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Abstract

Background: Leukotriene D4 (LTD4) belongs to the bioactive lipid group known as eicosanoids and has implications in
pathological processes such as inflammation and cancer. Leukotriene D4 exerts its effects mainly through two different G-
protein-coupled receptors, CysLT1 and CysLT2. The high affinity LTD4 receptor CysLT1R exhibits tumor-promoting properties
by triggering cell proliferation, survival, and migration in intestinal epithelial cells. In addition, increased expression and
nuclear localization of CysLT1R correlates with a poorer prognosis for patients with colon cancer.

Methodology/Principal Findings: Using a proximity ligation assay and immunoprecipitation, this study showed that
endogenous CysLT1R formed heterodimers with its counter-receptor CysLT2R under basal conditions and that LTD4 triggers
reduced dimerization of CysLTRs in intestinal epithelial cells. This effect was dependent upon a parallel LTD4-induced
increase in CysLT1R tyrosine phosphorylation. Leukotriene D4 also led to elevated internalization of CysLT1Rs from the
plasma membrane and a simultaneous increase at the nucleus. Using sucrose, a clathrin endocytic inhibitor, dominant-
negative constructs, and siRNA against arrestin-3, we suggest that a clathrin-, arrestin-3, and Rab-5-dependent process
mediated the internalization of CysLT1R. Altering the CysLT1R internalization process at either the clathrin or the arrestin-3
stage led to disruption of LTD4-induced Erk1/2 activation and up-regulation of COX-2 mRNA levels.

Conclusions/Significance: Our data suggests that upon ligand activation, CysLT1R is tyrosine-phosphorylated and released
from heterodimers with CysLT2R and, subsequently, internalizes from the plasma membrane to the nuclear membrane in a
clathrin-, arrestin-3-, and Rab-5-dependent manner, thus, enabling Erk1/2 signaling and downstream transcription of the
COX-2 gene.
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Introduction

Patients with prolonged inflammatory conditions such as

inflammatory bowel disease (IBD) exhibit increased levels of

inflammatory mediators, such as cysteinyl leukotrienes (CysLT;

LTC4, LTD4, and LTE4) [1]. The fact that IBD patients have a

30–50% increased risk of developing colorectal cancer [2] implies

a possible role of cysteinyl leukotrienes in the coupling between

chronic inflammation and the development of colorectal cancer.

Leukotrienes exert their effects through G-protein-coupled

receptors (GPCRs). The CysLT1R [3] is a high affinity GPCR

for the pro-inflammatory mediator LTD4 that is implicated in

many inflammatory conditions [4,5]. We have shown that LTD4

up-regulates several proteins related to carcinogenesis, such as

COX-2, b-catenin, and Bcl-2, via the CysLT1R in intestinal

epithelial cells [6,7]. We have also shown that LTD4 mediates

survival [8,9], proliferation [10], and migration [11] in epithelial

cells through the CysLT1R. Up-regulation of the receptors at the

plasma membrane and the nuclear membrane was shown in a

colon cancer tissue microarray [12]. This up-regulation of the

CysLT1R in colon cancer correlates with a poorer prognosis

[12,13,14]. In contrast to this, increased levels of the CysLT2R,

which is also located in the plasma and nuclear membrane,

correlates with a better prognosis for patients with colon cancer

[14,15]. Furthermore, LTC4-induced activation of CysLT2R has

been shown to promote differentiation of colon cancer cells [15],

which suggests a potentially opposite role for the CysLT2R

compared to the CysLT1R in the development or progression of

colon cancer.

A key regulatory mechanism of GPCR signaling is internaliza-

tion and trafficking. There are a limited number of publications

studying the trafficking of the CysLT1R [16,17,18]. Naik et al.
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demonstrated that in HEK-293 cells over expressing the

CysLT1R, the internalization of the receptor is Protein Kinase

C (PKC)-dependent [16]. Furthermore, our group has demon-

strated that the nuclear localization sequence (NLS) domain,

which contains the PKC sites, is required for internalization and

Erk1/2 signaling via the CysLT1R [12]. Capra et al. showed that,

unlike the homologous desensitization induced by LTD4, the

heterologous desensitization of the CysLT1R via the P2YR is

PKC-dependent [16,17], suggesting that CysLT1R regulation can

be cell specific. Previous results from our laboratory suggest that,

upon stimulation with LTD4, the CysLT1R translocates from the

plasma membrane to the outer nuclear membrane of Int 407 cells

[12]. The internalization and trafficking of GPCRs are often

implicated in GPCR-related pathologies, such as in the case of

retinitis pigmentosa, which is reported to be a result of improper

intracellular trafficking and localization of rhodopsin receptors

[19,20].

An important aspect of GPCR regulation is the ability to

dimerize. GPCRs can induce signals as hetero-, homo-dimers or

oligomers [21]. Moreover, GPCR dimerization has been shown to

be needed for their proper expression, stronger ligand binding,

phosphorylation, and internalization [21]. Dimerized GPCRs may

have signaling properties distinct from those of monomeric

receptors [22,23]. Receptor-mediated endocytosis is a mechanism

by which the cell regulates the magnitude and duration of external

stimuli [24,25]. There have been extensive investigations into

endocytosis via clathrin-coated pits, resulting in it being the best-

characterized mechanism for GPCR internalization [26,27].

Clathrin-coated pits are membrane invaginations coated with

clathrin. Upon ligand binding, G-protein-coupled receptor kinases

(GRKs) or protein kinases, such as PKC, phosphorylate GPCRs.

This phosphorylation leads to the recruitment of arrestin, which,

in turn, targets the GPCR to the clathrin-coated pits. However,

certain GPCRs, such as the leukotriene B4 receptor 1 (BLT1R),

when transfected into Cos-7 and HEK-293 cells, may internalize

independently of arrestins [28]. Different Rab proteins are

involved in vesicle trafficking and regulate their directionality.

Rab-5, -11 and -21, in particular, are involved in the trafficking of

early endosomes [29,30,31]. Once internalized, the receptor is

either recycled through early endosomes, sent for degradation to

the lysosomes [32], or transported to the nucleus [33,34,35]. A less

studied internalization pathway is the one through caveolae.

Caveolae are membrane invaginations, rich in caveolin proteins

and cholesterol. Certain GPCRs, such as the M1 receptor and the

glucagon peptide 1 receptor, are internalized and have been

shown to be internalized via this pathway [36,37]. However, the

mechanism of how these GPCRs are targeted into the caveolae is

still unknown. Other GPCRs, like the b-adregenic receptors

b1AR, and b2AR, are enriched in the caveolae, but they are not

internalized through this pathway [38,39].

The aim of this study was to investigate the underlying

regulatory mechanisms leading to the internalization of CysLT1R.

We demonstrate that LTD4 induces tyrosine phosphorylation and

internalizes the CysLT1R. Furthermore, we suggest that the

LTD4-induced CysLT1R translocation to the nucleius, or

disruption of this internalization at various stages, could affect its

overall signaling process.

Materials and Methods

Chemicals
Antibodies against heavy-chain clathrin were from BD Trans-

duction Laboratories (Erembodegem, Belgium). The LTD4 was

from Cayman Chemical Company (Ann Arbor, MI), and N-

terminal CysLT1R was from Innovagen (Lund, Sweden). The

ZM198615 was a gift from AstraZeneca (R&D, Lund, Sweden),

and ECL Western blot detection reagents and Hyperfilm were

from Amersham International (Buckinghamshire, UK). The

source for Protein A sepharose was GE Healthcare (Uppsala,

Sweden). The phospho-Erk1/2 antibody was from New England

BioLabs Inc, (Beverly, MA). Antibodies against arrestin-3 were

purchased from Cell Signaling (Boston, MA) and Santa Cruz

(Santa Cruz, CA). The arrestin-3 and scrambled siRNA were from

Santa Cruz (Santa Cruz, CA). Peroxidase-linked goat anti-rabbit

antibodies and fluorescence mounting medium were from Dako

A/S (Copenhagen, Denmark). Lipofectamine 2000 and all cell

culture media were from Invitrogen (Carlsbad, CA) and Alexa 488

and Alexa 546 were from Molecular Probes Inc. (Leiden,

Netherlands). The RNeasy MinElute Spin Column was from

Qiagen (Hilden, Germany). Genistein was from Calbiochem (San

Diego, CA). The Flag M2 antibodies, light-chain clathrin

antibodies, and all other chemicals were of analytical grade and

were purchased from Sigma Chemical Company (St. Louis, MO).

Cell Culture
Non-transformed human intestinal epithelial cells, Int 407 cells

exhibiting typical epithelial growth and morphology [40], and the

human colorectal adenocarcinoma cell line Caco-2 (ATCC HTB-

37) were cultured as described previously [41]. Cells were cultured

to approximately 80% confluency and regularly tested to ensure

the absence of mycoplasma.

The in situ proximity ligation assay
The in situ proximity ligation assay (PLA), DuolinkTM, was from

Olink Bioscience (Uppsala, Sweden) and performed according to

the manufacturer’s instructions [42], with slight modifications.

Briefly, Int 407 cells were grown in 4-well plates to 50%

confluency, serum starved, and stimulated with LTD4 or LTC4

(40 nM) for indicated time points and fixed for 15 minutes in 4%

ice-cold PFA/PBS. Blocking in a 3% BSA/PBS for 1 hour

followed. Thereafter, the cells were stained with anti-rabbit

CysLT1R, anti-goat CysLT2R antibodies, and anti-phospho-

tyrosine antibodies (1:250 in 3% BSA/PBS) overnight at 4uC.

This was followed by washing five times in PBS-T and incubation

with PLA probes minus and plus (anti-goat DNA minus strand and

anti-rabbit DNA-plus strand, diluted 1:5) in 3% BSA/PBS for

2 hours at 37uC. Alternatively, as a negative control, the CysLT2R

antibody, or the DNA-plus probe, was omitted. Furthermore, as a

positive control, the Duolink control kit contains two primary

antibodies targeting different epitopes of chicken TK1 protein.

Thereafter, the cells were washed twice in PBS-T and hybridized

at 37uC for 15 minutes, followed by ligation for 15 minutes at

37uC. The cells were washed 16 in PBS-T and treated with

polymerase for amplification for 90 minutes at 37uC. The

detection of PLA-amplicons (red dots) was carried out using the

‘‘563 detection kit’’ provided by Olink Bioscience. This kit

includes the Hoechst 33342 dye for nuclear staining (blue) and

the Alexa Fluor 488-phalloidin/actin for cytoplasmic staining

(green). The cells were then mounted and examined using a Nikon

TE300 microscope (6061.4 plan apochromat oil immersion

objective), integrated into fluorescent microscopy. The red dots

were counted using the MATLAB/Blob Finder software from

Olink Bioscience (Uppsala, Sweden) [42].

Electron Microscopy
Cells stimulated with or without 40 nM LTD4 or LTC4 for 15

or 30 minutes were used for electron microscopy and prepared as

described previously [12]. Briefly, 56106 cells were pelleted at 4uC
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immediately after being placed in a fixative (4% paraformaldehyde

and 0.1% glutaraldehyde). The pellets were dehydrated in ethanol

for 1 hour at room temperature and then embedded in Lowicryl

[43]. Ultra thin sections were cut on a microtome and mounted on

nickel grids. For immunostaining, the grids were floated on drops

of immune reagents placed on a sheet of parafilm. Free aldehyde

groups were then blocked with 50 mmol/L glycine, and the grids

were subsequently incubated with 5% (v/v) donkey serum in PBS

supplemented with 0.2% bovine serum albumin (BSA; pH 7.6) for

15 minutes. Overnight incubation with the primary antibody

(dilution 1:100) at 4uC followed this blocking procedure. The grids

were subsequently washed by placing them, successively, on 10

drops of incubation buffer (5 minutes on each drop), after which

the sections were incubated with the gold-conjugated secondary

antibody by letting them float on drops containing the gold

conjugate reagent (diluted 1:20 in incubation buffer) for 60

minutes at room temperature. After further washing on 10 drops

of incubation buffer, the sections were postfixed in 2%

glutaraldehyde. Finally, the sections were washed with distilled

water, poststained with uranyl acetate and lead citrate, and

examined using a Jeol 1200 EX transmission electron microscope

operated at 60 kV accelerating voltage, as previously described

[12]. The antibody directed against the CysLT1 was labeled with

10-nm colloidal thiocyanate gold and CysLT2 with 5-nm colloidal

thiocyanate gold [44] for the LTC4 experiment. But, 10-nm

colloidal thiocyanate gold for CysLT2R and 5-nm colloidal

thiocyanate gold for CysLT1R in the LTD4 experiment. The

images were recorded with a Gatan Multiscan 791 CCD camera.

Researchers examined sixty cellular profiles for evaluation.

Immunofluorescent Staining
Cells were grown on cover slips to 50–60% confluency, pre-

treated, or not, with ZM198,615 (40 mM, 15 minutes) and then

treated with, or without, LTD4 (80 nM, 5 minutes or as indicated).

Cells were washed once and kept in 1.5% serum-containing

medium for 15 or 20 minutes. Thereafter, the cells were fixed for

15 minutes in 4% PFA/PBS, followed by blocking in a 3% BSA/

PBS for 1 hour for anti-CysLT1R, 5% goat serum and 1%

TritonX100/PBS for anti-Flag, or 3% milk/PBS for anti-clathrin.

Cells were then incubated overnight with anti-CysLT1R (1:250) in

a 3% BSA/PBS or 1% goat serum in PBS-Tween (PBS-T) for Flag

(1:2500), and clathrin (1:250) in 2% BSA/PBS. Cells were washed

five times in PBS and incubated for 1 hour with secondary

antibody goat anti-rabbit IgG Alexa 488 or 546 (3% BSA/PBS

1:250) for CysLT1R and clathrin or 1% goat serum 1:800 for Flag

antibodies. Following five washes with PBS, the cover slips were

mounted on glass slides with a fluorescence-mounting medium and

examined using a Nikon TE300 microscope (6061.4 plan-

apochromat oil immersion objective), integrated in fluorescent

microscopy.

Transfection
Cells were grown on cover slips to 50–60% confluency.

Transfection was performed with GFP-DN-Eps-15, GFP-Eps-15,

Flag-CysLT1R, or GFP-Rab-5 constructs, using lipofectamine

according to the manufacturer’s protocol. Briefly, cells were

transfected for 6 hours in serum-free medium and left to rest for

48 hours in complete medium before analysis. For siRNA, cells

were grown to about 60% confluency in 6-well plates, transfected

in serum-antibiotic-free medium, with 80 pmol siRNA against

arrestin-3 or scrambled siRNA using lipofectamine 2000. After

6 hours of transfection, 1 mL serum-free medium was added to

each well and cells were left overnight. The medium was then

changed to normal growth medium and cells were left to rest for

an additional 48 hours before being lysed or used for FACS

analysis.

Cell Lysates, Immunoprecipitation and Fractionation
Cells were left in serum-free medium for 2 hours, pre-treated

with Filipin (5 mg/mL, 1 hour), sucrose (0.4 M, 1 hour), or

cycloheximide (100 mg/mL, 1 hour) and then treated with, or

without, LTD4 (80 nM) for indicated time points. The stimulations

were terminated by the addition of ice-cold lysis buffer A (20 mM

sodium Hepes pH 8.0, 2 mM MgCl2, 1 mM EDTA, 5 mM

sodium orthovandate, 60 mg/mL phenylmethylsulfonyl fluoride

(PMSF), and 4 mg/mL leupeptin) and the cells were placed on ice.

The cells were then scraped from the flasks. The supernatant was

collected from the cell lysate preparation after a centrifugation at

2006g for 10 minutes at 4uC and after a centrifugation at

10,0006g for 15 minutes at 4uC. The samples were compensated

to equal protein content and pre-cleared with 1 mg of rabbit IgG

and 15 ml of protein A-sepharose for overnight at 4uC. The

samples were immunoprecipitated with 5 mg of CysLT2R

antibody for 2 hours at 4uC. Thereafter, 20 mg of protein A-

sepharose beads were added, and the samples were rotated for an

additional 1 hour at 4uC. The precipitates were washed multiple

times with lysis buffer A. For fractionation, the cells were subjected

to N2-decompression at 1,000 psi for 10 minutes, using a cell

disruption bomb (Parr Instrument Company, Moline). The intact

nuclei were collected by centrifugation at 2006g and washed twice

in buffer A. The supernatant was centrifuged at 10,0006g for 10

minutes, and the resulting supernatant was fractioned into cytosol

and plasma membrane fractions by centrifugation at 200,000 g for

1 hour.

Gel Electrophoresis and Immunoblotting
Cell lysates were solubilized by boiling in sample buffer (62 mM

Tris pH 6.8, 1.0% SDS, 10% glycerol, 15 mg/mL dithiothreitol,

and 0.05% bromphenol blue), loaded, and subjected to electro-

phoresis on 10% homogeneous polyacrylamide gels. The separat-

ed proteins were electrophoretically transferred to PVDF mem-

branes. The CysLT1R membranes were incubated overnight at

4uC with anti-CysLT1R and CysLT2R (diluted 1:250 in 3% BSA/

PBS) and for 1 hour at room temperature for anti-actin (1:2000 in

2% BSA/PBS). After washing three times, the membranes were

incubated for 1 hour at room temperature with HRP-conjugated

secondary antibody (1:5000 in 1% BSA/PBS for CysLT1R and

CysLT2R or 1:3000 in 1% BSA/PBS for actin), and then the

membranes were washed three to six times. Thereafter, the

membranes were incubated with ECL Western blot detection

reagents and exposed to Hyperfilm-ECL to visualize immunore-

active proteins.

DNA Isolation and Sequencing
Cells were grown to 80% confluency, scraped, and resuspended

in lysis buffer (50 mM Tris-HCl, pH 8.0, 15 mM EDTA,

200 mM NaCl, and 0.5% SDS). The mixture was incubated

overnight at 45uC with Proteinase K (Fermentas, Vilnius,

Lithuania). Phenol was added and mixed for 10 minutes. The

mixture was centrifuged at 600 g for 10 minutes at 10uC. The

upper clear aqueous layer was carefully transferred to a new tube.

An equal volume of phenol:chloroform:isoamyl alcohol (24:24:1)

was added and mixed, by gentle inversion, for about 10 minutes

and centrifuged at 500 g for 10 minutes at 10uC. The upper clear

aqueous layer was transferred to a new tube. An equal volume of

chloroform:isoamyl alcohol (24:1) was added, mixed for 10

minutes, and centrifuged at 500 g for 10 minutes at 10uC. The

upper clear aqueous layer was transferred to a new tube. One-
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tenth of the volume of 3 M sodium acetate, pH 5.2, and double

volumes of 100% isopropanol were added and allowed to stand for

1 hour at 220uC. The samples were centrifuged at 11,000 g for

10 minutes at 4uC thereafter. The supernatant was discarded and

the pellet washed with 70% ethanol. The resultant pellet was dried

and dissolved in TE-buffer (10 mM Tris, pH 8.0, 1 mM EDTA).

The Department of Clinical Chemistry at Skåne University

Hospital (SUS), Malmö, Sweden, performed the sequencing.

RT-PCR
Cells were scraped on ice in PBS, homogenized 10 times with a

20 G needle, and then centrifuged for 2 minutes at 10,000 g. The

pellet was resuspended in 1 ml TRIzol and immediately frozen at

280uC. The RNA was isolated using the phenol-chloroform

extraction method. The RNA was dissolved in RNase-free H2O

and purified on RNeasy MinElute Spin Columns. The cDNA

synthesis was performed using SuperscriptTM II reverse transcrip-

tase. Next, 2 mg of cDNA was mixed with 0.9 mM TaqMan

primers and master mix and amplified at 60uC in a Mx3005P

(Stratagene qPCR system). The following primer set was used:

COX-2: Hs01573475_g1 and GAPDH: Hs00266705_g1. The

samples were analyzed and normalized against a housekeeping

gene (GAPDH) using the MX-Pro software (Stratagene).

Flow Cytometry
Int 407 or Caco-2 cells were cultured as described previously;

thereafter, they were serum-starved before they were either

transfected with siRNA against arrestin-3 or scrambled siRNA

and then stimulated with or without, 80 nM LTD4 for 5 or 30

minutes. The cells were detached by the addition of versen or

trypsin-EDTA, respectively. The collected cells were first washed

with cold PBS supplemented with 0.2 mM EDTA and then with

PBS containing 0.5% bovine serum albumin. The cells (16106)

were first fixed using the IC-Fixation buffer (cat # 00-8222;

eBioscience, San Diego, Ca) before doing cell surface staining for

CysLT1R or further permabilized for intracellular staining of

arrestin-3 using the Permabilization Buffer (cat # 00-8333;

eBioscience, San Diego, Ca). Following the recommendation

given by the manufacturer and supplemented with additional

washing steps, the cells were stained with the anti-CysLT1R

primary antibody (5 mg/mL) or the anti human arrestin-3

antibody (5 mg/mL) followed by incubations with either goat

anti-Rabbit IgG or goat anti-mouse IgG secondary antibody both

conjugated respectively with ALEXA-488 (1:100 in 0.5% BSA/

PBS). An equivalent amount of non-specific rabbit or mouse IgG

was used as controls. A single-color, immunofluorescence, flow

cytometry analysis was performed on a FACSCalibur (Becton

Dickinson) and data were analyzed using software (CellQuest;

Becton Dickinson). Each measurement was based on the analysis

of 10,000 cells.

Statistical Analysis
Results are expressed as mean 6 SEM. Differences between

experimental groups were assessed by a Student’s t test and one

way ANOVA. P values of ,0.05 were considered significant.

*P,0.05 and ** P,0.01 and ***P,0.001.

Results

Hetrodimerization of the CysLTRs and Tyrosine
Phosphorylation of the CysLT1R

Because of the overlapping localization of the CysLT1R and

CysLT2R at the plasma membrane and nuclear membrane, we

investigated a potential heterodimerization of the receptors.

Previous studies have demonstrated that the CysLT1R and

CysLT2R might dimerize in mast cells [45]. Heterodimerization

of the CysLT1R and CysLT2R was examined in Int 407 cells using

the in situ proximity ligation assay (PLA) (Fig. 1). With this assay,

protein-protein interactions in situ can be detected and visualized;

when the secondary antibody is in close proximity, a fluorescent

labeling of the DNA product is produced (red dots) [42]. Image

analysis is based on counting the number of red dots/cell. The

negative control without the CysLT2R antibody does not produce

any red dots (Fig. 1A). Cells stained with both the CysLT1 and

CysLT2 receptor antibodies showed that the receptors were

heterodimerized under basal conditions (Fig. 1). The heterodimers

(red dots) were concentrated to the plasma membrane and the

nuclear region (Fig. 1A). Stimulation with LTC4 (40 nM) for 5

minutes caused a slight increase in the number of heterodimerized

receptors, however this effect was not statistically significant

(Fig. 1B). These results suggest that CysLT1R and CysLT2R are

dimerized already, under basal conditions, and remain dimerized,

even after LTC4 stimulation.

We found a statistically significant decrease in heterodimeriza-

tion of the receptors 5 minutes after LTD4 stimulation (an average

of less than 4 dots/cell compared to an average of 60 dots/cell in

the control; Fig. 1B). However, after 60 minutes of LTD4

stimulation, a slight increase in heterodimerization (an average

of 13 dots/cell) compared to the 5 minutes value was observed.

Interestingly, the heterodimers (red dots) were mainly localized to

the nuclear region. To further confirm the association between the

receptors, we preformed immunoprecipitation with the CysLT2R

antibody. With this approach we could confirm an association

between the CysLT2R and the CysLT1R that was reduced

(P,0.05) after LTD4 stimulation (Figure S1).

Both receptors contained several tyrosine phosphorylation sites,

which might be important for activation and internalization. We

therefore, investigated if tyrosine phosphorylation was involved in

the decreased heterodimerization seen after LTD4 stimulation.

Indeed, we found that the effect of LTD4 was abolished in cells

pretreated with genistein, a broad phosphotyrosine inhibitor

(Fig. 1B).

As demonstrated, LTD4 (40 nM) induced tyrosine phosphory-

lation of the CysLT1R after 5 and 60 minutes of stimulation (an

average of 10 dots/cell as compared to 1 dot/cell when not

stimulated), whilst LTC4 (40 nM) did not induce any detectable

increase in tyrosine phosphorylation of the CysLT1R (Fig. 2B).

Genistein significantly reduced the LTD4-induced tyrosine

phosphorylation of CysLT1R (an average of 3 dots/cell; Fig. 2B).

Neither LTC4 nor LTD4 induced any detectable tyrosine

phosphorylation of the CysLT2R (data not shown). We also

investigated threonine phosphorylation of the receptors with the

PLA technique. For this experiment, we used an antibody for anti-

phospho-threonine (Abnova Taiwan Corp), but we were not able

to detect any threonine phosphorylation upon LTD4 or LTC4

stimulation of either of these receptors during the time points

tested (data not shown).

Internalization of the CysLT1R and the CysLT2R
We next examined the regulation of low affinity CysLT2R in

conjunction with the CysLT1R. Int 407 cells were primarily

stimulated with 40 nM LTD4 and receptor internalization and

dimerization were visualized using electron microscopy (Fig. 3A).

The CysLT1R was labeled with 10-nm colloidal thiocyanate gold

particles and CysLT2R was labeled with 5-nm colloidal thiocya-

nate gold particles; as a result, both heterodimers and homodimers

could be seen. Interestingly, upon LTD4 stimulation, it was mainly

the CysLT1R that was internalized and localized to the nucleus,
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both after 15 minutes (53%) and 30 minutes (63%), compared to

the CysLT2R (38% and 40%, respectively) (Fig. 3A). We also

found a reduction of the CysLT1R at the plasma membrane in

cells stimulated with LTD4 for 15 and 30 minutes (13 and 19%,

respectively, as compared to 36% in the control). However, the

majority of the CysLT2R did not internalize during this period.

We then investigated the effect of LTC4 on receptor internaliza-

tion (Fig. 3B). In these experiments, the CysLT1R was labeled with

5-nm colloidal thiocyanate gold particles and CysLT2R was

labeled with 10-nm colloidal thiocyanate gold particles. Interest-

ingly, both receptors internalized upon 15 minutes of 40 nM

LTC4 stimulation, and this could be explained by the decrease

from the plasma membrane and a small increase in the cystosol of

both CysLT1R and CysLT2R (Fig. 3B). The receptor levels were

restored to the plasma membrane again after 30 minutes of LTC4

Figure 1. Receptor heterodimerization detected by a in situ
proximity ligation assay (PLA). (A) Briefly, Int 407 cells were grown
to 50% confluency, stimulated with or without LTD4 (40 nM), LTC4

(40 nM), or pre-incubation with genistein (50 mg/ml) for 30 minutes.
The receptor interactions were studied employing PLA, treated
according to the manufacturer’s instructions using the CysLT1R
antibody (1:250) and the CysLT2R antibody (1:250) and mounted on
glass slides with a fluorescence-mounting medium. Alternatively, the
CysLT2R antibody was omitted as a negative control. The mounted
slides were examined using a Nikon TE300 microscope (6061.4 plan
apochromat oil immersion objective), integrated in fluorescent
microscopy. The detection of PLA-amplicons (red dots) was carried
out using the ‘‘563 detection kit’’. This kit includes the Hoechst 33342
dye for nuclear staining (blue) and the Alexa Fluor 488-phalloidin/actin
for cytoplasmic staining (green). The red dots indicate close proximity
between cellular bound antibodies, and they were counted using the
MATLAB/Blobfinder software. (B) The data are given as percent of
control and represent means 6 S.E.M. of at least three separate
experiments. The statistical analysis was performed with a Student’s t
test. *P,0.05 and ** P,0.01. The scale bar represents 10 mm.
doi:10.1371/journal.pone.0014439.g001

Figure 2. The CysLT1R tyrosine phosphorylation detected by in
situ proximity ligation assay (PLA). Briefly, Int 407 cells were grown
to 50% confluency, stimulated with or without LTD4 (40 nM), LTC4

(40 nM), or pre-incubation with genistein (50 mg/ml) for 30 minutes.
The receptor tyrosine phosphorylation was studied employing PLA,
treated according to the manufacturer’s instructions using (A) the
CysLT1R antibody (1:250) and the phosphor-Tyr antibody (1:250) and
mounted on glass slides with a fluorescence-mounting medium. The
mounted slides were examined using a Nikon TE300 microscope
(6061.4 plan apochromat oil immersion objective), integrated in
fluorescent microscopy. The detection of PLA-amplicons (red dots)
was carried out using the ‘‘563 detection kit’’. This kit includes the
Hoechst 33342 dye for nuclear staining (blue) and the Alexa Fluor 488-
phalloidin/actin for cytoplasmic staining (green). The red dots indicate
close proximity between cellular bound antibodies, and they were
counted using the MATLAB/Blobfinder software. (B) The data are given
as percent of control and represent means 6 S.E.M. of at least three
separate experiments. The statistical analysis was performed with a
Student’s t test. *P,0.05 and ** P,0.01. The scale bar represents
10 mm.
doi:10.1371/journal.pone.0014439.g002
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stimulation (Fig. 3B). This was further confirmed by Western blot

analysis of the plasma membrane fractions, showing a significant

LTC4-induced decrease in the CysLT1R and CysLT2R expression

in the plasma membrane after 5-15 minutes of stimulation, effects

that are reversed after 30 minutes (Figure S2).

Internalization and Recycling of the CysLT1R
Previous results from our lab have shown that the CysLT1R is

localized to the plasma and nuclear membranes of intestinal

epithelial and colon cancer cells [12]. In this study, we investigated

how the CysLT1R is internalized and increased at the nuclear

membrane. In agreement with our previous results, we demon-

strated that the endogenous CysLT1R is localized to both the

plasma membrane and nuclear region of unstimulated Int 407

cells using fluorescent microscopy (Fig. 4A). We also showed that,

upon 5 minutes of stimulation with 80 nM LTD4, the CysLT1

receptor is rapidly internalized (Fig. 4A). The internalization is

seen as intracellular punctuated dots (Fig. 4A), which can be

blocked by pre-treatment with the CysLT1R antagonist

ZM198,615 (40 mM, 15 minutes; Fig. 4A) or PKC inhibitor

GF109203X (2 mM, 15 minutes; data not shown). The internal-

ization was also confirmed by Western blot (Fig. 4B). We next

transfected Int 407 cells with a Flag-tagged CysLT1R construct,

stained with a Flag antibody. The distribution of Flag-tagged

CysLT1R is more uniformly distributed than the endogenous

receptor, most likely due to the Flag construct. However, the Flag-

tagged CysLT1R was also localized to both the plasma membrane

and nuclear region, similar to endogenous CysLT1R staining, as it

was internalized after 5 minutes of LTD4 stimulation and could be

significantly blocked by the specific CysLT1R antagonist,

ZM198,615 (40 mM, 15 minutes; Fig. 4C). In summary, the

endogenous and the over expressed Flag-tagged CysLT1R was

localized to both the plasma membrane and the nuclear region of

the cell, and was internalized after 5 minutes of LTD4 stimulation.

Receptor recycling was a key mechanism regulating many

different receptors [25]; therefore, the recycling of the CysLT1R

was investigated. After 5 minutes of stimulation with LTD4, the

ligand was removed by changing the medium to a LTD4-free

growth medium for an additional 15–20 minutes before they were

fixed and stained. The Flag-tagged CysLT1R recycled back to the

plasma membrane 15–20 minutes after stimulation (Fig. 4C). We

also investigated the endogenous receptor localization in Caco-2

cells, which showed a similar pattern, but no internalization could

be detected after 5 minutes of stimulation with 80 nM LTD4

(Fig. 4D). We, therefore, performed Western blot analyses of the

plasma membrane fractions of the Caco-2 cells. No significant

decrease of the endogenous receptor after 5–60 minutes of LTD4

stimulation could be detected in Caco-2 cells (Fig. 4E). However,

in cells transfected with the Flag-tagged CysLT1R, the receptor

internalization could be detected after 20 minutes of LTD4

stimulation (Fig. 4F). This internalization was sensitive to pre-

treatment with the receptor antagonist ZM198,615 (Fig. 4F). We

Figure 3. Electron microscopy images of CysLT1R and CysLT2R. Electron microscopy of Int 407 cells treated without or with (A) LTD4 (40 nM,
15 or 30 minutes) or (B) LTC4 (40 nM, 15 or 30 minutes). Samples of intact cells used for electron microscopy were prepared by pelleting 56106 cells
immediately after adding a fixative (4% paraformaldehyde and 0.1% glutaraldehyde). Ultra thin sections were cut on a microtome and mounted on
nickel grids, followed by overnight incubation with the primary antibody against CysLT1R and CysLT2R. (A) The antibody directed against the CysLT1R
was labeled with 10-nm colloidal thiocyanate gold (black arrow) and CysLT2R with 5-nm colloidal thiocyanate gold (white arrow). The scale bar
represents 0.2 mm. (B) The antibody directed against the CysLT1R was labeled with 5-nm colloidal thiocyanate gold (white arrow) and CysLT2R with
10-nm colloidal thiocyanate gold (black arrow). The scale bar represents 0.1 mm. The specimens were examined using a Jeol JEM 1230 electron
microscope operated at 60 kV accelerating voltage, and images were recorded with a Gatan Multiscan 791 CCD camera.
doi:10.1371/journal.pone.0014439.g003
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investigated if the undetectable internalization of endogenous

CysLT1R in Caco-2 cells was due to a mutation in the endogenous

receptor of colon cancer cells; the CysLT1R from three colon-

cancer cell lines (Caco-2, SW-480, and HCT-116) were

sequenced. However, no mutation in the CysLT1R sequence

was detected (data not shown).

We next performed FACS analysis of the endogenous CysLT1R

in the colon cancer cell line, Caco-2, to confirm the CysLT1R

transfection data with the endogenous receptor, using a more

sensitive method. Figure 4G shows the overlay for FACS

histograms of Caco-2 cells, where the CysLT1R internalization

could be detected after 5 minutes of LTD4 stimulation. Other than

Figure 4. The localization and internalization of the CysLT1R in epithelial cells. Immunofluorescent staining of endogenous CysLT1R (A, D)
and Flag-tagged CysLT1R (C, F) in Int 407 (A, C) and Caco-2 cells (D, F). Cells were grown on cover slips to 50–60% confluency pre-treated, or not,
with ZM198,615 (40 mM, 15 minutes) and treated with or without 80 nM LTD4 for 5 minutes or as indicated. The cells were fixed and stained with
CysLT1R antibody (1:250) or Flag antibody (1:2500) and mounted as described in Methods. The mounted slides were examined using a Nikon TE300
microscope (10061.4 plan-apochromat oil immersion objective). The scale bar represents 10 mm. Int 407 cells (B) and Caco-2 cells (E) were grown to
80% confluency, serum-starved for 2 hours and treated with or without 80 nM LTD4 for indicated time points. Plasma membrane fractions were
prepared as described in Methods and samples were subjected to SDS-polyacrylamide gel electrophoresis and Western blot analysis. The PDVF
membranes were stained with the CysLT1R (1:1000) and re-probed with actin (1:2000) antibodies. The data are given as percent of control and
represent means 6 S.E.M. of at least three separate experiments. The statistical analysis was performed with a Student’s t test. *P,0.05 and
** P,0.01. (G) A representative FACS analysis histogram overlay displaying the relative fluorescence intensity of CysLT1R surface expression is shown
for Caco-2 cells.
doi:10.1371/journal.pone.0014439.g004
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the shift in histogram peaks, as shown in Figure 4G, we also

evaluated the change in both median and mean fluorescent

intensity of CysLT1R expression (data not shown). Based on the

findings obtained from all the different approaches, our results

confirmed that the CysLT1R is internalized in both colon cancer

cells and non-transformed intestinal epithelial cells.

Co-localization of Clathrin with the CysLT1R
We next investigated the internalization pathway of the

CysLT1R in these cell lines. GPCRs mainly internalizes via

clathrin-coated pits. Next we, therefore, investigated if the

internalization of the CysLT1R was clathrin-dependent. Int 407

and Caco-2 cells were transiently transfected with the Flag-tagged

CysLT1R and co-transfected with Flag and clathrin antibodies.

Under basal conditions, co-localization of the CysLT1R with

clathrin was detected at both the plasma membrane and nuclear

regions (Fig. 5A). As demonstrated in both cell lines, the

internalized receptor co-localized with clathrin upon LTD4

stimulation (Fig. 5A). In order to further confirm if the receptor

was internalized via the clathrin pathway, we next used GFP-

dominant negative Eps-15 (DN-Eps-15) constructs, as Eps-15 is a

protein involved exclusively in the formation of clathrin-coated

pits and the lack of Eps-15 activity prevents the formation of

clathrin-coated vesicles [46].

Int 407 cells and Caco-2 cells were transfected with GFP-DN-

Eps-15 and Flag-tagged CysLT1R, and stimulated, or not, with

LTD4. The Flag-tagged CysLT1R was not internalized upon

stimulation in cells over expressing the DN-Eps-15 construct

(Fig. 5B). Conversely, in cells co-transfected with the GFP-Eps-15

construct and the Flag-CysLT1R receptor, internalization of the

Figure 5. Expression and co-localization of clathrin or Eps-15 with the CysLT1R in Int 407 and Caco-2 cells. (A) Representative
fluorescent microscope images show cells that were fixed, permeabilized, and stained with primary antibodies against either Flag and clathrin (1:250)
using either Alexa-488 or -546 conjugated secondary antibodies; (B) GFP-DN-Eps-15 or (C) GFP-Eps-15 and Flag-CysLT1R transfected cells, stimulated,
or not, with 80 nM LTD4 and stained with Flag antibody. The mounted slides were examined using a Nikon TE300 microscope (606or 10061.4 plan-
apochromat oil immersion objective). The scale bar represents 10 mm.
doi:10.1371/journal.pone.0014439.g005
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receptor upon LTD4 stimulation was observed (Fig. 5C). This

suggests that the CysLT1R is internalized in a clathrin-dependent

manner in both cell lines.

CysLT1R Internalizes in a Rab-5- and Arrestin-3 -
dependent Manner

The initial step after receptor internalization is the transfer of

the receptors into early endosomes. Trafficking of early endosomes

and clathrin-coated vesicles is often regulated by the GTPase Rab-

5. Therefore, we next examined the role of Rab-5 in the CysLT1R

internalization. Cells were co-transfected with GFP-Rab-5 and the

Flag-CysLT1R. In unstimulated cells, the CysLT1R was localized

at the plasma membrane (Fig. 6A, B). Upon stimulation with

LTD4, Rab-5 positive vesicles were formed in Int 407 and Caco-2

cells and the CysLT1R co-localized in these vesicles (Fig. 6A, B).

GPCR internalization and desensitization is either arrestin-

dependent or independent. We, therefore, proceeded to down-

regulate arrestin-3 using siRNA. Treatment with siRNA resulted

in an approximate 50% reduction of arrestin-3 protein expression,

as demonstrated by FACS and Western blot (Fig. 6C). This

reduction of arrestin-3 protein expression significantly impaired

the LTD4-induced internalization of the CysLT1R (Fig. 6D). This

data suggests that the CysLT1R is internalized in an arrestin-3-

dependent manner in intestinal epithelial cells.

CysLT1R Increases at the Nuclear Membrane upon LTD4

Stimulation
As previously mentioned, it has been shown that the CysLT1R

is also localized at the nuclear membrane [12] and that the nuclear

localization is increased in colorectal adenocarcinomas and

facilitates survival and proliferation [12,47]. We, therefore,

investigated if the receptor at the nuclear membrane was affected

by ligand stimulation. Western blot analysis of nuclear fractions of

Int 407 and Caco-2 cells demonstrated that the CysLT1R was

already significantly up-regulated after 15 minutes of LTD4

stimulation in Int 407 cells (Fig. 7A), after 10 minutes in Caco-2

cells (Fig. 8A), and continues to increase up to 1 hour after

stimulation in both cell lines (Figs. 7A, 8A). In order to investigate

if this accumulation is due to translocation of CysLT1R from the

plasma membrane, cells were pre-treated with an inhibitor of

clathrin-coated pit formation, sucrose, and as a control, we also

used the caveolae inhibitor Filipin. The cells were, thereafter,

fractioned into plasma and nuclear membranes, and stained with

the CysLT1R antibody. As shown in Figure 7B, receptor

internalization in Int 407 cells was blocked by the clathrin

inhibitor, sucrose, but not by the caveolae inhibitor Filipin.

Similarly, the increase in the nuclear fraction from the same

experiment was blocked by sucrose, but not by Filipin (Fig. 7C). In

Caco-2 cells, inhibiting clathrin with sucrose and stimulating the

cells with LTD4 led to an increase of the CysLT1R at the plasma

membrane (Fig. 8B) and, as a consequence, also inhibited the

LTD4-induced increase at the nuclear membrane (Fig. 8C). The

increase at the plasma membrane of Caco-2 cells suggests that

LTD4 stimulation signals the recruitment of the CysLT1R to the

plasma membrane and, when receptor internalization is blocked, it

leads to a net increase of the receptor at the plasma membrane. In

Int 407 cells, however, inhibiting clathrin with sucrose led to

blocking receptor internalization and nuclear increase, but did not

lead to an increase at the plasma membrane.

Our data demonstrates that both the internalization from the

plasma membrane and the accumulation of the CysLT1R at the

nucleus are clathrin-dependent, thus indicating that the receptor is

translocating. We also explored other possibilities leading to the

nuclear accumulation of the CysLT1R. We, therefore, investigated

if the increase of the CysLT1R at the nuclear membrane could be

due to de novo synthesis. However, cycloheximide (an inhibitor of

protein synthesis) does not affect the increase at the nuclear

membrane, suggesting that the accumulation of the CysLT1R is

not due to new synthesis of the receptors (Figs. 7C, 8C).

Furthermore, stimulation with LTD4 up to 1 hour did not

increase CysLT1R expression levels in whole cell lysates (data

not shown), further supporting the idea that the nuclear

accumulation of CysLT1R is not due to new synthesis.

We have previously identified that increased expression of the

CysLT1R in colon cancer patients correlates with a poorer

prognosis [13]. Increased levels of CysLT1R in colon cancer cells

can originate from a slower degradation of the receptor in cancer

cells compared to non-transformed cells. Therefore, we next

investigated the degradation of the CysLT1R. Cells were pre-

incubated with cycloheximide and stimulated with LTD4 for

various time points. We found a slight decrease of the CysLT1R

after 6 hours of stimulation with LTD4 in Int 407 cells (Fig. 7D)

and after 9 hours of stimulation in Caco-2 cells (Fig. 8D). We

found it unrealistic that this small difference in receptor level could

explain the increased expression level seen in colon cancer cells.

We have previously demonstrated that LTD4 via the CysLT1R

induces Erk1/2 phosphorylation [9]. We have now shown that

blocking the internalization of the CysLT1R does not reduce this

phosphorylation but, instead, a slight increase of the signal is

detected (Fig. 9A). Arrestins are also involved in Erk1/2 signaling

downstream of GPCRs [48]. We, therefore, investigated the

potential functional effect of arrestin-3 knockdown on CysLT1R

signaling. Here we demonstrated that down-regulating arrestin-3

decreases LTD4-induced Erk1/2 phosphorylation (Fig. 9B). We

next investigated the potential functional effect of clathrin

inhibition by sucrose on CysLT1R signaling. We stimulated cells

with LTD4 with, or without, sucrose and investigated the effect on

one of the target genes for CysLT1R, COX-2. We found that

sucrose decreases the LTD4-induced mRNA level of COX-2

(Fig. 9C); this data suggests that in contrast to Erk1/2

phosphorylation, the internalization of the receptor is important

for activation of the COX-2 gene.

Discussion

GPCRs have been extremely successful drug targets for a

multitude of diseases [49,50] as with the CysLT1R antagonist,

Montelukast, which is currently used as a treatment for asthma [51].

The assembly of GPCRs as homo- and hetero-oligomers and their

phosphorylation and association with a vast array of trafficking and

signal-modulating proteins are emerging as major mechanisms

underlying the functioning of GPCRs. It has become increasingly

evident that GPCR signaling, expression, localization, and

trafficking often play a role in disease development and progression

[52]. One example is retinitis pigmentosa, which results from

improper intracellular trafficking and localization of the rhodopsin

receptors [19,20]. Furthermore, previous studies by our group show

that increased nuclear expression of the CysLT1R correlates with a

poorer prognosis for colon cancer patients [12,13]. Here, we wanted

to investigate the trafficking of the CysLT1R, which is a major

regulatory mechanism of GPCR signaling. Previous studies have

shown that LTD4 binds the CysLT1R with a higher affinity than

LTC4 [3]. In this study, we conclude that LTC4 and LTD4 affect

the trafficking of CysLT1R differently, suggesting ligand-specific

signaling. We also demonstrate that LTD4 mainly internalizes the

CysLT1R, supporting our previous findings that LTD4-induced cell

survival, cell proliferation, and cell migration are mediated through

Internalization of CysLT1R
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Figure 6. Co-localization of CysLT1R and Rab-5 protein in Int 407 and Caco-2 cells and arrestin-3-dependent internalization of the
CysLT1R. Fluorescent microscope images showing cells that were fixed, permeabilized, and stained with primary antibodies against Flag (1:2500)
using Alexa-546 conjugated secondary antibodies, Flag-CysLT1R, and GFP-Rab-5 in Int 407 cells (A) and Caco-2 cells (B). Cells were grown on cover
slips to 50-60% confluency, transfected with Flag-CysLT1R and GFP-Rab-5, left to rest for 48 hours, and treated with or without 80 nM LTD4. The
mounted slides were examined using a Nikon TE300 microscope (606 or 10061.4 plan-apochromat oil immersion objective). (C, D) Cells were
transfected, or not, with siRNA against arrestin-3 or scrambled siRNA, serum-starved, and stimulated, or not, with LTD4 (80 nM, 5 minutes). For FACS
analysis, Int 407 cells (16106 cells) were either first fixed and permabilized before intracellular staining for arrestin-3 or used directly for CysLT1R cell
surface staining. Moreover, whole lysates or plasma membrane fractions were made and subjected to SDS-polyacrylamide gel electrophoresis and
analyzed for arrestin-3 or CysLT1R protein expression using Western blot analysis. All membranes were re-probed for actin to ensure equal loading.
The blots are representative of three separate experiments. The scale bar represents 10 mm.
doi:10.1371/journal.pone.0014439.g006
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the CysLT1R. This is further supported by the fact that LTD4

stimulation decreases the dimerization observed between the

CysLT1R and CysLT2R, as demonstrated by the in situ proximity

ligation assay and immunoprecipitation data. It is interesting to note

that after 60 minutes of stimulation with LTD4, the amount of

heterodimers observed is concentrated in the nuclear region,

supporting the results of nuclear accumulation of the CysLT1R.

The LTC4, on the other hand, does not lead to a nuclear

accumulation of either receptor, but induces internalization of both

CysLT1 and CysLT2 receptors, which might be due to the

preserving of the receptor dimers. Another interesting observation

was the effect of the ligand-induced tyrosine phosphorylation of

CysLT1R. LTD4 induced tyrosine phosphorylation of the

CysLT1R, but not of the CysLT2R, which clearly shows the

specificity of the ligand-induced signaling. This correlates well with

the fact that CysLT1R is the high affinity receptor and affects cell

proliferation, survival, and cell migration, whereas CysLT2R does

not [8,9]. Moreover, these results also support our previous findings

that inhibition of the CysLT1R leads to growth inhibition and cell

death [47]. The CysLT2R has been shown to be a negative

regulator of the mitogenic effect of the CysLT1R upon LTD4

stimulation in mast cells [53].

We found that in Int 407 cells, the internalization of the

CysLT1R could be detected after 5 minutes of stimulation, which

could be blocked by a specific CysLT1R antagonist. However, in

Caco-2 cells, the endogenous internalization was more difficult to

detect. This may be due to a high turnover of the receptor at the

plasma membrane upon stimulation. This hypothesis is supported

by the fact that internalization blocking experiments lead to an

accumulation of the receptor at the plasma membrane, which

cannot be seen in Int 407 cells. However, using FACS analysis

with the Caco-2 cells, we could detect a small but significant

internalization of the endogenous receptors after LTD4 stimula-

tion, supporting that there is an internalization of the receptor.

We next investigated how the CysLT1R is internalized. We

found that CysLT1 is internalized in a clathrin/Rab-5-dependent

Figure 7. Regulation and function of CysLT1R at the plasma and nuclear membrane in Int 407 cells. Int 407 cells were grown to 80%
confluency, serum-starved for 2 hours, stimulated, or not, with 80 nM LTD4, lysed, fractioned into plasma and nuclear membranes, subjected to SDS-
polyacrylamide gel electrophoresis, and stained for the CysLT1R by Western blot. (B–D) Cells were pre-treated with or without sucrose, Filipin, or
cycloheximide, stimulated, or not, with 80 nM LTD4 for 5 minutes or as indicated, lysed, fractioned into the plasma membrane (B) and nucleus (A, C),
or whole cell lysate (D) and subjected to gel electrophoresis. The PDVF membranes were then stained with the CysLT1R antibody (1:1000) and re-
probed for actin (1:2000) or lamin B (1:1000) to ensure equal loading. The data are given as percent of control and represent means 6 S.E.M. of at
least three separate experiments. The statistical analysis was performed with a Student’s t test. *P,0.05 and ** P,0.01.
doi:10.1371/journal.pone.0014439.g007
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pathway; we also suggest that this internalization is arrestin-3-

dependent. Previous publication studying CysLT1R internaliza-

tion in other cells has demonstrated that this process is arrestin-3

independent [16]. In that study, dominant negative (DN)-arrestin-

3 constructs were used in HEK-293 cells. The results demonstrat-

ed that when arrestin-3 was over expressed, receptor internaliza-

tion was increased. However, over expression with a dominant

negative construct lead to a non-significant decrease of receptor

internalization. These results were further supported by experi-

ments in MEF cells from arrestin-3 deficient mice [16]. To

conclude, whether CysLT1R required arrestin to internalize or

not, we used siRNA against endogenous arrestin-3 and demon-

strated that the loss of the receptor from the plasma membrane is

inhibited. Our results show that CysLT1R requires arrestin-3 for

Figure 8. Regulation of CysLT1R at the plasma and nuclear
membrane in Caco-2 cells. Caco-2 cells were grown to 80%
confluency, serum-starved for 2 hours, stimulated, or not, with 80 nM
LTD4, lysed, fractioned into plasma and nuclear membranes, subjected
to SDS-polyacrylamide gel electrophoresis, and stained for the CysLT1R
by Western blot. Cells were pre-treated with or without sucrose (B, C),
Filipin (C), or cyclohexamide (1 hour) (C, D), stimulated, or not, with
80 nM LTD4 for 5 minutes or as indicated, lysed, fractioned into the
plasma membrane (B) and nucleus (A, C, D), and subjected to gel
electrophoresis. The PDVF membranes were then stained with the
CysLT1R antibody (1:1000) and re-probed for actin (1:2000) or lamin B
(1:1000) to ensure equal loading. The data are given as percent of
control and represent means 6 S.E.M. of at least three separate
experiments. The statistical analysis was performed with a Student’s t
test. *P,0.05 and ** P,0.01.
doi:10.1371/journal.pone.0014439.g008

Figure 9. Effect of sucrose and arrestin-3 on CysLT1R signaling.
Int 407 cells were grown to 80% confluency, serum-starved for 2 hours,
pre-treated, or not, with (A) sucrose for 1 hour or (B) siRNA (arrestin-3
or scrambled) and with or without 40 nM LTD4 stimulation. Cell lysates
were prepared as described in Methods and samples were subjected to
SDS-polyacrylamide gel electrophoresis and Western blot analysis. The
PDVF membranes were stained with the phospho-Erk1/2, total Erk1/2
(1:1000), or arrestin-3 and actin (1:2000) antibodies. All membranes
were re-probed for actin to ensure equal loading. (C) shows Q-PCR of
COX-2 mRNA from Int 407 cells pre-treated, or not, with sucrose and
stimulated, or not, with LTD4 (80 nM, 1 hour). The RT-PCR was
performed as described in Methods, using primers for COX-2. The data
are given as fold increase compared to control and represent means 6
S.E.M. The statistical analysis was performed with a Student’s t test.
*P,0.05 and ** P,0.01.
doi:10.1371/journal.pone.0014439.g009
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internalization in epithelial cells. Furthermore, GPCRs can

activate Erk1/2 in an arrestin-dependent manner [48]. As shown

in our results, down-regulation of arrestin-3 disrupts LTD4-

induced Erk1/2 phosphorylation. In summary, these data

demonstrate that the CysLT1R is internalized from the plasma

membrane in a clathrin-, Rab-5-, and arrestin-3-dependent

manner and that inhibition of arrestin-3 also affects the signaling

downstream of the CysLT1R.

As previously shown, the CysLT1R is also localized at the

nuclear membrane. We demonstrated here that the increase of the

receptor at the nuclear membrane coincides with the loss from the

plasma membrane. Both the accumulation and the cell surface loss

of the CysLT1R are clathrin-dependent. The accumulation of the

CysLT1R at the nucleus is not due to new synthesis of the

receptor, although there is a possibility of the existence of an

internal pool of the receptor that could be responsible for the

accumulation. In fact, an internal pool could be one possibility of

receptor recruitment to the plasma membrane and a high turnover

of CysLT1R upon LTD4 stimulation in Caco-2 cells. In order to

investigate the role of the nuclear accumulation of the CysLT1R,

we investigated the signaling of the receptor. By inhibiting the

formation of clathrin-coated pits and, thereby, inhibiting receptor

accumulation at the nuclear membrane, LTD4-induced COX-2

mRNA up-regulation was decreased. This suggests that the

CysLT1R accumulation at the nucleus, or its internalization, is

required for certain signaling pathways.

Taken together, our results show how the receptor is trafficking

from the plasma membrane to the nucleus and demonstrates

different regulation of CysLT1R signaling.

Supporting Information

Figure S1 Co-Immunoprecipitation of the CysLTRs in colon

cancer cells. Briefly HCT-116 cells were grown to 80% confluency

and lysed. Lysates containing 1 mg/ml protein were incubated

with rabbit anti-CysLT2R antibody, after which 20 mg of protein

A plus agarose was added. The beads then were washed three

times mixed with sample buffer, boiled and centrifuged. The

proteins were then separated on SDS-polyacrylamide gels. The

separated proteins were electrophoretically transferred to a

polyvinylidene difluoride (PDVF) membrane incubated with a

primary antibody against CysLT1R overnight. Thereafter the

membrane was exposed to hyperfilm-ECL to visualize immuno-

reactive proteins. The membrane was then re-probed with a

CysLT2R antibody. The blots shown are representative and the

data are given as percent of control and represents means 6

S.E.M. of three separate experiments and the statistical analysis

were performed with Student’s t test. *P,0.05.

Found at: doi:10.1371/journal.pone.0014439.s001 (0.36 MB TIF)

Figure S2 The internalization of CysLT1R and CysLT2R after

LTC4 stimulation. Int 407 cells were grown to 80% confluency

and then treated with or without 40 nM LTC4 for indicated

periods of time. Plasma membrane fractions were prepared as

described in Materials and Methods and samples were subjected to

SDS-polyacrylamide gel electrophoresis and Western blot analysis.

The PDVF membranes were stained with CysLT1R, CysLT2R

(both 1:1000) or actin (1:2000) antibodies. The blots shown are

representative and the data are given as percent of control and

represents means 6 S.E.M. of three separate experiments and the

statistical analysis were performed with Student’s t test. *P,0.05

and ** P,0.01.

Found at: doi:10.1371/journal.pone.0014439.s002 (0.08 MB TIF)
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