metabolon measured several metabolites classes with excellent
precision (between 2–3% CVs) but measured amine oxides in duplicate PTSD samples with
up to 45% CVs. Additionally, there were certain classes for which inter-assay drift was
high across all vendors, for example, latosylceramides and glycerophospholipids were in
the lowest precision category in both vendors that assessed these classes. The wide-spread
variation in performance across metabolite classes indicates that researchers should weigh
the strength of evidence for putative metabolites with the robustness of measurements
for that class, and prospective studies should consider measurement robustness when
determining sample size.

All metabolomics approaches shared greater inter-assay technical variation compared
with intra-assay, including several classes which transition from “high” intra-assay preci-
sion to “low” inter-assay precision for some groups/vendors (acylcarnitines, diglycerides,
bile acids, organooxygen compounds, etc.). Thus, longitudinal designs would benefit from
the inclusion of blinded reference plasma within each assay run to anchor study-specific
normalization, as well as maximizing the number of samples within each run (and mini-
mizing batches) to the degree possible. Although prior findings have emphasized greater
measurement drift for discovery approaches compared with targeted approaches, this gap
appears to be attenuated in the current dataset, likely as a result of the rapidly advancing
normalization and data processing procedures conducted by the vendors [10].

For certain metabolite classes, vendor reported measurements were consistently lower
compared with concentrations in the NIST COA or values reported by other vendors (for
example, Figure 4C). There are many possible explanations for systematically lower values
in a metabolite or metabolite class: subspecies or isomers may not be captured by a specific
approach, additionally fragmentation, matrix effects, and ion suppression can result in
random or systematic errors [15]. These latter challenges may be exacerbated for direct
infusion techniques which do not have elution order to aid in metabolite annotation [14,49].
Systematic differences in the reported concentration of a metabolite or metabolite class
may be especially important in light of increasing efforts to combine cohorts to achieve
the statistical power necessary for biomarker discovery in complex, heterogenous disease
states [21,22]. Our findings and publicly available dataset provide a novel ability to address
platform-specific “normative” levels. To enable the community to leverage the current
cross-platform datasets for clinical states beyond PTSD, a platform exploration tool is
being developed that will allow users to select specific metabolites of interest and explore
coverage and technical variation between platforms. This platform exploration tool is
currently undergoing beta-testing and will be launched in mid-2021. A representation of
this visualization tool is provided in the Supplementary Materials.

4. Methods
4.1. Cross-Platform Comparison Design: Platforms Selected

Metabolomics platforms were selected to optimize the (i) diversity of analytical tech-
nologies, (ii) throughput, (iii) usage in large-scale and cross-cohort studies including
psychiatric research, and (iv) capabilities of assays compatible with blood-based biofluids.
Based on these considerations, we selected five metabolomics vendors: Biocrates (MxP®

Quant 500 kit), Human Metabolome Technologies (HMT) (Omega Scan using CE-Orbitrap,
M-SCAN), Lipotype (Lipotype Shotgun Lipidomics), Metabolon (Global metabolomics),
and Nightingale (Nightingale Blood Biomarker Analysis Service). All vendors analyzed
duplicate plasma aliquots of parent samples in an identical, blinded, and randomized run
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order in their primary laboratory facilities (Biocrates: Innsbruck, Austria; HMT: Tsuruoka,
Japan; Lipotype: Dresden, Germany; Metabolon: Morrisville, NC, USA; and Nightingale:
Pittsburgh, PA, USA).

4.2. Cross-Platform Comparison Design: Clinical, Control, and Pooled Reference Plasma Samples

Each metabolomics vendor received two identical, blinded plasma shipments contain-
ing clinical samples, control samples, and pooled reference plasma (National Institute of
Standards & Technology (NIST) Standard Reference Material (SRM) 1950). Each shipment
contained 23 samples, identical across shipments, for a total of 46 samples. Metabolomics
data from the control and PTSD samples were evaluated separately to account for potential
population-specific performance. Given that identifying metabolites affected by PTSD was
not the goal of the current study, and the current sample size is far from the scale necessary
for the discovery of a disease signature, control and PTSD samples were not directly com-
pared. A complete list of plasma samples included is provided in Supplementary Table S1.

To assess inter-assay variation, identical technical replicates were sent in two ship-
ments; the first shipment was analyzed and data were received prior to sending the second
shipment. Shipments were separated by 7–20 weeks pending vendor analysis timelines,
with an average of 14 weeks between the two shipments. The sample run order was block
randomized within 5 × 5 sample shipment boxes and was consistent across all platforms
and shipments. All plasma technical replicates were aliquoted and prepared in parallel
and shipped by the Indiana University Genetics Biobank (IUGB, Indianapolis, IN, USA).
IUGB also generated a dilution curve of the NIST SRM 1950 diluted with physiological
saline to 80%, 60%, and 40% of the starting concentration ([14]; additional detail in Sup-
plementary Methods). To standardize preanalytical factors, all vendors received plasma
aliquots shipped with dry ice, previously stored under the same conditions in blinded
500 uL aliquots and organized in an identical manner along with a sample manifest that
provided the sample bar code, box name, sample position, and specimen type (human
plasma). Vendors received plasma samples with an identical number of freeze/thaw cycles
within each of the three sample types: PTSD, control, and NIST plasma samples. Vendors
within the US received samples with overnight shipping. International vendors received
samples through a carrier that monitors and maintains the levels of dry ice for sample
integrity throughout the course of shipment. Shipment duration varied by international
destination and was generally 2–5 days in the current context.

Use of human subjects was approved by the Stanford Institutional Review Board
(IRB) under Protocol #25948. Clinical samples were obtained from 6 veterans with PTSD
(3 male and 3 female), recruited through local VAs and assessed at Stanford University.
PTSD status was determined by the Clinician-Administered PTSD Scale (CAPS). Blood
was collected into vacutainer—K2 EDTA Purple-top tubes (10 mL) in the morning between
8–10 am, with participants instructed to be fasted overnight.

Control plasma samples were obtained by BioIVT and matched to clinical samples in
terms of sex, age, time of day at collection, collection method (vacutainer), and overnight
fasting condition (3 male and 3 female; details in Supplementary Table S2). Control blood
was obtained with vacutainer—K2 EDTA Purple-top tubes with anticoagulants (6 mL; BD
tube #: 367863) in the morning between 8–10 am, with participants instructed fast. Within
60 min, the whole blood was spun to obtain plasma at 1000–13,000× g for 10 min.

4.3. Metabolomics Analytical Platforms

Analytical technologies were mapped for the metabolomics platforms evaluated
(Figure 5); approaches included nuclear magnetic resonance (NMR) and mass spectroscopy
(MS) (discovery and targeted). For MS, a direct infusion technique was included as well
as liquid chromatography (LC), gas chromatography (GC), and capillary electrophoresis
(CE) separation techniques, and flow injection analysis (FIA). Metabolite coverage and
the degree of quantitation varies across platforms based on inherent trade-offs that shape
data output. For example, LC-MS is a versatile technique with a broad linear range, but
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it may be less precise compared with NMR, and LC-MS is blind to metabolites that do
not ionize, which are detectable by techniques that do not require ionization [15]. Ioniza-
tion efficiency varies across lipid classes as it has been shown to depend largely on the
lipid head group, especially in direct infusion methods [14]. Direct infusion can enhance
throughput but may cause suppression of low abundance species [50]. Ion suppression,
particularly as a matrix effect, can also be an issue for LC-MS techniques if high abundance
ions suppress the ionization of coeluting ions because of competition between ions [43].
NMR benefits from greater structural information that can aid in metabolite identification,
but generally has lower sensitivity, therefore lower coverage, compared with MS based
approaches [46]. Additionally, overlapping peaks from −CH, −CH2, −CH3 groups can
increase quantitative error, despite the high accuracy of NMR [15]. Comprehensive descrip-
tions of each analytical platform have been provided by the vendors, excluding proprietary
data processing methods, and are located in the Supplementary Methods.

Figure 5. Metabolomics analytical methods across evaluated platforms.

4.4. Metabolites Affected in Posttraumatic Stress Disorder (PTSD)

To understand the scope of metabolomics in psychiatric research and contextualize
efforts in PTSD, we conducted a review of current literature to map (i) metabolomics tech-
niques that have been applied and (ii) the number of participants (sample size) in discovery
groups. We evaluated PTSD and three psychopathologies with overlapping symptoma-
tology or frequent comorbidity with PTSD: major depressive disorder, traumatic brain
injury, and Alzheimer’s disease. Metabolomics analytical techniques were categorized as
commercial or “in house” academic assay approaches. For the “in house” metabolomics
studies, authors did not specify vendor or core facility, such that it was presumed that
procedures were run by the academic authors (authors were not contacted). A comprehen-
sive search of the Google Scholar database was conducted for each disease state of interest
using the following criteria for inclusion: (i) conducted in humans in the disease state of
interest; (ii) published in a peer reviewed journal; (iii) assessed in a blood-based biofluid;
(iv) an original report of empirical metabolomics data; and (v) published in or after 2015.
Details extracted included: (1) number of clinical participants; (2) number of healthy control
individuals (separated by discovery vs. test sets if applicable); (3) metabolomics analytical
technology; and (4) vendor (if applicable). For PTSD, a search was conducted on 21 July
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2020 using the following keywords: (“PTSD” OR “posttraumatic stress disorder”) AND
“metabolomics”. A total of 100 studies were reviewed for inclusion, with a final total of
7 studies selected for inclusion. As PTSD was the focal disease state, this list was updated
to include [26], which was published after the initial search date. For major depressive
disorder, a search was conducted on 17 July 2020 using the following keywords: (“de-
pression” OR “major depressive disorder”) AND “metabolomics”. A total of 100 studies
were reviewed for inclusion, with a final 15 studies included. For traumatic brain injury, a
search was conducted on 17 July 2020 using the following keywords: (“Alzheimer” OR
“Alzheimer’s”) AND “metabolomics”. A total of 100 studies were reviewed for inclusion,
with a final 10 studies included. For Alzheimer’s disease, a search was conducted on 20
July 2020 using the following keywords: (“traumatic brain injury”) AND “metabolomics”.
A total of 100 studies were reviewed for inclusion, with 24 studies included. The full list of
studies included is provided in the Supplementary Materials.

4.5. Metabolite Coverage and the Nomenclature across Platforms

To enable the assessment of the coverage overlap across different platforms, vendor
reported metabolite nomenclature was collaboratively harmonized to Human Metabolome
Database (HMDB) IDs for the identified metabolites, where possible [11]. In some cases,
nomenclature could not be matched across vendors, particularly for some lipid classes
and reported “unknowns”. Levels for unknown metabolites were provided by HMT
and Metabolon; unknowns represent analytes in a vendor’s internal library which can be
consistently measured and may be identified in the future, but currently do not have known
identities. Unknowns are beyond the scope of the current effort; however, reported levels
for unknowns are provided in the Supplementary Materials. Some vendors provided a list
of subspecies and structural isomers represented in their metabolite measurements where
possible/applicable. This is highly beneficial as platform-specific capturing of metabolite
subspecies can result in platform-specific normative levels and can pose challenges for
integrating datasets across approaches (Biocrates, Metabolon, HMT). Metabolite coverage
for a platform can change over time as annotation algorithms are updated. Nightingale
was the only vendor to report a change in their algorithms between shipments, reflecting
an expansion of their internal dataset (~July, 2020). The Nightingale data reported here
represents their most up-to-date algorithm (as of the date of publication); for reference,
shipment 1 Nightingale data, analyzed with the current and prior algorithm, are provided
in the Supplementary Materials. Notably, only metabolite/lipid coverage is addressed
here, but Nightingale measures clinical analytes, which may be of great value beyond the
current context (e.g., albumin, apolipoproteins, total omega-3 and omega-6 fatty acids, total
cholesterol, and VLDL, LDL, HDL, HDL2, HDL3, esterified, as well as free cholesterol). To
compare across platforms, coverage overlap was visualized with Venn diagrams [51].

4.6. Measurement Precision: Intra-Assay and Inter-Assay Coefficients of Variation

Duplicate aliquots from the same parent sample were included in two identical
shipments. The difference between measurements of the duplicate technical replicates
were determined for each annotated metabolite both within each shipment ((σ/(a1 + b1/2))
× 100) and across shipments, representing separate assay runs ((σ/(a1 + a2/2)) × 100) to
determine percent coefficients of variation (CV%).

4.7. Measurement Accuracy: Comparison to Known Values in the National Institute of Standards
and Technology (NIST) Reference Plasma

For the subset of metabolites which have concentrations reported in the NIST Certifi-
cate of Analysis (COA, revised June 2020), percent accuracy was determined for metabolites
reported by each vendor in the NIST SRM 1950 samples ((reported value—NIST COA
value)/NIST COA value) × 100; using shipment 1 data). For the dilution curve of the
NIST reference plasma, containing samples at 100%, 80%, 60%, and 40% of the initial
concentration, linearity was assessed by fitting a zero-intercept linear regression to the
shipment 1 data in R version 4.0.4. The coefficient of determination (R2) was calculated as
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a goodness of fit parameter for each metabolite reported by each vendor, using all points in
the dilution curve. If value(s) were missing for any NIST sample, linearity was not assessed
for that metabolite reported by that vendor.

4.8. Data Analysis and Visualization

Missing data in metabolomics can result from analytical, computational, and biolog-
ical factors [52,53]. Here, vendor-applied methods for missing data were not modified
(i.e., if a vendor imputed missing data, the imputed data were used; if a vendor reported
a datum as below threshold or missing it was omitted not imputed or substituted). For
vendors that imputed data, a pre-imputation version of the dataset is included in the Sup-
plementary Materials where possible. Substitution was not used here because the source
of missingness likely differed between analytical platforms and therefore substitution
could have introduced biases, e.g., distortion in data distribution or underestimation of
the standard deviation of a variable or group [54]. However, it is important to note that
missing values are often imputed in an experimental context with a strategy reflecting the
probable source(s) of missingness in the metabolomics platform used [54,55]. Therefore,
to avoid unreliable variables with a large proportion of missing values, in the absence of
substitution methods, the “modified 80% rule” was used which states that a metabolite
should be excluded if the proportion of non-missing elements account for less than 80%
of the data for that metabolite in each biological group (control and PTSD in the current
context) [54,56].

5. Conclusions

Our findings emphasize that comprehensive coverage is not yet possible for the
metabolome and large-scale metabolomics platforms yield distinct coverage, with class-
specific performance and measurement variability within and across all platforms. There-
fore, researchers selecting a platform must weigh (i) the breadth and depth of coverage
previously applied to their clinical state of interest, (ii) the strength of evidence for putative
metabolites, and (iii) class-specific measurement robustness, which can be interrogated for
metabolites of interest using the publicly available dataset generated by the current study.
For diseases in nascent stages of metabolomics characterization, researchers may be able to
leverage information on metabolites associated with genes or proteins of interest (e.g., [57]
or metabolites associated with biological pathways (e.g., [58]. Numerous publicly available
databases have been developed to support these efforts (e.g., Reactome, MetaCyc). Further
efforts are underway to define species-specific reference values across biospecimen types,
as well as the impact of clinical variables on population-level normative values including
sex and age [11].

Beyond species-specific considerations, effects of technical variation—including vari-
ation from metabolite stability over time or preanalytical variables such as freeze-thaw
cycles—could be minimized through the inclusion of blinded technical plasma in every
assay run to enable study-specific normalization. Similarly, distributing groups across runs
in block randomization could minimize the impacts of batch variation where possible. For
example, in an innovative recent metabolomics study in PTSD conducted by Konjevod
et al. [26], discovery and test cohorts “were analyzed under the same conditions, one year
apart”. Technical variation across assays has the capacity to obfuscate biological differences
and may have limited the metabolites validated in the test cohort to 2 metabolites out of
the 33 initially implicated metabolites [26].

Studies combining cohorts to increase statistical power are promising but can necessi-
tate integrating metabolomics results across approaches, which is hindered by (i) vendor-
specific nomenclature, (ii) platform-specificity in the metabolite subspecies represented
in a metabolite measurement, and (iii) platform-specific “normative” levels. The former
two challenges may be ameliorated by harmonizing to a publicly available database where
possible (e.g., HMDB). For the latter, strategies for integrating metabolomics datasets may
be informed by our findings defining metabolite classes which are subject to systematically
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lower measurements in specific platforms (fatty acids, LPCs, etc.) or greater inter-assay
variation for some or all platforms (glycerophospholipids, ceramides, quinolines, etc.).

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/metabo11090609/s1, Figure S1: Linearity across the dilution curve of NIST pooled ref-
erence plasma (SRM 1950), Table S1: Metabolites and lipids implicated in posttraumatic stress
disorder (PTSD) in previously published metabolomics studies, Table S2: List of samples sent to
each metabolomics vendor in two identical shipments, Table S3: Metabolomics Bake-off Sample
Information. Supplementary Methods: Metabolomics Platform Exploration Tool Demo.
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Definitions: Analytical platform: Refers to the entire methodology implemented by a commercial
metabolomics vendor from receipt of samples to finalization of datasets, including sample prepa-
ration, standard use, analytical technology, and all proprietary metabolite identification and data
processing methods [12]. Coverage: A metabolite was labeled “covered” according to the “modified
80% rule” which states that a metabolite should be excluded if the proportion of non-missing ele-
ments account for >80% of that metabolite’s data within each biological group [54,56]. In the current
context, a metabolite was “covered” if it was reported by a vendor with no more than 20% of missing
values per treatment group (control and PTSD), without additional substitution and imputation
beyond that used by the vendors. Technical replicate: Plasma samples from control individuals and
PTSD patients were separated into multiple identical 500 uL aliquots [14]. These identical aliquots
were repeatedly measured by blinded metabolomics vendors both within the same assay run and
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across two different shipments, sent several weeks apart, to represent separate assay runs. Intra-assay
precision: The percent coefficient of variation (CV%), for each annotated metabolite, between duplicate
aliquots of identical parent samples within an assay run ((σ/(a1 + b1/2)) × 100) [8]. “High” precision
was defined as ≤10%, “moderate” as 10% < x < 15%, “low” as ≥15%. (σ = standard deviation of
duplicate metabolite measurements within a vendor; a = vendor metabolite measurement for the
first identical aliquot; b = vendor metabolite measurement for the second identical aliquot). Inter-
assay precision: The percent coefficient of variation (CV%), for each annotated metabolite, between
duplicate aliquots of identical parent samples across shipments, representing separate assay runs
((σ/(a1 + a2/2)) × 100). “High” precision was defined as ≤10%, “moderate” as 10% < x <15%, “low”
as ≥15%. Accuracy: Percent deviation from “known” values, for the subset of metabolites that have
concentrations reported in the NIST SRM 1950 Certificate of Analysis (COA, revised June 2020),
calculated as (reported value—NIST COA value)/NIST COA value × 100) [8]. “High” accuracy was
defined as ≤10%, “moderate” as 10% < x < 20%, “low” as ≥20%.

References
1. Wishart, D.S. Emerging applications of metabolomics in drug discovery and precision medicine. Nat. Rev. Drug Discov. 2016, 15,

473–484. [CrossRef] [PubMed]
2. Dettmer, K.; Aronov, P.A.; Hammock, B.D. Mass spectrometry-based metabolomics. Mass Spectrom. Rev. 2007, 26, 51–78.

[CrossRef] [PubMed]
3. Howie, H.; Rijal, C.M.; Ressler, K.J. A review of epigenetic contributions to post-traumatic stress disorder. Dialogues Clin. Neurosci.

2019, 21, 417–428. [CrossRef] [PubMed]
4. Villaseñor, A.; Ramamoorthy, A.; Silva dos Santos, M.; Lorenzo, M.P.; Laje, G.; Zarate, C.; Barbas, C.; Wainer, I.W. A pilot study

of plasma metabolomic patterns from patients treated with ketamine for bipolar depression: Evidence for a response-related
difference in mitochondrial networks: Metabolomics of ketamine response in depression. Br. J. Pharmacol. 2014, 171, 2230–2242.
[CrossRef]

5. Lusczek, E.R.; Myers, C.; Popovsky, K.; Mulier, K.; Beilman, G.; Sawyer, R. Plasma metabolomics pilot study suggests age and
sex-based differences in the metabolic response to traumatic injury. Injury 2018, 49, 2178–2185. [CrossRef]

6. Monte, A.A.; Brocker, C.; Nebert, D.W.; Gonzalez, F.J.; Thompson, D.C.; Vasiliou, V. Improved drug therapy: Triangulating
phenomics with genomics and metabolomics. Hum. Genom. 2014, 8, 16. [CrossRef]

7. Dean, K.R.; Hammamieh, R.; Mellon, S.H.; Abu-Amara, D.; Flory, J.D.; Guffanti, G.; Wang, K.; Daigle, B.J.; Gautam, A.; Lee, I.;
et al. Multi-omic biomarker identification and validation for diagnosing warzone-related post-traumatic stress disorder. Mol.
Psychiatry 2020, 25, 3337–3349. [CrossRef]

8. Contrepois, K.; Mahmoudi, S.; Ubhi, B.K.; Papsdorf, K.; Hornburg, D.; Brunet, A.; Snyder, M. Cross-Platform Comparison of
Untargeted and Targeted Lipidomics Approaches on Aging Mouse Plasma. Sci. Rep. 2018, 8, 17747. [CrossRef]

9. Chen, L.; Zhong, F.; Zhu, J. Bridging Targeted and Untargeted Mass Spectrometry-Based Metabolomics via Hybrid Approaches.
Metabolites 2020, 10, 348. [CrossRef]

10. Ribbenstedt, A.; Ziarrusta, H.; Benskin, J.P. Development, characterization and comparisons of targeted and non-targeted
metabolomics methods. PLoS ONE 2018, 13, e0207082. [CrossRef]

11. Wishart, D.S.; Feunang, Y.D.; Marcu, A.; Guo, A.C.; Liang, K.; Vázquez-Fresno, R.; Sajed, T.; Johnson, D.; Li, C.; Karu, N.; et al.
HMDB 4.0: The human metabolome database for 2018. Nucleic Acids Res. 2018, 46, D608–D617. [CrossRef] [PubMed]

12. Yet, I.; Menni, C.; Shin, S.-Y.; Mangino, M.; Soranzo, N.; Adamski, J.; Suhre, K.; Spector, T.D.; Kastenmüller, G.; Bell, J.T. Genetic
Influences on Metabolite Levels: A Comparison across Metabolomic Platforms. PLoS ONE 2016, 11, e0153672. [CrossRef]

13. Leuthold, P.; Schaeffeler, E.; Winter, S.; Büttner, F.; Hofmann, U.; Mürdter, T.E.; Rausch, S.; Sonntag, D.; Wahrheit, J.; Fend, F.; et al.
Comprehensive Metabolomic and Lipidomic Profiling of Human Kidney Tissue: A Platform Comparison. J. Proteome Res. 2017,
16, 933–944. [CrossRef]

14. Triebl, A.; Burla, B.; Selvalatchmanan, J.; Oh, J.; Tan, S.H.; Chan, M.Y.; Mellet, N.A.; Meikle, P.J.; Torta, F.; Wenk, M.R. Shared
reference materials harmonize lipidomics across MS-based detection platforms and laboratories. J. Lipid Res. 2020, 61, 105–115.
[CrossRef]

15. Lu, W.; Su, X.; Klein, M.S.; Lewis, I.A.; Fiehn, O.; Rabinowitz, J.D. Metabolite Measurement: Pitfalls to Avoid and Practices to
Follow. Annu. Rev. Biochem. 2017, 86, 277–304. [CrossRef] [PubMed]

16. Galatzer-Levy, I.R.; Bryant, R.A. 636,120 Ways to Have Posttraumatic Stress Disorder. Perspect. Psychol. Sci. J. Assoc. Psychol. Sci.
2013, 8, 651–662. [CrossRef] [PubMed]

17. Karabatsiakis, A.; Hamuni, G.; Wilker, S.; Kolassa, S.; Renu, D.; Kadereit, S.; Schauer, M.; Hennessy, T.; Kolassa, I.-T. Metabolite
profiling in posttraumatic stress disorder. J. Mol. Psychiatry 2015, 3, 2. [CrossRef] [PubMed]

18. Huguenard, C.J.C.; Cseresznye, A.; Evans, J.E.; Oberlin, S.; Langlois, H.; Ferguson, S.; Darcey, T.; Nkiliza, A.; Dretsch, M.; Mullan,
M.; et al. Plasma Lipidomic Analyses in Cohorts With mTBI and/or PTSD Reveal Lipids Differentially Associated With Diagnosis
and APOE ε4 Carrier Status. Front. Physiol. 2020, 11, 12. [CrossRef]

http://doi.org/10.1038/nrd.2016.32
http://www.ncbi.nlm.nih.gov/pubmed/26965202
http://doi.org/10.1002/mas.20108
http://www.ncbi.nlm.nih.gov/pubmed/16921475
http://doi.org/10.31887/DCNS.2019.21.4/kressler
http://www.ncbi.nlm.nih.gov/pubmed/31949409
http://doi.org/10.1111/bph.12494
http://doi.org/10.1016/j.injury.2018.09.033
http://doi.org/10.1186/s40246-014-0016-9
http://doi.org/10.1038/s41380-019-0496-z
http://doi.org/10.1038/s41598-018-35807-4
http://doi.org/10.3390/metabo10090348
http://doi.org/10.1371/journal.pone.0207082
http://doi.org/10.1093/nar/gkx1089
http://www.ncbi.nlm.nih.gov/pubmed/29140435
http://doi.org/10.1371/journal.pone.0153672
http://doi.org/10.1021/acs.jproteome.6b00875
http://doi.org/10.1194/jlr.D119000393
http://doi.org/10.1146/annurev-biochem-061516-044952
http://www.ncbi.nlm.nih.gov/pubmed/28654323
http://doi.org/10.1177/1745691613504115
http://www.ncbi.nlm.nih.gov/pubmed/26173229
http://doi.org/10.1186/s40303-015-0007-3
http://www.ncbi.nlm.nih.gov/pubmed/25848535
http://doi.org/10.3389/fphys.2020.00012


Metabolites 2021, 11, 609 20 of 21

19. Konjevod, M.; Tudor, L.; Svob Strac, D.; Nedic Erjavec, G.; Barbas, C.; Zarkovic, N.; Nikolac Perkovic, M.; Uzun, S.; Kozumplik, O.;
Lauc, G.; et al. Metabolomic and glycomic findings in posttraumatic stress disorder. Prog. Neuropsychopharmacol. Biol. Psychiatry
2019, 88, 181–193. [CrossRef] [PubMed]

20. Mellon, S.H.; Bersani, F.S.; Lindqvist, D.; Hammamieh, R.; Donohue, D.; Dean, K.; Jett, M.; Yehuda, R.; Flory, J.; Reus, V.I.; et al.
Metabolomic analysis of male combat veterans with post traumatic stress disorder. PLoS ONE 2019, 14, e0213839. [CrossRef]

21. Bot, M.; Milaneschi, Y.; Al-Shehri, T.; Amin, N.; Garmaeva, S.; Onderwater, G.L.J.; Pool, R.; Thesing, C.S.; Vijfhuizen, L.S.;
Vogelzangs, N.; et al. Metabolomics Profile in Depression: A Pooled Analysis of 230 Metabolic Markers in 5283 Cases with
Depression and 10,145 Controls. Biol. Psychiatry 2020, 87, 409–418. [CrossRef] [PubMed]

22. Tynkkynen, J.; Chouraki, V.; van der Lee, S.J.; Hernesniemi, J.; Yang, Q.; Li, S.; Beiser, A.; Larson, M.G.; Sääksjärvi, K.; Shipley,
M.J.; et al. Association of branched-chain amino acids and other circulating metabolites with risk of incident dementia and
Alzheimer’s disease: A prospective study in eight cohorts. Alzheimers Dement. 2018, 14, 723–733. [CrossRef] [PubMed]

23. Marx, V. Boost that metabolomic confidence. Nat. Methods 2020, 17, 33–36. [CrossRef]
24. Smith, A.K.; Ratanatharathorn, A.; Maihofer, A.X.; Naviaux, R.K.; Aiello, A.E.; Amstadter, A.B.; Ashley-Koch, A.E.; Baker,

D.G.; Beckham, J.C.; Boks, M.P.; et al. Epigenome-wide meta-analysis of PTSD across 10 military and civilian cohorts identifies
methylation changes in AHRR. Nat. Commun. 2020, 11, 5965. [CrossRef]

25. Somvanshi, P.R.; Mellon, S.H.; Flory, J.D.; Abu-Amara, D.; PTSD Systems Biology Consortium; Wolkowitz, O.M.; Yehuda, R.;
Jett, M.; Hood, L.; Marmar, C.; et al. Mechanistic inferences on metabolic dysfunction in posttraumatic stress disorder from an
integrated model and multiomic analysis: Role of glucocorticoid receptor sensitivity. Am. J. Physiol. Endocrinol. Metab. 2019, 317,
E879–E898. [CrossRef]

26. Konjevod, M.; Nedic Erjavec, G.; Nikolac Perkovic, M.; Sáiz, J.; Tudor, L.; Uzun, S.; Kozumplik, O.; Svob Strac, D.; Zarkovic, N.;
Pivac, N. Metabolomics in posttraumatic stress disorder: Untargeted metabolomic analysis of plasma samples from Croatian war
veterans. Free Radic. Biol. Med. 2021, 162, 636–641. [CrossRef]

27. Zoladz, P.R.; Diamond, D.M. Current status on behavioral and biological markers of PTSD: A search for clarity in a conflicting
literature. Neurosci. Biobehav. Rev. 2013, 37, 860–895. [CrossRef]

28. Wang, H.; Muehlbauer, M.J.; O’Neal, S.K.; Newgard, C.B.; Hauser, E.R.; Bain, J.R.; Shah, S.H. Recommendations for Improving
Identification and Quantification in Non-Targeted, GC-MS-Based Metabolomic Profiling of Human Plasma. Metabolites 2017, 7,
45. [CrossRef]

29. Dudzik, D.; Barbas-Bernardos, C.; García, A.; Barbas, C. Quality assurance procedures for mass spectrometry untargeted
metabolomics. a review. J. Pharm. Biomed. Anal. 2018, 147, 149–173. [CrossRef]

30. Evans, A.M.; O’Donovan, C.; Playdon, M.; Beecher, C.; Beger, R.D.; Bowden, J.A.; Broadhurst, D.; Clish, C.B.; Dasari, S.; Dunn,
W.B.; et al. Dissemination and analysis of the quality assurance (QA) and quality control (QC) practices of LC-MS based
untargeted metabolomics practitioners. Metabolomics 2020, 16, 113. [CrossRef] [PubMed]

31. Sumner, L.W.; Amberg, A.; Barrett, D.; Beale, M.H.; Beger, R.; Daykin, C.A.; Fan, T.W.-M.; Fiehn, O.; Goodacre, R.; Griffin, J.L.;
et al. Proposed minimum reporting standards for chemical analysis Chemical Analysis Working Group (CAWG) Metabolomics
Standards Initiative (MSI). Metabolomics 2007, 3, 211–221. [CrossRef]

32. Spicer, R.A.; Salek, R.; Steinbeck, C. A decade after the metabolomics standards initiative it’s time for a revision. Sci. Data 2017, 4,
170138. [CrossRef]

33. Salek, R.M.; Steinbeck, C.; Viant, M.R.; Goodacre, R.; Dunn, W.B. The role of reporting standards for metabolite annotation and
identification in metabolomic studies. GigaScience 2013, 2. [CrossRef]

34. Turck, C.W.; Mak, T.D.; Goudarzi, M.; Salek, R.M.; Cheema, A.K. The ABRF Metabolomics Research Group 2016 Exploratory
Study: Investigation of Data Analysis Methods for Untargeted Metabolomics. Metabolites 2020, 10, 128. [CrossRef] [PubMed]

35. Playdon, M.C.; Joshi, A.D.; Tabung, F.K.; Cheng, S.; Henglin, M.; Kim, A.; Lin, T.; van Roekel, E.H.; Huang, J.; Krumsiek, J.; et al.
Metabolomics Analytics Workflow for Epidemiological Research: Perspectives from the Consortium of Metabolomics Studies
(COMETS). Metabolites 2019, 9, 145. [CrossRef]

36. Sampson, J.N.; Boca, S.M.; Shu, X.O.; Stolzenberg-Solomon, R.Z.; Matthews, C.E.; Hsing, A.W.; Tan, Y.T.; Ji, B.-T.; Chow, W.-H.;
Cai, Q.; et al. Metabolomics in Epidemiology: Sources of Variability in Metabolite Measurements and Implications. Cancer
Epidemiol. Biomark. Prev. 2013, 22, 631–640. [CrossRef] [PubMed]

37. Carayol, M.; Licaj, I.; Achaintre, D.; Sacerdote, C.; Vineis, P.; Key, T.J.; Onland Moret, N.C.; Scalbert, A.; Rinaldi, S.; Ferrari, P.
Reliability of Serum Metabolites over a Two-Year Period: A Targeted Metabolomic Approach in Fasting and Non-Fasting Samples
from EPIC. PLoS ONE 2015, 10, e0135437. [CrossRef] [PubMed]

38. Townsend, M.K.; Bao, Y.; Poole, E.M.; Bertrand, K.A.; Kraft, P.; Wolpin, B.M.; Clish, C.B.; Tworoger, S.S. Impact of Pre-analytic
Blood Sample Collection Factors on Metabolomics. Cancer Epidemiol. Biomark. Prev. 2016, 25, 823–829. [CrossRef]

39. Xue, C.; Ge, Y.; Tang, B.; Liu, Y.; Kang, P.; Wang, M.; Zhang, L. A Meta-Analysis of Risk Factors for Combat-Related PTSD among
Military Personnel and Veterans. PLoS ONE 2015, 10, e0120270. [CrossRef]

40. Tang, B.; Deng, Q.; Glik, D.; Dong, J.; Zhang, L. A Meta-Analysis of Risk Factors for Post-Traumatic Stress Disorder (PTSD) in
Adults and Children after Earthquakes. Int. J. Environ. Res. Public. Health 2017, 14, 1537. [CrossRef]

41. Nievergelt, C.M.; Maihofer, A.X.; Klengel, T.; Atkinson, E.G.; Chen, C.-Y.; Choi, K.W.; Coleman, J.R.I.; Dalvie, S.; Duncan, L.E.;
Gelernter, J.; et al. International meta-analysis of PTSD genome-wide association studies identifies sex- and ancestry-specific
genetic risk loci. Nat. Commun. 2019, 10, 4558. [CrossRef]

http://doi.org/10.1016/j.pnpbp.2018.07.014
http://www.ncbi.nlm.nih.gov/pubmed/30025792
http://doi.org/10.1371/journal.pone.0213839
http://doi.org/10.1016/j.biopsych.2019.08.016
http://www.ncbi.nlm.nih.gov/pubmed/31635762
http://doi.org/10.1016/j.jalz.2018.01.003
http://www.ncbi.nlm.nih.gov/pubmed/29519576
http://doi.org/10.1038/s41592-019-0694-2
http://doi.org/10.1038/s41467-020-19615-x
http://doi.org/10.1152/ajpendo.00065.2019
http://doi.org/10.1016/j.freeradbiomed.2020.11.024
http://doi.org/10.1016/j.neubiorev.2013.03.024
http://doi.org/10.3390/metabo7030045
http://doi.org/10.1016/j.jpba.2017.07.044
http://doi.org/10.1007/s11306-020-01728-5
http://www.ncbi.nlm.nih.gov/pubmed/33044703
http://doi.org/10.1007/s11306-007-0082-2
http://doi.org/10.1038/sdata.2017.138
http://doi.org/10.1186/2047-217X-2-13
http://doi.org/10.3390/metabo10040128
http://www.ncbi.nlm.nih.gov/pubmed/32230777
http://doi.org/10.3390/metabo9070145
http://doi.org/10.1158/1055-9965.EPI-12-1109
http://www.ncbi.nlm.nih.gov/pubmed/23396963
http://doi.org/10.1371/journal.pone.0135437
http://www.ncbi.nlm.nih.gov/pubmed/26274920
http://doi.org/10.1158/1055-9965.EPI-15-1206
http://doi.org/10.1371/journal.pone.0120270
http://doi.org/10.3390/ijerph14121537
http://doi.org/10.1038/s41467-019-12576-w


Metabolites 2021, 11, 609 21 of 21

42. Mizuno, Y. More than 20 years of the discovery of Park2. Neurosci. Res. 2020, 159, 3–8. [CrossRef]
43. Halket, J.M.; Waterman, D.; Przyborowska, A.M.; Patel, R.K.P.; Fraser, P.D.; Bramley, P.M. Chemical derivatization and mass

spectral libraries in metabolic profiling by GC/MS and LC/MS/MS. J. Exp. Bot. 2005, 56, 219–243. [CrossRef]
44. Rotroff, D.M.; Corum, D.G.; Motsinger-Reif, A.; Fiehn, O.; Bottrel, N.; Drevets, W.C.; Singh, J.; Salvadore, G.; Kaddurah-Daouk, R.

Metabolomic signatures of drug response phenotypes for ketamine and esketamine in subjects with refractory major depressive
disorder: New mechanistic insights for rapid acting antidepressants. Transl. Psychiatry 2016, 6, e894. [CrossRef]

45. Lasseter, H.C.; Provost, A.C.; Chaby, L.E.; Daskalakis, N.P.; Haas, M.; Jeromin, A. Cross-platform comparison of highly sensitive
immunoassay technologies for cytokine markers: Platform performance in post-traumatic stress disorder and Parkinson’s disease.
Cytokine X 2020, 2, 100027. [CrossRef] [PubMed]

46. Emwas, A.-H.; Roy, R.; McKay, R.T.; Tenori, L.; Saccenti, E.; Gowda, G.A.N.; Raftery, D.; Alahmari, F.; Jaremko, L.; Jaremko, M.;
et al. NMR Spectroscopy for Metabolomics Research. Metabolites 2019, 9, 123. [CrossRef] [PubMed]

47. Hinz, C.; Liggi, S.; Griffin, J.L. The potential of Ion Mobility Mass Spectrometry for high-throughput and high-resolution
lipidomics. Curr. Opin. Chem. Biol. 2018, 42, 42–50. [CrossRef]
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