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Abstract: Regulatory agencies are under increased pressure to consider broader public 

health concerns that extend to multiple pollutant exposures, multiple exposure pathways, 

and vulnerable populations. Specifically, cumulative risk assessment initiatives have 

stressed the importance of considering both chemical and non-chemical stressors, such as 

socioeconomic status (SES) and related psychosocial stress, in evaluating health risks. The 

integration of non-chemical stressors into a cumulative risk assessment framework has 

been largely driven by evidence of health disparities across different segments of society 

that may also bear a disproportionate risk from chemical exposures. This review will 

discuss current efforts to advance the field of cumulative risk assessment, highlighting 

some of the major challenges, discussed within the construct of the traditional risk 

assessment paradigm. Additionally, we present a summary of studies of potential 

interactions between social stressors and air pollutants on health as an example of current 

research that supports the incorporation of non-chemical stressors into risk assessment. The 

results from these studies, while suggestive of possible interactions, are mixed and 

hindered by inconsistent application of social stress indicators. Overall, while there have 

been significant advances, further developments across all of the risk assessment stages 

(i.e., hazard identification, exposure assessment, dose-response, and risk characterization) 

are necessary to provide a scientific basis for regulatory actions and effective community 

interventions, particularly when considering non-chemical stressors. A better understanding 
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of the biological underpinnings of social stress on disease and implications for  

chemical-based dose-response relationships is needed. Furthermore, when considering  

non-chemical stressors, an appropriate metric, or series of metrics, for risk characterization 

is also needed. Cumulative risk assessment research will benefit from coordination of 

information from several different scientific disciplines, including, for example, toxicology, 

epidemiology, nutrition, neurotoxicology, and the social sciences. 

Keywords: cumulative risk assessment; vulnerable populations; socioeconomic status; 

social stress; air pollutants 

 

1. Introduction 

Cumulative risk assessment has existed in some form for many years, such as in the consideration 

of multiple chemical exposures, sensitive sub-populations, and multi-pathway evaluations in 

Superfund risk assessments [1]. Cumulative risk assessment, however, has only recently emerged as an 

area of interest among regulators and stakeholders concerned about environmental justice as a strategy  

for assessing health impacts in underserved communities [2-5]. As a result, the focus of risk 

assessment is shifting from assessing hypothetical risks to individual high-impact receptors to 

assessing community-wide population risks. Concurrently, risk assessment as a science is also 

undergoing methodological changes. The National Research Council's (NRC) final ―Science and 

Decisions‖ report, released in 2009, recommended several paradigm shifts for advancing risk 

assessment, including the need to characterize the effects of multiple stressors, both chemical and  

non-chemical, on public health [6]. Specifically, the recommendation was to include all chemical, 

biological, physical, and social stressors in cumulative risk efforts.  

Despite the inclusion of non-chemical stressors in the definition of cumulative risk, cumulative risk 

assessments to date have not included these stressors in a quantitative manner [6,7]. This is largely 

because few traditional toxicological studies are available to support risk evaluations that consider the 

combined effects of chemical and non-chemical stressors, and suitable epidemiological information is 

limited, as summarized in Section 5.2. Additionally, a wealth of information from other disciplines 

(e.g., psychology, sociology) has yet to be fully integrated into the evaluation of the interactions 

between chemical and non-chemical stressors and cumulative risk methods for incorporating these data 

are only now being considered. 

Researchers have identified disparities for numerous health outcomes among disadvantaged 

populations and hypothesize that exposures to combinations of non-chemical and chemical stressors 

contribute to these disparities (e.g., cancer, asthma, kidney disease, cardiovascular disease, etc. [8-12]), 

but scientists have an incomplete understanding of the mechanisms by which non-chemical stressors 

alone, or in combination with chemical exposures, contribute to poor health. There is a particular need 

to determine whether different chemical and non-chemical stressors share a common biological 

pathway and/or how multiple stressors may modify a chemical dose-response relationship [13]. A 

critical piece in understanding and incorporating the human health risk impacts from non-chemical 
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stressors is the development of an appropriate exposure or dose metric, or series of metrics, for 

evaluating these stressors quantitatively. 

Current cumulative risk assessment/impact programs are being developed, generally focusing on 

identifying populations that may have both increased chemical exposure and vulnerability based on a 

combination of living conditions or social behaviors (e.g., Cumulative Impacts programs in California 

and New Jersey). For example, several state agencies have developed a new screening methodology 

for identifying areas potentially affected by cumulative chemical and non-chemical impacts, but the 

methodology does not serve as a ―quantitative assessment of community health impacts, rather it can 

be used as a relative ranking to distinguish higher-impacted communities from lower-impacted 

communities and to identify which factors are the greatest contributors to cumulative impact‖ [2]. 

Thus, there is a need to develop refined methodologies that can operate within a larger framework of 

risk-based decision making, and to use existing tools (either qualitatively or quantitatively) to evaluate 

the impacts of these stressors. As suggested by NRC, the effectiveness of cumulative risk assessments 

may also be improved by considering what the possible risk management options could be for 

reducing the hazard or exposure (e.g., the feasibility of regulation, remediation, education, or other 

interventions) in the scoping and planning phase of the risk assessment, rather than at the end, as is 

traditionally done [6]. 

This review will briefly summarize how cumulative risks are currently addressed and discuss 

current efforts to advance the field of cumulative risk assessment, highlighting some of the major 

challenges, particularly with respect to inclusion of non-chemical stressors. We will examine the 

importance of considering the biological mechanism(s) underlying associations between chemical and 

non-chemical stressors and health, and efforts to include this information in risk evaluations. The 

discussion will focus on the potential interactions that may occur between chemical and non-chemical 

stressors and their influence on health outcomes. These concepts are discussed within the construct of 

the traditional risk assessment paradigm and applied to the evaluation of both individual and 

community risks. This review is not meant to be an exhaustive analysis of all cumulative risk 

assessment efforts, but rather a general overview of key initiatives and research needs. As part of our 

review, and to highlight the type of information that will be necessary to advance the incorporation of 

non-chemical stressors into risk assessment, we summarize available epidemiological research that 

explores the interactions between non-chemical stressors and air pollutants. Although results from 

these studies are mixed, this research provides important insights related to a better understanding of 

the cumulative impacts of these stressors. We discuss the findings from these studies as well as  

their limitations. 

2. What Is Cumulative Risk Assessment? 

As risk science evolves, the United States Environmental Protection Agency (US EPA) has been 

asked to consider broader public health concerns that extend to multiple pollutant exposures, multiple 

exposure pathways, complex mixtures, and vulnerable population groups. In 2003, US EPA issued 

guidance on cumulative risk assessment to formalize this more inclusive approach to risk assessment. 

The cumulative risk assessment framework presented by US EPA [14] defined cumulative risk as ―an 

analysis, characterization, and possible quantification of the combined risks to health or the 



Int. J. Environ. Res. Public Health 2011, 8 2023 

 

environment from multiple agents or stressors.‖ Importantly, US EPA [14] explicitly underscores the 

need for considering both chemical and non-chemical stressors, with the latter including (and extending 

beyond) low income, depressed community property values, limited access to health care, psychosocial 

stress, and other stressors not commonly within the purview of US EPA’s regulatory framework. 

Furthermore, US EPA's framework represents a shift in the conventional risk assessment paradigm, 

such that assessments would now: (1) focus on identifying at-risk communities as opposed to 

hypothetical individual risks for the reasonably maximally exposed individual from point sources or 

other environmental or product exposures ; (2) use qualitative/semi-qualitative data (e.g., general 

exposure indicators, severity rankings, non-quantitative information on known stressor interactions), 

and (3) incorporate non-chemical stressors. Many of these ideas were further developed, along with 

proposed methods for meeting cumulative risk evaluation objectives, in a 2007 US EPA report called, 

―Concepts, Methods, and Data Sources for Cumulative Risk Assessment of Multiple Chemicals, 

Exposures, and Effects: A Resource Document‖ [15]. Also, the recent NRC Science and Decisions 

report reemphasized the need for these shifts and reiterated many of the same cumulative risk 

assessment principles [6]. The report also highlighted that, to date, consideration of non-chemical 

stressors in the context of background stressors has been limited.  

Some aspects of cumulative risk assessment have been conducted for decades under the purview of 

the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) of 1980, 

also known as the Superfund program, which was designed to address risks from multiple pollutants 

across multiple pathways for residents living near hazardous waste sites [16]. This has mainly been 

accomplished through a site investigation to identify chemicals of concern for relevant exposure 

pathways and calculating non-cancer and cancer risks for specific receptors. CERCLA requires 

consideration of "susceptible" receptors as part of the risk assessment process, which generally 

includes potentially exposed children, elderly people, or people with pre-existing health conditions. 

This is usually accomplished by identifying the reasonable maximally exposed (RME) individual and 

through the application of toxicity criteria that are designed to be protective of the general population, 

including sensitive sub-populations [1,17]. In general, dose additivity is assumed, both for exposure 

pathways and chemicals, although there are provisions to segregate risk by target organ if  

appropriate [1]. While considering multiple on-site exposures, risk assessments conducted under 

CERCLA or other remediation-oriented programs do not often take into account non-point source 

chemical exposures (e.g., lead paint) or other community stressors like poor nutrition, obesity, or 

presence of psychosocial stress factors when evaluating health risks. 

Although the consideration of multi-chemical, multi-pathway risks in site-specific risk assessment 

is routine, risk assessments that support the regulation of specific chemicals or processes (e.g., 

pesticides, food additives, product safety) are usually conducted in isolation, and do not include 

background chemical exposures or exposures to additional chemicals or chemical sources. Human 

studies include individuals (both in the control and chemical-exposed groups) who have background 

exposures; as a result, the interactions between background factors and the exposures under study are 

rarely evaluated in any meaningful way (i.e., findings are usually focused on the chemical exposure). 

One of the goals of cumulative risk assessment is to address this limitation, and to expand evaluations 

to include background conditions (from chemical or non-chemical stressors) and how they relate to 

additional exposures that could contribute to increased health impacts. 
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More formal cumulative risk assessments at the agency level are largely focused on chemical-

chemical interactions, likely because information on chemical-chemical interactions are more data-rich 

than information on chemical-non-chemical interactions. For example, a frequently cited example of 

cumulative risk assessment is the evaluation of aggregate exposures to pesticides mandated by the 

Food Quality Protection Act of 1996, which specifically states that pesticides with a common 

mechanism of action be evaluated for their cumulative health risks [18]. To meet this requirement, a 

cumulative risk assessment has been conducted for organophosphate (OP) pesticides, which is a class 

of pesticides that have a common primary mechanism of action, acetylcholinesterase (AChE) 

inhibition [19,20]. The OP cumulative risk assessment considered multiple OPs simultaneously across 

multiple exposure pathways. Based on a common mode-of-action (MOA), US EPA was able to 

assume dose additivity. Currently, a multi-chemical cumulative risk assessment is in development for 

pyrethroid pesticides (type I and type II) [21]. Unlike OPs, this group of pesticides does not have a 

unified MOA, and has known interactions with other pesticide classes, which has hindered progress 

and highlights some of the complexities involved in the evaluation of multi-chemical exposures, when 

additivity cannot be assumed.  

Another example of US EPA's efforts to implement multi-chemical risk assessment is through the 

National Scale Air Toxics Assessment (NATA) [22]. The goal of this program is to evaluate sources, 

levels, and potential risks of hazardous air pollutants (HAPs). By modeling emissions from a variety of 

different source types, including major stationary sources, area sources, and on-road and off-road 

mobile sources, the NATA results provide estimates of airborne exposure concentrations and 

associated outdoor inhalation risks for small geographical areas (i.e., at the county and the census-tract 

level). Both cancer and non-cancer endpoints are evaluated, although non-cancer endpoints are 

restricted to respiratory and neurological effects. US EPA has made the conservative assumption that 

effects of multiple compounds on the respiratory or nervous system will be dose-additive and, thus, a 

hazard index for each of the non-cancer categories is calculated. To date, three comprehensive 

assessments have been conducted based on emission data from 1996, 1999, and 2002 [23-25]. The 

2002 assessment includes emissions, ambient concentration estimates, and exposure estimates for 181 

of the Clean Air Act’s 187 ―air toxics‖ substances (plus diesel particulate matter).  

These assessments, which are often cited as some of the more robust examples of cumulative risk 

assessments, consider only multiple chemicals and multiple routes of exposure, but do not include 

consideration of non-chemical stressors (inclusion of non-chemical stressors may be included in 

cumulative risk assessments, but are not required under US EPA's definition of cumulative risk). Initial 

attempts to achieve the goals of the incorporation of non-chemical stressors are only now beginning to 

be developed, particularly in epidemiological research, and preliminary efforts have been successful  

in identifying key hazards and exposures, but integration of these components (as is usually 

accomplished under the traditional risk methodology) is extremely complex. Some of the complexities 

identified in these initial efforts, however, will eventually move the science forward.  

 

3. Vulnerability in the Context of Cumulative Risk Assessment  

The integration of non-chemical stressors into a cumulative risk assessment framework has been 

largely driven by the extensive evidence that there are large disparities in health across different 
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segments of society [9,26-28]. Both US EPA [14] and NRC [6] have focused discussion of 

incorporating non-chemical stressors around the notion of vulnerability. Additionally, the 

environmental justice movement, which has been influential in initiating and shaping the direction of 

cumulative risk assessment, is premised on the concept that poorer communities are vulnerable both 

because they carry a disproportionate amount of the environmental burden and, by virtue of their social 

environments, are uniquely sensitive to environmental pollutant exposures [4]. 

The consideration of vulnerable or sensitive populations in human health risk assessment is not new. 

Conservative inputs in risk assessments are standard practice to ensure protection for the most 

sensitive population groups. Risk assessments and health-based policy have often used terms like 

―sensitivity,‖ ―susceptibility,‖ and ―vulnerability‖ interchangeably, often referring to any condition 

that increases the probability of an adverse health outcome. In the context of cumulative risk 

assessment, the attributes of vulnerability have been more clearly articulated. Recent literature has 

made some distinctions between the different facets of vulnerability, which both US EPA [14] and 

NRC [6] believe should be considered as a part of the cumulative risk assessment paradigm [26].  

In the establishment of National Ambient Air Quality Standards (NAAQS), US EPA is mandated 

under the Clean Air Act to provide a margin of safety to protect sensitive sub-populations by 

considering vulnerability and susceptibility factors in its health assessments. Specifically, Section 

109(b) (1) of the Clean Air Act defines a primary standard as ―the attainment and maintenance of 

which in the judgment of the Administrator, based on [air quality] criteria and allowing an adequate 

margin of safety, are requisite to protect the public health.‖ Furthermore, the legislative history of 

Section 109 indicates that a primary standard is to be set at ―the maximum permissible ambient air 

level…which will protect the health of any [sensitive] group of the population,‖ and that for this 

purpose "reference should be made to a representative sample of persons comprising the sensitive 

group rather than to a single person in such a group" [29]. Table 1 summarizes the vulnerability and 

susceptibility factors that US EPA has identified as being associated with specific criteria pollutants. In 

general, the NAAQS reports have distinguished between sensitivity (i.e., biological factors, including 

age or gender) and vulnerability (i.e., non-biological factors, such as SES and proximity to roads). This 

grouping is similar to the Kasperson scheme highlighted in US EPA’s Cumulative Risk Assessment 

Framework [14], as discussed below, but does not overlap completely—introducing some confusion. 

This confusion is magnified by the blanket use of the term ―susceptibility‖ to describe both 

susceptibility and vulnerability factors [30,31]. As discussed in Section 5.2, the lack of a proper 

definition and the disjointed way in which these factors are assessed in air pollution studies makes it 

difficult to evaluate and use the results in any quantitative fashion. In fact, although this information is 

summarized and discussed extensively in the supporting documentation for the NAAQS reviews, it is 

not clear how this information is used by US EPA in the establishment the NAAQS.  
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Table 1. Susceptibility and vulnerability factors considered for evaluation of the criteria  

air pollutants. 

Criteria air pollutant Susceptibility factors Other vulnerability factors Reference 

Carbon monoxide Pre-existing disease 

Age 

Gender 

Differential exposure/dose (e.g., altitude, 

exercise, proximity to roads) 

Abuse of medication and  

other substances 

SES (e.g., education and income) 

[32] 

Particulate matter 

(PM10 and PM2.5) 

Pre-existing disease 

Age 

Gender 

Genetic factors 

Race 

SES (e.g., education, unemployment, 

and income) 

[31] 

Ozone Pre-existing disease 

Age 

Gender 

Race 

Genetic factors 

Differential exposure (e.g., activity level, 

time spent outdoors; physical activity) 

SES/racial ethnic factors (e.g., education 

and income) 

Environmental factors (urban vs. rural, 

ETV, endotoxin exposure) 

[33] 

Lead Age 

Physiological states 

(menopause, pregnancy, 

lactation) 

Genetic factors 

Gender 

SES (e.g., education, life stress,  

and income) 

[34] 

Sulfur dioxide Genetic factors 

Age 

SES (e.g., education and income) 

Differential exposure (e.g., activity level, 

residential location, AC use, time spent 

outdoors) 

[35] 

Nitrogen dioxide Pre-existing disease 

Age 

Gender 

Genetic factors 

SES (e.g., education and income) 

Differential exposure (e.g., proximity  

to roads) 

[36] 

Although not developed specifically for cumulative risk assessment, US EPA presented a 

framework developed by Kasperson for differentiating among different types of vulnerabilities: 

(1) susceptibility and sensitivity; (2) differential exposure; (3) differential preparedness; and 

(4) differential ability to recover [14]. In terms of human health cumulative risk assessment, it is useful 

to think of these vulnerability factors as being related to innate biology or genetics (susceptibility and 

sensitivity), disproportionate chemical burden (differential exposure), and social factors (differential 

preparedness and recovery). These vulnerabilities may either be related to the individual's attributes or 

may reflect community features that bear on individual outcomes, although some vulnerabilities, such 

as socioeconomic status (SES), act on both the individual and community levels.  
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3.1. Susceptibility and Sensitivity (Vulnerability Related to Biological Characteristics) 

Susceptibility and sensitivity describe innate biological conditions that make an individual or  

sub-population more likely to experience adverse effects from a chemical exposure compared to the 

general population. Susceptibility to environmental insults may be due to life stage (e.g., developing 

fetuses, children, the elderly, pregnant women), underlying diseases, and/or genetics, including 

polymorphisms [14].  

Traditionally, risk assessments have considered these susceptible sub-populations in development 

of quantitative toxicity criteria, with potential differences in sensitivities among people incorporated 

through the application of uncertainty factors [i.e., usually a 10-fold uncertainty factor (UF) for 

intraspecies variation]. According to US EPA [17], ―The intraspecies UF is applied to account  

for variations in susceptibility within the human population (interhuman variability) and the  

possibility (given a lack of relevant data) that the database available is not representative of the 

exposure/dose-response relationship in the subgroups of the human population that are most sensitive 

to the health hazards of the chemical being assessed.‖ Several studies have evaluated the 

protectiveness of the 10-fold UF for interindividual variability [37]. Based on an evaluation of the 

variability in pharmacokinetics and pharmacodynamics within a population, Burin and Saunders [37] 

concluded that a 10-fold safety factor is protective of greater than 99% of the human population. This 

is consistent with conclusions reached by Dourson et al. [38], who concluded that, when based on 

studies in populations with sensitive individuals, current methodologies are protective for close to 100% 

of the general population. 

Understanding the biological susceptibilities to disease has been an active area of research for many 

years, particularly in the context of early-life exposures. More recently, researchers have made 

advances in understanding the complex interactions between genes and the environment and are 

attempting to quantify how underlying existing disease is influenced by environmental exposures. 

These concepts can be incorporated into cumulative risk assessment once they are better developed, 

but at present, cumulative risk assessment efforts are more focused on addressing other facets of 

vulnerability, including differential exposure and coping mechanisms, as discussed below. While it is 

important to understand biological vulnerabilities, and adjustment of chemical toxicity factors may be 

warranted, these factors are inherently present within all populations and are thus not subject to risk 

management or regulation. Examples of vulnerabilities related to innate biological characteristics, as 

well as facets of vulnerability that are more central to current cumulative risk assessment efforts, are 

presented in Table 2. 

3.2. Differential Exposure (Vulnerability Related to an Increased Chemical Burden) 

Vulnerability from differential exposure relates to the concept that an individual or population may 

be disproportionately affected by a chemical because of past chemical exposures or increased 

contemporaneous exposure that increases the baseline body burden [14]. Differential exposure is 

related to the environmental justice movement's concerns that disadvantaged communities are more 

likely to experience increased exposure to higher levels of environmental contamination (e.g., landfills 

and hazardous sites, industry emissions, vehicle emissions, etc.). Methods for quantifying differential 
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exposure to multi-chemical stressors that can be used in cumulative risk assessments are being 

developed on multiple fronts, including the use of biomarkers and national databases to characterize 

chemical exposures. The advantages and limitations of these methodologies are discussed in  

Section 4.2.  

 

Table 2. Vulnerabilities related to biological sensitivity, differential exposure, and 

differential preparedness and recovery. 

 Selected potential indicators of 

vulnerability (individual) 

Selected potential indicators of 

vulnerability (community) 

Susceptibility and sensitivity 

(biological characteristics) 

Inherited diseases/predisposition to disease 

Genetic polymorphisms 

Age (young/elderly) 

Pregnancy/developing fetus 

Race/ethnicity/culture 

Mental health (coping skills) 

Low intelligence 

Low birth weight 

 

Differential exposure 

(increased chemical burden) 

Old, substandard housing 

Cleanliness/sanitation 

Home use of pesticides 

Substandard hygiene 

Poor ventilation 

Old, substandard housing 

Inadequate air flow 

Increased air pollutant exposure 

Traffic density 

Proximity to hazardous waste sites 

Proximity to waste disposal sites 

Proximity to industrial releases 

Differential preparedness and 

recovery 

(social environment and 

behavior) 

SES 

Family instability 

Personal nutrition 

Social support 

Obesity 

Smoking 

Drug addiction 

Chronic underemployment 

Other aspects of psychosocial stress 

Health care access 

Health behaviors 

Reproductive events 

SES 

Crime and violence 

Lack of community resources 

Crowding 

Food supply 

Access to quality health care 

Substandard schools 

Concentration of poverty 

Racial segregation 

Noise 

Civil engagement/political empowerment 

Social capital 

Sources: [2,26,39,40]. 

3.3. Differential Preparedness and Recovery (Vulnerabilities Related to Social Environment and 

Behavior) 

US EPA [14] described differential preparedness as the ability of an individual to withstand the 

insult of a chemical stressor based on existing coping systems and resources. Differential preparedness, 

therefore, relates to the potential vulnerabilities associated with social environments, including all 

aspects of psychosocial stress. Neither US EPA [14] nor NRC [6] has proposed a formal definition of 
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psychosocial stress, although working definitions have been established by others. For example, the 

National Institutes of Health (NIH) stated that ―[p]sychosocial stress refers to acute or chronic events 

of psychological or social origin which challenge the homeostatic state of biological systems‖ [41]. 

Under this broad definition, psychosocial stress can manifest itself in many forms. These may include 

the stress from living near a hazardous waste site or a noisy airport (also a physical stress), as well as 

numerous stressors often associated with low SES, such as exposure to violence, unemployment, 

and/or an unstable family structure [6,14,42,43]. Also, differential preparedness might relate to 

secondary manifestations of the social environment that increase vulnerability, such as poor nutrition, 

substance abuse, obesity, and/or smoking. Preventive health care access can also play an important 

role. While it is not feasible to present an exhaustive list of possible factors that contribute  

to differential preparedness to a chemical stressor, Table 2 lists examples gathered from several 

different publications. 

Vulnerability due to differential recovery, described as the ability to recover from the effects of a 

stressor [14], is distinct from differential preparedness, but likely depends on many of the same social 

factors. Psychosocial stresses, poor nutrition, substance abuse, etc., may also affect an individual's or a 

community's ability to recover from a chemical exposure. Especially important in differential recovery 

is health care access. Some of the key stressors associated with differential recovery are also presented 

in Table 2. 

As noted above, these types of stresses, in particular, are often viewed as having an impact on the 

individual or the community, although overlap occurs (e.g., Personal SES vs. Community SES). This 

becomes an important distinction because the relationship between the social stressor and health 

outcome for an individual may manifest itself differently at the community level. Also, quantifying the 

relationship between disease and individual vs. community stresses, as well as the application of risk 

mitigation measures, will likely need to proceed along different lines of research. 

4. Cumulative Risk Assessment and the Traditional Risk Assessment Paradigm 

As stated earlier, accounting for increased vulnerability and sensitivity is not new to risk assessment, 

but consideration of these issues to date has been mainly accomplished through conservative exposure 

assumptions and the application of standard uncertainty factors to toxicity criteria, a relatively blunt, 

but health-protective approach that has mainly focused on age-related susceptibilities and the 

heterogeneity in a population's response to a chemical exposure. Moving beyond these conventional 

approaches requires consideration of how non-chemical stressors fit into each stage of the present risk 

assessment paradigm, as proposed by the NRC in 1983: Hazard Identification, Dose-Response 

Assessment, Exposure Assessment, and Risk Characterization [44,45]. Currently, cumulative risk 

assessment efforts are community-level initiatives that use community information as a basis to build 

the risk profile, mainly in the identification of potential stressors and/or potentially vulnerable 

populations groups (see Section 4.4). In contrast, traditional risk assessments focus more on exposure 

sources (i.e., they are source-centric). 

To meet the goal of community-based assessments, it is important to draw from multiple fields  

that have tackled similar issues. For example, some researchers have proposed drawing from 

ecological risk assessment methodologies, including the use of multi-level analyses that incorporate  
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individual- and community-level effects [39,46]. The complexity of such analyses can be daunting, 

requiring more explicit elucidation of risk assessment goals and coordination of information from 

several different scientific disciplines, including, for example, toxicology, epidemiology, nutrition, 

neurotoxicology, and the social sciences. 

At this stage in the development of a cumulative risk framework and methodology, it is unclear if 

more research is needed to identify and define non-chemical stressors such that they can be 

incorporated into the existing risk assessment framework or whether a new cumulative risk assessment 

paradigm must be developed to accommodate the effects of non-chemical stressors. In the 2007 US 

EPA report, ―Concepts, Methods, and Data Sources for Cumulative Health Risk Assessment,‖ US EPA 

scientists explored new paradigms for evaluating cumulative risks, and, while aspects of the traditional 

risk framework (i.e., the NRC’s 1983 risk scheme) are still central to cumulative risk assessment, US 

EPA proposed additional steps (e.g., steps involving planning and scoping, problem formulation, and 

supplemental economic, political science, and social analyses). These additional components represent 

an attempt to expand the focus of risk assessments beyond identifying the risks associated with  

sources of contamination to understand all the key potential risks (real or perceived) that a community 

may face. 

The section below discusses how cumulative risk principles fit into the traditional risk assessment 

paradigm, with examples of progress to date and research needs for both community-based and 

individual risk assessment. While this framework is not sufficient to accomplish all the goals of 

cumulative risk assessment, as noted in US EPA [15], it is likely that core elements of the traditional 

risk framework will need to be integrated throughout cumulative risk assessment efforts as it develops. 

Additionally, we provide a review of current research on how non-chemical stressors can modify the 

health effects of air pollution, as well as future research needs for application of these data for 

cumulative risk assessment. 

4.1. Hazard Identification 

The first stage in risk assessment is identifying environmental agents that are associated with known 

health effects. The scientific disciplines of epidemiology and toxicology have been central to this 

undertaking, with decades of research being devoted to understanding the link between chemical 

exposures and disease on the molecular, cellular, individual, and population level.  

The health risks associated with non-chemical stressors, particularly indicators of low SES, have 

been studied extensively, and there is some information to suggest that the biological basis for these 

health effects is due to the stress associated with many psychosocial factors (i.e., vulnerability related 

to differential preparedness and recovery). Much remains unknown, however, particularly in regards to 

the relative contribution from multiple non-chemical stressors to disease. Importantly, research on the 

interaction of chemical and non-chemical stressors on various health impacts is still in the early stages, 

as discussed in more detail below. This may be one reason why neither US EPA [14,15] nor NRC [6] 

has published a list of potential non-chemical stressors and associated health outcomes that should be 

considered in cumulative risk assessments. Instead, non-chemical stressors have been introduced 

inconsistently in peer-reviewed publications, often by example. Many of these are presented in  

Table 2. 
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Much work remains on the identification of potential non-chemical hazards and their associated 

health impacts. As with traditional chemical risk assessments, information from the fields of 

toxicology (and other biological sciences) and epidemiology (and other statistic-based sciences) will 

be needed to identify causal links between non-chemical stressors and disease. In addition, due to the 

large number of stressors (both chemical and non-chemical) that could be considered, methods for 

prioritizing or identifying key stressors will be needed to streamline and reduce the complexity of 

cumulative risk assessments. The sections below summarize some of the key non-chemical stressors 

that are currently being considered in the context of cumulative risk assessment efforts.  

4.1.1. Physical and Biological Stressors 

In general, non-chemical stressors are divided into physical, biological, and social factors. Attention 

to physical and biological stressors in US EPA [14] and NRC [6] reports has been cursory and  

lacks clear definition. Physical stressors include radiation, noise, vibration, odor, temperature, and  

humidity [6,14]. Biological stressors largely encompass pathogenic agents (e.g., bacterial and viral agents).  

Compared to social stressors (described below), incorporating physical and biological factors in a 

cumulative risk paradigm is likely more feasible in the near-term, mainly because of the availability of 

information on biological interactions among stressors, established metrics to evaluate exposure, and 

existing risk assessment methodologies for some biological and physical stressors. Also, many of these 

stressors are associated with specific health endpoints and even have a well-defined MOA, making 

them easier to evaluate in the existing risk assessment framework. Yet, integrating this information 

into a risk assessment framework has not come to fruition. For example, the scientific literature is 

replete with information on radiation (both ionizing and ultraviolet) and chemical interactions, which 

have been described at the molecular, cellular, and organism levels. Radiation (ionizing) risk 

assessment is particularly well-developed, and yet, radiological risks are generally kept separate from 

chemical risk assessment, including under the Superfund program [1,47].  

Noise-chemical interactions are also well-studied, particularly in the context of occupational health. 

While there is likely enough information to understand the biological underpinnings of such 

interactions, incorporation of cumulative effects in a risk assessment framework has not been 

accomplished [48].  

Initiatives to address the intersection of biological and chemical risk have been most robust under 

the risk evaluation of biosolids. While there are well-developed chemical and pathogen risk assessment 

methodologies, when NRC evaluated biosolid risk, it concluded that ―because of data gaps and lack of 

risk-assessment methods for complex mixtures, it is not possible at this time to integrate pathogen risk 

assessment with chemical risk assessment‖ [49].  

Pathogen-chemical risks have been evaluated in the context of the addition of appropriate 

disinfectants to drinking water supplies; however, these assessments have mainly been evaluated as 

risk trade-offs rather than cumulative impacts. In addition, information applicable to risk assessment 

that can be garnered from chemical immunotoxicity studies is available, particularly studies that 

involve pathogen challenges, but, again, implementation of this information in any formal context 

remains uncharted.  
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For other physical stressors, such as humidity and temperature, information on their relationship 

with specific health endpoints is available, but these effects have not been included alongside chemical 

exposures in a risk assessment framework. From an exposure standpoint, quantifying these types of 

exposures in a given population is relatively straightforward [6], but more work would be needed to 

quantify the effects of these physical stressors on specific disease endpoints. In addition, further 

research is needed on potential interactions, i.e., whether these are additive (no interaction) or are 

capable of exhibiting some elements of synergy or antagonism. 

4.1.2. Social Stressors 

While US EPA and NRC frameworks clearly state that both non-chemical and chemical stressors 

can be considered in a cumulative risk assessment, this paper will focus on identification, 

quantification, and characterization of social stressors specifically. This emphasis, as discussed earlier, 

is consistent with the focus of most cumulative risk programs currently under development  

[e.g., California Environmental Protection Agency’s (CalEPA) and New Jersey Department of 

Environmental Protection's (NJDEP) Cumulative Impacts initiatives], where the goal is to identify 

populations with greater than average chemical burden (differential exposure) and that are more likely 

to experience adverse health effects by virtue of their social conditions (differential preparedness  

and recovery). 

Psychosocial and related stressors are acute or chronic events of psychological or social origin that 

challenge the homeostatic state of biological systems. Social stressors could also include behaviors 

associated with psychosocial stress, such as poor diet, obesity, smoking, and/or illicit drug use. Stress 

from living near a pollutant source (e.g., hazardous waste site, power plant, etc.) has also been 

discussed as a psychosocial factor potentially contributing to increased vulnerability to disease. 

Several researchers have found it useful to distinguish between social stressors that are primary to 

the individual vs. community-wide social stressors [13,40]. Although there is overlap, this division is 

valuable in the context of cumulative risk assessment, as it can help focus research needs on the factors 

that can be evaluated at the individual level vs. those that can be used to assess associations between 

stressors at a population level. Table 2 groups social stressors affecting the individual and  

the community. 

Identifying the gamut of possible social stressors is only one half of the equation in the hazard 

identification step; the second half involves understanding the relationship between social stressors and 

a specific health endpoint. NRC [6] proposed two approaches for identifying stressors for inclusion in 

a cumulative risk assessment: effects-based and stressor-based. The effects-based approach begins 

with an effect of concern, such as elevated respiratory disease or other health problems of interest in a 

population [46]. This approach retrospectively uses epidemiological evidence or surveillance data to 

identify populations with increased disease, with the objective of understanding the stressors that 

contribute to that disease endpoint. Stressors of interest are then identified and assessed both 

individually and in combination. Aspects of this approach are borrowed from ecotoxicology, where, in 

general, multiple influences, chemical and otherwise, are considered in assessing total community 

impacts. For example, US EPA has developed a framework for identifying a diverse array of stressors 

that may impact water bodies that takes in account information on chemical (e.g., elevated 
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concentrations of metals or ammonia), physical (e.g., increased sediment or water temperature), and/or 

biological (e.g., increased abundance of an invasive species) stressors [46,50]. 

In contrast, the stressor-based analysis is more prospective and begins with the stressors, then 

identifies the populations that may be affected. The concept of this approach is similar to traditional 

risk assessment, but in this case would go beyond point-source exposures and would include 

background exposures and non-chemical information. NRC [6] suggested that this approach can be 

used in conjunction with an assessment of different risk management options to identify a key subset 

of stressors of concern and their potential link to health outcomes of interest (i.e., choose only those 

that would be affected differentially by the risk management strategies or would otherwise have an 

influence on risk estimates). As a simple example, assessment of risk from living near an airport where 

air pollution (chemical) and noise (non-chemical) both potentially affect hypertension, would focus on 

reduction of both air pollution and noise if an interaction between the two stressors is associated with 

increased risk.  

Some researchers have suggested a life-course approach that incorporates the combined effects of 

multiple stressors across a lifetime (from gestation through childhood, up to later adult life) to address 

chronic health effects [51]. Although the concept may be simple, implementation is complex and 

limited to specific knowledge, not only of the physiologic trajectory of normal systems, but also the 

impacts of stressors at various life stages. This approach, however, does aid in the organization and 

conceptual framework of a complex cumulative assessment.  

In response to the difficulty in isolating and testing the social stressors associated with health effects, 

several early attempts at incorporating social stressors into cumulative risk assessment have used 

indicators of social stress as a proxy for the actual biological stressors associated with disease. For 

example, low SES or poverty is not in and of itself a causal factor for a specific disease, but many of 

the attributes of financial instability may influence disease outcomes (e.g., access to health care, 

nutritional deficiencies, stress of living in a violent neighborhood). Understanding the biological 

mechanisms underlying the causality of social conditions-disease interaction may not be necessary for 

preliminary cumulative risk applications, but, ultimately, from the perspective of intervention and 

regulatory strategies to improve health, it will be important to have a more precise understanding of 

how and to what extent social ―hazards‖ affect disease incidence. For this reason, the incorporation of 

social stressors into cumulative risk assessment is progressing along two fronts, i.e., in assessing risks 

at the biological level and in assessing community-level risks. 

At the community level, researchers have made efforts to identify key demographic variables that 

contribute to disease. Much of this research already exists, but draws from scientific disciplines  

that are not traditionally associated with chemical risk assessment, such as social science and 

psychology [52,53]. Most of this epidemiology-based research involves establishing statistical 

associations with specific social stresses and specific health endpoints, which is how hazards are 

identified. As detailed in Section 5.2, however, understanding these associations in the context of 

environmental exposures is complex. 

Although less well-developed, there is also research aimed at understanding the biological 

responses of social stresses and their relationship with disease. Studying the biology of social stressors 

is significantly more complex than evaluating chemical, physical, or biological agents associated with 

adverse effects for several reasons. First, social stressors do not exist in isolation; often, different social 
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stresses are directly correlated and it is difficult to segregate individual stresses to understand disease 

relationships. For example, how do we understand the relative contribution of poor nutrition, obesity, 

and stress from exposure to violence in an underserved population? Second, many social stressors are 

not easily measured in a laboratory setting. Additionally, several stressors in experimental animals do 

not have a clear counterpart in human populations. For example, experimental animals are routinely 

confined to small spaces, are often housed singly, and are often denied sex. Thus, results in 

experimental animals may not be representative of humans who are not stressed in these ways. While 

animal models have been useful in studying some aspects of social stress (e.g., malnutrition, noise), 

they are clearly limited for examining uniquely human conditions, such as the stress of being 

unemployed or having poor access to healthcare. The use of animal models to study social stress will 

be discussed in more detail in Section 4.3. 

Importantly, most of the existing research on the association between social stresses and disease has 

not incorporated potential interactions with chemical exposures. Thus, even if a social stress can be 

identified as causal in a disease pathway and is considered a ―hazard,‖ the modifying effects of social 

conditions on chemical exposure effects are only now being studied in a limited fashion and much is 

still unknown. In Section 5, we summarize some of the current research on the potential modifying 

effects of social indicators on air pollutant-related health outcomes. This research, which is critical for 

the advancement of cumulative risk assessment, will help in developing scientifically sound 

community-based assessments that incorporate biologically relevant stressors. This will entail 

investigation of specific social indicators, specific exposures, and specific health outcomes. Initial 

efforts in this area will be discussed below in the context of air pollution research. 

4.2. Exposure Assessment 

Exposure assessment is the step in the risk assessment process where the magnitude, duration, and 

spatial extent of exposure are defined [44]. In traditional risk assessment, which is based on 

understanding the incremental risk from chemical exposures, usually from a particular source, little 

consideration is given to existing underlying community exposures that may influence the toxic 

threshold of point-source exposures. 

Accounting for existing and incremental exposures (and thereby assessing total body burden) and 

the relationship to overall risk is a key goal of cumulative risk assessment. In this context, most work 

in cumulative exposure assessment has focused on using geographic information system (GIS) 

databases and other general sources of environmental data to identify communities with disproportionate 

exposures to environmental contamination [54,55]. This may include sources of environmental data, 

such air pollutant concentrations, which may provide relatively good information about expected 

exposures on a community level, but mostly includes indirect indicators of potential exposure. For 

example, the Toxics Release Inventory (TRI) emissions data, location of hazardous waste sites, the 

presence of landfills, national radiation data, and Brownfield development information. Types of 

information that are being used as indicators of chemical "over-burden" are listed in Table 2 and  

Table 3. 

Much of the current community-based cumulative exposure assessments focus on consolidating 

information on exposure indictors into a central database that can then be used to rank communities 
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with potentially high environmental burdens. On the national level, US EPA’s Community-Focused 

Exposure and Research Tool (C-FERST) reflects the most comprehensive effort to integrate publically 

available chemical information for use in community-based cumulative risk assessments. At this time, 

this tool is focused on evaluating cumulative chemical exposures, although it has been recognized that 

non-chemical stressors (or indicators of non-chemical stress, i.e., noise, SES, race, etc.) should 

eventually be incorporated into exposure models [55].  

Similar work is being developed by US EPA’s Office of Enforcement and Compliance Assurance 

(OECA) (discussed in more detail in Section 4.4). These tools offer a chance to screen for areas with 

the potential for environmental contamination, but challenges remain in how to best leverage 

community-level exposure information to understand what factors, and in what proportion, they best 

predict individual risk. For example, while the presence of a landfill might be used as an indicator of 

the potential for chemical exposures, operational practices and pollution controls vary by facility; 

therefore, a large amount of uncertainty remains associated with how a specific facility might  

(or might not) ultimately impact a nearby community.  

A promising alternative approach, which may provide a more direct measure of ―exposure‖ to 

chemical and non-chemical stressors, is the use of biomonitoring. The potential usefulness of 

biomonitoring in a cumulative risk context has been emphasized by US EPA [15]. Traditional risk 

assessment has used biomonitoring either through the measurement of a single constituent in an 

appropriate biological media or through the measurement of disease biomarkers to understand the 

relationship between chemical exposure and disease [56]. Lead risk assessment is a current example in 

which risk determinations and risk interventions are often based on blood lead levels—a measurement 

of cumulative lead exposure from all sources [57].  

Moving beyond a single-compound exposure is, of course, central to cumulative risk assessment. In 

terms of biomonitoring, measuring the combined exposure of multiple stressors may best be 

accomplished through the activation of a common biomarker, such as a biomarker of exposure (with 

no direct toxicological consequence), but preferably through the activation of a key biological response 

involved with the toxicological MOA. In other words, it would be ideal to identify an early (hopefully 

reversible) biological endpoint that becomes activated in response to a diverse set of exposures (both 

chemical and non-chemical). 

The idea of examining biomarkers from multi-chemical exposures is not new. For decades, there 

have been attempts to assess total DNA damage by looking at chromosomal damage or DNA adducts 

in workplace environments. In many cases, evaluating a general biomarker of DNA damage was done 

in order to identify hazardous industries in which there was limited knowledge of the suite of 

chemicals causing adverse effects [58-60]. This approach has been particularly prevalent in industries 

with exposure to multiple polycyclic aromatic hydrocarbons [61]. 

The lessons learned from biomarker monitoring in the workplace are relevant to cumulative risk 

assessment in communities. From a hazard identification perspective, understanding how overall 

exposures may converge on a precursor to disease may be useful in targeting areas for future study. In 

terms of risk characterization, however, it can be difficult to identify the most significant exposures 

and design interventions when assessing cumulative exposure to multiple chemicals through a 

common biomarker. 
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This has been an issue in controlling workplace exposures, but would be even more problematic for 

identifying community exposures, where exposures may be diverse in time and space, and may be 

associated with multiple sources. Other issues with biomarkers as a measure of exposure include 

understanding biomarkers in the context of actual disease incidence, and the feasibility of collecting 

biological samples on a community-wide scale.  

Much of the progress to date in cumulative risk associated with multi-chemical exposures has 

hinged on the idea of different exposures converging on a common biomarker. For example, the risk 

assessment of organophosphate (OP) pesticides represents a robust example where a common 

biomarker (acetylcholinesterase [AChE]) has been used to assess cumulative exposure to distinct 

compounds. In the context of OPs, this approach is useful because these pesticides operate via  

a common MOA and AChE induction is a key component in the disease pathway to neurological 

effects [19,20].  

Using biomarkers to understand how social stressors may contribute to disease will be significantly 

more complicated, although biomarkers will likely play an important role in advancing the science. Ideally, 

biomarkers will offer an avenue for linking mechanistic-based research with epidemiological research.  

An avenue of research that has been explored in the context of cumulative risk assessment and the 

response to multiple stressors is the idea of ―allostatic load.‖ Allostasis is the process by which the 

body responds to environmental cues to restore homeostasis. The concept of allostatic load was first 

introduced by McEwen and Stellar in a 1993 publication, but the concept has been further developed 

since then [62]. McEwen [62] uses the term "allostatic load or overload" to refer to the wear and tear 

that results from either too much stress or from inefficient management of allostasis (i.e., not turning 

off the response when it is no longer needed). Measuring allostatic load, which, in practice, is 

quantifying the exposure associated with stress, can be done through the measurement of a variety of 

different biological functions, including markers of neuroendocrine function (e.g., cortisol and 

epinephrine levels), immune function (e.g., Interleukin-6, tumor necrosis factor-alpha), metabolism 

(e.g., cholesterol, triglycerides), cardiovascular endpoints (e.g., blood pressure, heart rate), and 

anthropometric functions (waste-to-hip ratios, body mass index).  

The best indicator of allostatic load, which can serve as a biomarker of psychosocial stress, remains 

to be determined. For example, extensive research exploring the relationship between measures of 

allostatic load and SES and cortisol has gained specific attention as a biomarker for aspects of chronic 

stress [63]. Seeman et al. [64] has reviewed the state-of-the-art information on the link between SES 

and allostatic load, noting that, while there is significant evidence linking a variety of biological 

responses with SES, much more work is needed to understand the biological underpinning of such 

responses, the complexity of multiple stress interaction, and the role of genetics. Moreover, the 

combination of indicators that best predicts interactions between chemical and psychosocial stress still 

requires further consideration [62].  

Allostatic load may be one way to view how psychosocial stress as an exposure contributes to 

disease; other conditions associated with sub-optimal social environments will still require further 

research (i.e., for effects of social elements that are not related, the psychosocial stress must be 

quantified in a different way). For example, the effects of poor nutrition, drug abuse, and/or access to 

health care are separate ―exposures‖ that are not explicitly captured in an allostatic load model. 
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Appropriate biomarkers that relate to social stresses, but are separate from psychosocial stress, may 

need to be developed on a more stressor-specific basis.  

The use of biomarkers to quantify multiple forms of social and chemical stress is promising as a 

way to assess risks based on dose-response to multiple stressors. This is because, in a sense, exposure 

is being assessed through a common response. The challenge will be to converge on a response that is 

simply indicative of cumulative exposure or a biomarker that is early enough in the disease process to 

allow for sufficient intervention to reduce exposures. To our knowledge, there is no research to date 

that has been conducted to quantify cumulative exposures to a given class of environmental pollutants 

and social stresses through a common biomarker. 

4.3. Dose-Response  

The third step in traditional risk assessment is the dose-response assessment; this step is critical in 

quantifying the relationship between the exposure (or ―dose‖) of the chemical(s) of concern and the 

health outcome (or ―response‖). In chemical risk assessment, quantifying the dose-response 

relationship is usually the most resource- and research-intensive step in the risk assessment process, 

but it is a crucial step for quantifying the extent to which a chemical (or non-chemical) stressor 

contributes to disease. Understanding this relationship is necessary for discerning how much a 

decrease (or increase) in exposure impacts disease incidence. Although the National Academy of 

Sciences and US EPA have specifically stated that it is not necessary for cumulative risk assessments 

to encompass this quantitative attribute, it is difficult to imagine how the effectiveness of interventions 

could be assessed effectively without a metric for estimating targeted, cumulative risk reduction. 

Indeed, US EPA [15] includes quantifying dose-response relationship as a key step in conducting a 

cumulative risk assessment. Because of the complexity in quantifying dose-response relationships, the 

dose-response assessment is the most underdeveloped part of cumulative risk assessment.  

As part of the dose-response analysis, all relevant scientific data (e.g., in vitro studies, animal data, 

and human exposure and epidemiological studies) are evaluated to characterize the shape of the  

dose-response, and, if possible, establish an MOA of the agent(s). An MOA analysis will outline the 

key steps in a disease process and help determine the possible form of the dose-response relationship. 

Establishing overlapping and diverging MOAs are an important aspect to cumulative risk assessment, 

and have been a central component of the chemical-only "cumulative risk assessments" conducted to 

date (e.g., OP risk assessment). As discussed below, although epidemiological evaluations are useful 

for establishing associations, it remains important to understand the biological underpinnings to 

definitively establish causal relationships between exposure and disease. When examining multiple 

exposures, understanding MOA is particularly important to assist in determining whether a given set of 

exposures acts independently or whether synergistic or antagonistic relationships exist.  

The science of toxic interaction and influence on dose-response relationship has been accumulating 

over the last decade and has mainly been studied in the context of multiple chemical exposures. US 

EPA’s ―Supplementary Guidance for Conducting Health Risk Assessment of Chemical Mixtures‖ [65] 

provides definitions for the different types of chemical interactions (e.g., additive, synergistic, 

antagonistic), however these definitions are overly simplistic because the definitions only describe 

interactions between two chemicals at specific doses. As such, use of these terms can be misleading, as 
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they often describe an experimental outcome, rather than any intrinsic toxicological properties of  

the chemicals or stressors [66]. In light of this limitation, US EPA has chosen dose-addition as a  

―no-interaction‖ default for chemical mixtures, defining synergism and antagonism as more or less 

than what would be expected with additivity, respectively. The reason for this limited-labeling 

approach is related to large data gaps in our understanding of interactions; this remains a sizable 

challenge. Teuschler [67] presents several recommendations to advance the incorporation of 

toxicological data for improved chemical mixture risk assessments, including use of toxicological data 

on joint toxic action, statistical methods for analyzing dose-response for mixtures, and toxicological 

and statistical criteria for determining sufficient similarity of complex mixtures. As this science 

develops, in theory, these methods could be extended to the consideration of non-chemical stressors, 

allowing for identification of the MOA for relevant non-chemical stressors and quantification of the 

effects that a non-chemical stressor has on the biological response to a chemical.  

A complication of defining the MOAs of non-chemical stressors (e.g., SES) remains their lack of a 

biological link to disease, that is, SES itself does not cause illness, but rather certain aspects associated 

with SES appear to contribute to disease. Often, it is not possible to isolate the single component of 

SES that is coupled to disease, but, as discussed in Sections 4.2 and 5, these types of relationships are 

being investigated, mainly through correlating non-chemical stressors with disease biomarkers, and in 

epidemiological studies investigating the interactions between non-chemical and chemical stressors 

and disease outcomes, respectively.  

While quantifying chemical dose-response relationships can often be challenging, quantifying the 

relative contribution of chemical and non-chemical stressors will be more complex. In chemical risk 

assessment, characterization for dose-response relationships usually relies on a combination of animal 

and epidemiological data; in cases without supporting human data, it is possible to rely solely on 

animal data to quantify the relationship between exposure and adverse health effects. Animal-based 

bioassays enable the study of dose-response relationships because study design allows the researcher 

to control a number of confounding and modifying factors (e.g., age, gender, species, etc.). Also, 

bioassays offer the ability to assess the underlying disease mechanisms and serve an important role in 

establishing a causal exposure-to-disease relationship.  

Unfortunately, exploring the relationships between social stresses and disease in animals is not 

straightforward, or even possible, because of the large number of social hazards. Certainly, it is not 

possible to examine a multi-faceted human stress factor, such as SES, in bioassays. However, there are 

several animal models that can be used to measure the biological consequences of social stress, but 

relating these results to uniquely human experiences remains problematic. For example, how does a 

rodent model examining stress created by exposing a weaker rat to a dominant rat relate to the human 

stress of not having a job? Nonetheless, the research that does exist on the relationship between social 

stresses and biological responses in rodents can be used a basis for understanding stress-chemical 

interactions. Presently, only a limited number of animal studies have simultaneously tested interactions 

between environmental chemicals and non-chemical stressors. For example, several studies have been 

conducted in rats to determine the combined effects of lead exposure and stress [68]. These studies are 

discussed in greater detail in Section 5.1. It should be noted that while only a limited number of animal 

experiments have specifically studied chemical and stress interactions, aspects of animal stress (e.g., 

lack of sexual contact, small cage size, handling) are a part of most animals studies, such that routine 
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studies singularly focused on examining chemical effects are indirectly assessing interactions with 

non-chemical stress as well.  

Epidemiological investigations clearly provide a richer and more easily adaptable data set for 

assessing quantitative relationships between social stresses and adverse health outcomes. For this 

reason, information about the interaction between non-chemical and chemical stressors has progressed 

most rapidly on this front and offers some clear benefits [7]. In fact, Levy [7] has proposed a 

framework for inclusion of the results from epidemiological studies in cumulative risk assessment. 

Furthermore, as summarized in Section 5.2, epidemiological studies have begun to consider the effects 

of social stressors on air pollution-related health impacts. The potential interaction between  

non-chemical stressors on air pollution effects estimates has been studied for various different health 

endpoints, including mortality [related primarily to particulate matter (PM) exposures], neurological 

effects (e.g., related primarily to lead exposures), asthma, and cardiovascular effects. As described in 

more detail in Section 5.2, the most frequently evaluated social stressor is some indicator of low SES 

(e.g., low income, low educational attainment, etc.), but other social stressors, such as exposure to 

violence, have also been studied [69]. 

There is important quantitative information that may be gleaned from existing studies that may help 

inform the relative importance of chemical and social factors in the disease process, particularly data 

from chemical evaluations applying stratified analyses or quantifying interaction terms with social 

stresses. Additionally, there remains a rich body of research defining the relationship between SES and 

health that needs be evaluated and adapted to be more compatible with traditional risk assessment. The 

existing research has helped to establish that interactions likely exist between non-chemical stressors 

and chemicals, but fewer studies have investigated the nature of this interactions (i.e., the magnitude of 

this interaction or whether incremental risk from this diverse array of stressors may exhibit elements of 

additivity, synergy, or even antagonism). Also, although there are attempts to control for confounding, 

it is still not entirely possible to separate out all non-chemical stressors in a study relating environmental 

exposures to disease, and, vice versa, it is equally not feasible to separate out all environmental 

influences when studying the effects of a non-chemical stressor (e.g., SES) on disease. In this sense, it 

will be important to understand whether any deviations from additivity between a chemical and  

non-chemical stressor have a biological component or are an artifact of study design.  

As the science moves forward, it will be important to design studies that allow for more-refined 

measurements of the relative contribution of chemical and non-chemical stressors to disease. 

Understanding relative contributions will be necessary to target the most effective public health 

interventions. Facets of social, environmental, and chemical exposures, however, are dynamic over an 

individual's lifetime, and, thus, there is a temporal component to interactions that needs to be 

considered [26,40,70]. 

There are a number of additional challenges to incorporating non-chemical stressors in dose-response 

evaluations. As noted previously, susceptibility is incorporated into different aspects of the dose-response 

evaluation. A dose-response relationship not only quantifies the amount of chemical that is required 

for an effect, but it is also an expression of heterogeneity or ―vulnerability‖ in a given population, 

where more-sensitive individuals respond at lower doses. In other words, as a result of our individual 

(biological) and population-specific heterogeneity, responses to chemical exposures exist on a gradient 

and form a dose-response relationship. When heterogeneity related to vulnerabilities is not adequately 
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captured in a dose-response relationship from a single study (and particularly from animal studies), 

additional sensitivities can be accounted for through the use of uncertainty factors. Default assumptions 

of linearity or an assumption of no threshold are also meant to be protective of more susceptible 

population groups. The more explicit consideration of non-chemical stressors in cumulative risk 

assessment necessitates a re-evaluation of how heterogeneity is factored into the risk assessment and 

whether conventional approaches are appropriate. Care must be taken to not over-correct for 

vulnerability factors that are already accounted for through health-protective toxicity benchmarks. 

4.4. Risk Characterization 

Risk characterization is the stage in risk assessment where information from the hazard, exposure, 

and dose-response steps is combined to determine the level of risk. In traditional risk assessments, 

decisions about risk levels have relied on quantifying exposures and comparing them to benchmark 

toxicity factors. Evaluating multi-chemical exposures has mainly been accomplished by assuming 

chemical additivity for compounds with a common target organ (i.e., hazard quotients are added to 

produce a hazard index and/or cancer risks are summed). 

Recent efforts by US EPA have attempted to refine the methodology for cumulative chemical risk 

assessment by examining groups of compounds with overlapping MOAs. For example, as described 

earlier, US EPA's cumulative risk assessment of OPs was based on the concept that OPs had a  

similar MOA (i.e., all acted by inhibiting AChE, but to different degrees). This insight allowed for an 

understanding of how dose-response curves would change under multiple exposures, and, in 

conjunction with a comprehensive exposure assessment, US EPA was able to characterize the  

multi-pathway risks associated with multiple OPs [19,20]. US EPA has attempted a similar approach 

with the pyrethroid risk assessment, but, because it is unclear how the MOAs of different pyrethroids 

overlap, establishing combined dose-response relationships is difficult. The complexities surrounding 

pyrethroid risk assessment is an example of the difficulties that will be encountered in conducting 

cumulative risk assessments when considering many different types of chemicals and/or other stressors.  

Due to this complexity, there will be a need to understand and integrate information on complex 

interactions among stressors through physiologically based pharmacokinetic and pharmacodynamic 

(PBPK/PD) research and the construction of biologically based dose-response models (BBDR). In 

theory, BBDR models may offer a way of synthesizing information on multiple responses, but from a 

practical standpoint, with current technologies, developing PBPK/PD models for a single compound is 

research- and time-intensive, such that multi-chemical models, let alone the incorporation of  

non-chemical stressors, will pose significant challenges. Some progress, however, is underway. For 

example, Wason et al. [71] developed a theoretical risk framework for evaluating cumulative risk to 

chemical and non-chemical stressors, using PBPK/PD models to quantify stressor impacts. They 

provided an example analysis with OP risk for an urban low-income population, considering the 

impact of pyrethroids as a chemical stressor and diet as a non-chemical stressor on OP internal dose 

and AChE inhibition. This work highlights the utility of computational models in cumulative risk 

assessment as additional PBPK/PD models are developed. As discussed in Section 4.2, there may be 

some opportunity to accomplish integration through the use of biomarkers, but there is still much to 

learn about the specific key hazards associated with social stress and the biology behind disease 
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causality before risk characterization of this nature can move forward. There have been some 

rudimentary attempts to characterize the risk of social stress (in the metric of allostatic load). For 

example, Goldstein et al. [72] have developed a computer model to ―predict effects of environmental 

and genetic alterations on allostatic load and therefore on the development of multi-system disorders 

and failures.‖ This approach is only conceptual at this point, but may offer a framework for evaluating 

the effect of multiple stressors (of different types) on disease progression. 

Without a more complete understanding of how dose-response relationships change when 

integrating health outcomes from chemical and non-chemical stressors, it is difficult to move forward 

with the risk characterization in the traditional sense. An early attempt to examine social factors and 

the risks from multiple exposure sources is embodied in US EPA’s 1992 assessment of Chester, PA, 

which is located about 15 miles southwest of Philadelphia [73,74]. Chester has the highest poverty rate 

in the state and a large minority population (African American population of 65%). Additionally, 

Chester has a high density of waste treatment facilities (sewage, municipal, and medical waste) and 

industrial facilities. Chester's high poverty rate, in conjunction with the presence of multiple potential 

sources of contamination, eventually led US EPA to conduct an evaluation that included a multi-route 

chemical risk assessment and a survey of health outcomes in the city. Although based on uncertain 

exposure data, the assessment showed that chemical risks were elevated (mainly from nearby facility 

emissions and lead exposures). Additionally, several health indictors (e.g., specific cancers, total 

cancer, total mortality, low birth weight) were found to be highly elevated compared to the rest of the 

state and the country. This first step in examining cumulative risk helped highlight important issues, 

but falls short of really understanding the interaction between social factors and environmental 

exposures in relation to health outcomes. As discussed earlier, this integration, however, has 

significant challenges. 

More recent initiatives that seek to quantify the combined effects of chemical exposures and social 

stress involve relative hazard ranking methodologies (i.e., identifying populations that, because of 

potentially high chemical exposures and social environment, may be at greater risk of disease). 

Understanding how a potential increase in chemical burden and the various social determinants of 

disease interact has been an active area of research for years, but tools for characterizing combined 

risks and, importantly, for targeting risk reductions, are under-developed. Presently, proposed 

methodologies focus on coarse indicators of social well-being and potential chemical exposures (often 

crudely measured by proximity to waste sites or industrial facilities) to provide a way to rank at-risk 

communities. Several of these ranking systems have been proposed for use by federal and state 

agencies to meet cumulative risk assessment goals. In general, these ranking systems aim to quantify 

what US EPA’s 2007 report [15] refers to as initiating factors or population descriptors. The aim is to 

identify communities with (1) multiple sources or releases, (2) evidence of elevated concentrations of 

pollutants (as measured in environmental media or as biomarkers), and (3) sub-standard health [15]. 

Some of the key tools that are in the process of being implemented, and their underlying bases, are 

discussed below. 

One of the first nation-wide tools used to identify communities with potential disproportionate 

chemical exposure and demographics that may make them more vulnerable to adverse health outcomes 

was the Environmental Justice Geographic Assessment Tool. The functionality of this GIS-based tool 

was updated in 2010 and renamed EJView (see http://epamap14.epa.gov/ejmap/entry.html). This  



Int. J. Environ. Res. Public Health 2011, 8 2042 

 

web-based resource, available to the general public, will generate maps of areas with information on 

toxic releases, water monitoring information, presence of health services, health status, and other 

important geographical features. Importantly, this tool simply provides requested information and does 

not make any attempt to combine information to gain an understanding of high-risk areas. However, in 

2006, OECA unveiled a draft tool called the Environmental Justice Strategic Enforcement Assessment 

Tool (EJSEAT). The stated purpose of the tool is to ―identify areas with potentially disproportionately 

high and adverse environmental and public health burdens‖ [75]. Even though the tool was first 

introduced over four years ago, the methodology has been neither finalized nor implemented in a 

formal decision-making process. The criteria for ranking communities is summarized in Table 3. In 

general, the system relies on publicly available data in four areas: environmental exposures, human 

health measures, compliance indicators, and socioeconomic indicators. Although a review of US 

EPA’s methodology is not readily available from the agency, according the National Environmental 

Justice Advisory Council (NEJAC) within each criterion, indicators are normalized to a score between 

1 and 100, then the categories are normalized again relative to each other and averaged to achieve a 

raw score. Ranking is accomplished by normalizing the community-specific raw scores to each other. 

The National Exposure Research Laboratory (a division of US EPA’s Office of Research and 

Development) has initiated the Cumulative Communities Research Program, which is also developing 

a tool to characterize cumulative risk, called Community-Focused Exposure and Risk Screening Tool 

(C-FERST) [55]. C-FERST appears to be similar in concept to EJSEAT, but is intended to provide all 

of the background information necessary for conducting community-based assessments. The goals of 

the tool will be to ―assist communities with the challenge of identifying and prioritizing community 

environmental health issues, incorporating the latest research on the science of estimating human 

exposure to toxic substances in the environment‖ [76] and to assess ―exposures and risks in a way that 

can be summed across chemical and nonchemical stressors in a comparable manner‖ [55]. According 

to US EPA’s website, this tool is still under development.  

CalEPA and NJDEP are also in the process of developing methods to characterize community risks, 

although official guidance is still in draft form [2,3,5]. In principle, the approaches of both state 

agencies are similar (and consistent with US EPA tools), in that relatively rough indicators of both 

chemical and non-chemical stressors are being used to rank communities with the greatest potential for 

health risks. In March 2009, a report to NJDEP from the New Jersey Environmental Justice Advisory 

Council (NJEJAC) outlined a methodology for assessing cumulative impacts based on the approach 

published by Faber and Krieg, researchers who ranked communities within Massachusetts on the basis 

of environmental burden and social factors [3]. Later in 2009, NJDEP published an approach for 

moving forward with cumulative risk assessment that included an abbreviated version of the list of 

indicators recommended by NJEJAC [5]. The approach focused on indicators of environmental burden 

and did not address how to consider social elements in the ranking assessment, although NJDEP did 

find a strong relationship between its indicators of environmental exposure and poverty. The indicators 

selected by NJDEP are based on existing available data that can be mapped to relatively small 

exposure areas (100 square meters). These indicators are shown in Table 3. 
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Table 3. Indicators in current tools to assess potential cumulative risk in communities. 

Draft CalEPA Cumulative Impacts 

Assessment [2] 

NJDEP Preliminary Screening 

Method to Estimate Cumulative 

Environmental Impacts [5] 

NJDEP Strategies for Addressing 

Cumulative Impacts in Environmental 

Justice Communities [3] 

US EPA’s NJSEAT [75] 

Measures of Sensitive Population and Social Indicators 

Sensitive Populations None Social Determinants Social Demographic Indicators 

% of population under age 5 

% of population over age 65 

 Age of housing 

Proportion of population who are children 

Proportion of population over age 60 

Poverty rate 

Median family income 

Racial and ethnic composition of population 

Unemployment rate 

Some measure of parks/recreational space 

% of population living in poverty 

% of population counted as minority 

% of population 25 years old and 

over without a high school diploma 

% of population over 65 years of age 

% of population under 5 years of age 

% of population of limited English 

proficiency 

SES 

% Non-white residents 

Median household income 

% of residents living below 2X 

National Poverty Level 

 

Measures of Environmental Exposure Burden 

Exposures Exposures Pollution burden Environmental indictors 

PM2.5 concentrations NATA cancer risk Lead in blood of children age 6 or younger NATA cancer risk 

Ozone concentrations NATA diesel exposure RCRA sites NATA non-cancer risk 

Releases from industrial facilities (TRI  Estimated benzene emissions TRI NATA non-cancer diesel PM  

data) Traffic (all) US EPA National Priorities List sites Toxic chemical emissions and  

 Traffic (trucks) Power plants transfers from industrial facilities  

 Density of major regulated sites Treatment, storage, and disposal facilities Population-weighted ozone  

 Density of known contaminated sites Brownfields monitoring data 

 Density of dry cleaners Known contaminated sites Population-weighted PM2.5  

 Density of junkyards Municipal incinerators monitoring data 

  Resource recovery landfills  

  Incinerator ash landfills  

  Dry cleaners  

  Sewage treatment plants  

  Gasoline stations  

  Municipal solid waste landfills  

  Trash transfer stations  
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Table 3. Cont. 

Environmental effects   Compliance indicators 

Hazardous waste and cleanup sites   Inspections of major facilities 

Leaking underground fuel tanks   Violations at major facilities 

   Formal actions at major facilities 

   Facility density based on all facilities 

   in US EPA’s facility registry system 

 Measures of Existing Public Health Problems  

Public health  Existing health problems Human health indictors 

Low birth weight  Total cancer incidence rate % infant mortality 

Cancer mortality rate  Total cancer death date % low birth weight births 

Asthma hospitalization rate  Asthma: hospitalization rate  

  Asthma: emergency department visits  

  Chronic lower respiratory disease  

  Carbon monoxide poisonings  

  All-cause mortality rate  

  Coronary heart disease rate  

  Low birth weight rate  

  Infant mortality rate  

  Birth defect rate  

  Some measure of violence/crime  

 Other  

  Availability of preventive services  

  Childhood lead screening rate  

  Other?  

  Basic information  

  Total population of census tract  

  Size (area) of census tract  

NATA = National Air Toxics Assessments; RCRA = Resource Conservation and Recovery Act; TRI = Toxic Release Inventory.  
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In August 2010, CalEPA released a draft report called ―Cumulative Impacts: Building a Scientific 

Foundation‖ [2]. As shown in Table 3, CalEPA has divided potential indicators of cumulative risk into 

five categories: exposure, environmental effects, public health effects, sensitive populations, and SES 

factors. The indictors in each category are provided by way of example and do not represent an 

exhaustive list of potential indicators. Consistent with other ranking approaches, CalEPA intends to 

combine these variables to screen (or rank) communities with the highest potential for cumulative risk 

impacts. Specially, the categories are grouped as being related to either ―Pollution Burden‖ or 

―Population Characteristics.‖ Within each of the groups, the categories are given a score (each 

category has a specific range). Next, the total score for ―Pollution Burden‖ is multiplied by the total 

score for ―Sensitive Population.‖ Scores can range from 6 to 120, and, by this method, communities 

are ranked. In general, CalEPA noted that this approach will help identity communities with the 

potential to have the highest risk burdens so that these communities may be targeted for various  

risk-mitigating activities such as permitting, remediation, enforcement, and environmental monitoring. 

CalEPA also noted that this information can be used for risk assessment and standard-setting, although 

details on how this information would be used has not been fully developed. 

In these approaches, only direct measures of exposure (instances with actual exposure point 

concentrations being measured or modeled) are chemical concentrations in air. This is not surprising, 

due to the existence of relatively extensive national (NATA) or regional (California Air Resource 

Board) databases for air contaminants and the infrastructure for mapping air contaminants to specific 

locations. From this perspective, understanding cumulative air impacts, at least in terms of  

chemical-chemical exposures, is more developed than understanding cumulative risks from chemicals 

in other media (e.g., water, soil). The measures of other forms of environmental contamination 

applicable to cumulative exposure remain unexplored and hypothetical. For example, as discussed in 

Section 4.2, it is not clear how the density of dry cleaners or living near a hazardous waste site relates 

to actual exposure and consequent risk. 

An example where NATA data were considered in a cumulative risk assessment framework is the 

community case study conducted by Fox et al. [77] of neighborhoods in Philadelphia. Specifically, the 

researchers used publically available information on hazardous air pollutant concentrations (i.e., US 

EPA NATA data) combined with toxicologically available information (e.g., the US EPA Cumulative 

Exposure Toxicity Database) to calculate a hazard index as well as a hazard ratio (based on 

LOAEL/NOAEL toxicity information) at the census-tract level, assuming additivity across HAPs. The 

researchers also compiled neighborhood age-adjusted cause-specific mortality statistics years potential 

life lost (YPLL) rates (total, cardiovascular, and respiratory). Fox et al. [77] assessed potential 

associations between mortality and YPLL rates and HAPs risk ratios for both White and non-White 

populations using both nonparametric ranking statistics as well as regression analyses. In the 

regression analyses, the authors also controlled for income. The authors found that compared to 

national averages the study neighborhoods had higher mortality rates and cumulative health risks 

across Whites and non-White populations. The correlations results suggested that there was a weak 

correlation between hazard ratios (based on the NOAELs/LOAELs) and mortality and YPLL rates, 

particularly in the non-White populations. These associations were significant only for total and 

respiratory mortality/YPLL, and not for cardiovascular endpoints. The authors caution that the results 

do not imply causality. While this case study represents a step forward in cumulative risk assessment, 
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socioeconomic variables included in the study (e.g., racial composition and income) were limited and 

as acknowledged by the authors, they were not fully incorporated in the risk analyses, they were 

merely used as potential confounders in the regression analysis, and to test for effect modification in 

the ranking analysis.  

Using a different approach, Su et al. [78] developed a Cumulative Environmental Hazard Inequality 

Index (CEHII) as a means of incorporating both chemical hazards and socioeconomic characteristics to 

asses cumulative environmental impacts. The authors used this index to assess impacts in Los Angeles 

County, CA. Cumulative exposures to three different pollutants were evaluated, including NO2 (as a 

marker of traffic-related air pollution), PM2.5 (as a marker of a secondary air pollutant with longer 

residence time), and cancer risks from diesel emissions. The social indicators used included  

racial-ethnic composition (% of population that is non-White) and income level (% of population with 

income 200% below federal poverty level). Cumulative risks from air pollutant exposures were 

assessed by both a population-weighted multiplicative and an additive approach. The combined effects 

of social disadvantage and cumulative air pollutant risk were assessed by calculating the CEHII, where 

this index provides a measure of the unequal distribution of the cumulative air pollution risks by 

census tract in order to rank, in a quantitative way, potential vulnerable communities (e.g., because of 

lower SES) that are also at greater health risks from multiple chemical exposures. This method, 

however, does not integrate the social indicators into the risk calculation in the traditional risk 

assessment way; therefore the question remains whether these communities are at increased risk 

because of interactions between SES status and cumulative environmental hazard index or whether 

these are independent risk factors. Therefore, while useful in identifying hazards and the relative 

contributions from several chemical exposures, the combined effects on actual health status in these 

communities remains elusive.  

The approaches described above represent the first attempts to implement the basic principles of 

cumulative risk assessment. However, while these tools may be useful for identifying communities that 

may potentially be exposed to high levels of contamination, they are not sufficient to quantitatively 

characterize risk in those communities to combined effects of chemical and non-chemical stressors or 

to understand the relative contributions to risk of social stressors and chemical exposures. In fact, 

many of the criteria being identified through these programs are consistent with the initial key step 

(e.g., identification of initiating factors and population descriptors) proposed by US EPA [15] for 

conducting a cumulative risk assessment. In other words, the programs proposed by CalEPA and 

NJDEP may help prioritize the communities where risk assessments are needed, but, this can only be 

viewed as an initial step, with the more rigorous risk characterization step still in its infancy. If the goal 

is to identify vulnerable populations and quantify chemical risk, the ranking approach may offer an 

important first step, but if US EPA wants to expand the process to assess risks from multiple chemical 

to one that fully incorporates non-chemical stressors, more research, methodologies, and guidance will 

be needed. There is a particular need to apply dose-response concepts to the combined exposures to 

chemical mixtures and non-chemical stressors in a way that will make these risk ranking programs 

more useful. 

Although all leading environmental agencies are explicit that cumulative risk assessment can be 

qualitative, a failure to root out the relative contribution of chemical and non-chemical stressors in the 

quantitative context may hinder efforts to move assessments that are inclusive of these social stressors 
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forward. Under the traditional risk assessment methodology, if information on non-chemical stressors 

is only qualitatively characterized, the risk assessment process stalls at the hazard identification stage, 

and, because a dose-response is not established, it will not be possible to determine if interventions that 

limit specific environmental exposures will have an impact on public health.  

4.5. Risk Management 

Usually risk management is not part the traditional risk assessment methodology; however, the 

management-based risk assessment is one of the stated hallmarks of cumulative risk assessment [6]. 

Other than focusing on vulnerable communities, it is unclear how these rankings systems will translate 

into regulations that will improve public health. California's Cumulative Impacts report provides some 

indication of planned activities in response to identifying cumulative hazards, including a more-refined 

permitting process for the release of toxic substances, focused remediation projects, and other activities 

aimed at reducing the environmental burden in vulnerable communities. What remains unresolved, 

however, is the feasibility of mitigating disease in socially disadvantaged communities, primarily 

through the control of environmental exposures. With new risk assessment tools, we can identify the 

general exposures and social conditions that may make a community more vulnerable, but without 

knowing how and to what extent these factors interact to cause disease, it will be difficult to design the 

most effective intervention.  

The identification of the relative contributions of chemical and non-chemical stressors to disease in 

cumulative risk assessment offers the opportunity to consider public health more holistically such that 

interventions may not need to be restricted to reducing environmental exposures. Indeed, we may be 

able to use information from cumulative risk assessments to design policies that target the stressors 

(chemical or not) that contribute most to disease burden. For example, if research were able to 

understand the relative contribution of PM10 vs. density of community health centers to cardiovascular 

disease, it would allow for better-informed decisions about where to allocate resources. Of course, not 

all social stressors are amenable to intervention, so in the spirit of cumulative risk assessment, which is 

chartered to be management-based, it may be useful to focus on social stressors that can be controlled 

on some level, either through regulation or community initiatives.  

An advantage of including social stressors in the list of possible stressors that can be controlled is 

that, because social stressors are multi-faceted, reducing social stress associated with a specific disease 

will likely benefit other elements in the social environment. To follow the example above, increasing 

the number of community health centers, which would have a larger impact on reducing cardiovascular 

diseases than further PM reductions, would likely lead to a reduction in other health endpoints as well. 

Analysis of chemical and social environment interactions with disease will need to draw on research 

in toxicology and epidemiology, but also from expertise in the other fields, such as sociology and 

psychology. There is a great deal of existing research that, while not specifically aimed at informing 

cumulative risk assessment, will be helpful in shaping the paths forward. Importantly, as discussed in 

the next section, the role of epidemiological research in cumulative risk assessment is promising. 
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5. Non-Chemical Stressors and Air Pollution Exposures 

In the preceding sections, cumulative risk assessment concepts were discussed within the traditional 

risk assessment framework and some of the major challenges associated with conducting cumulative 

risk assessments using existing approaches were identified. As discussed, a significant missing piece in 

these preliminary efforts has been quantification of dose-response for cumulative effects. As part of the 

dose-response evaluation, both animal studies and epidemiological studies are typically considered; 

however, limited information is currently available to help inform the combined effects of chemical 

and non-chemical stressors, and most of the research is not in a form that makes it amenable to 

quantifying dose-response interactions. Nonetheless, this research serves as an important foundation 

for future studies. The following sections summarize some of the available research from animal and 

epidemiological studies that have evaluated the modifying effects of non-chemical stressors on 

chemical effects. This summary is not meant to be an exhaustive review of the literature, but reflects 

much of the current research, which has primarily been conducted on air pollutants and on markers of 

lead exposure (e.g., blood lead and bone lead measures).  

5.1. Animal Studies Examining the Cumulative Effects of Exposure to Chemical and Non-Chemical 

Stressors 

Our literature search uncovered only a limited number of animal studies that have evaluated the 

interaction between chemical and non-chemical stressors. For example, several studies have been 

conducted on rats to determine the combined effects of lead exposure (only via the oral route) and 

stress (as reviewed by Cory-Sletcha et al. [68]). In these studies, the authors assessed changes to the 

hypothalamic–pituitary–adrenal (HPA) axis, the system that coordinates the body's physiological 

response to stress, in the offspring of female rats that were exposed to lead and stress, both alone and 

in combination. The HPA axis effects were measured via corticosterone (the rat equivalent of cortisol) 

and neurotransmitter levels; behavioral effects were also evaluated. Two types of stress were used: 

restraint stress and cold stress. Significant effects were reported for stress and lead independently, and 

for the combined exposures. However, these results were significant only for some of the tested 

exposure time points; thus, effects were dependent on the developmental period of exposure, the 

timing of the measurement, the behavioral baseline, and gender. Because results were not consistent 

across study parameters, conclusions are difficult to draw from these studies; the findings, however, 

suggest that the combined effects of lead and stress are greater in female rats, compared to male rats. In 

addition, under certain study conditions, no effects of lead alone were observed, only in combination 

with stress, indicative of a potential potentiated effect of the combined exposure to stress and lead.  

In another study of lead exposure, Schneider et al. [79] reported that rats raised in an impoverished 

environment and exposed to lead via drinking water had spatial learning deficits and decreased 

neurotrophic factor gene expression in the hippocampus. Rats raised in an enriched environment, in 

contrast, had little to no neurological deficits associated with lead exposure. The authors hypothesized 

that impoverished environments may exacerbate the neurotoxicity of lead, or, alternatively, an 

enriched environment may counter these effects. Similar results were reported by Guilarte et al. [80], 

where spatial learning deficits, as well as decreased levels of neurotransmitters and nerve growth 
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factors, associated with lead exposure in rats, were reversed in animals that were reared in an  

enriched environment. 

In a more recent study, Clougherty et al. [81] assessed the modifying effects of chronic social stress 

on the respiratory response to concentrated fine particles. A rat model of social stress, which involves 

introducing animals into the cage with a dominant male, was used as a stressor. The results suggested 

more severe lung function deficits associated with fine particle exposure in stressed animals compared 

to non-stressed animals. However, the authors cautioned that the study was limited by the small sample 

size. In addition, the authors pointed out that an important challenge in conducting animal studies of 

this kind is distinguishing between effects from acute stress and chronic stress, which have distinct 

physiological attributes in rats. For example, the acute stress associated with removing the animal from 

the cage to conduct the experiments may actually yield attenuated effects, or mask some of the chronic 

effects of stress.  

Clearly, research in this area is in its infancy. While complicated, this research, as well as 

supporting studies that focus on the mechanistic underpinnings of responses, is important to advance 

our understanding of how the biology of non-chemical stressors and chemical stressors intersect and 

modify dose-response relationships. 

5.2. Epidemiological Studies Examining the Cumulative Effects of Exposure to Air Pollutants and 

Non-Chemical Stressors 

Air pollution epidemiological studies have begun to consider the effects of social stressors on air 

pollution-related health impacts. Table 4 presents some of the key studies that have evaluated social 

stressors in conjunction with air pollutants. The potential interaction between non-chemical stressors 

and air pollution effects has been studied for various different health endpoints, including mortality 

(related primarily to PM exposures), neurological effects (e.g., related primarily to lead exposures), 

asthma, and cardiovascular effects. The most frequently evaluated social stressor is a measure of low 

SES (e.g., low income, low educational attainment, etc.), but other social stressors, such as exposure to 

violence, have also been studied [69]. There is currently no consensus on the best indicator of social 

stress. Different studies use different indicators, and most often these are measures of education, 

occupation, and income, or some combination of these factors. Although related, they represent 

different dimensions of SES [82]. In addition, SES indicators are often measured at different 

geographic resolutions (i.e., at the individual, community, or city/county level). This may explain some 

of the inconsistent findings across studies that have evaluated the effects of SES on air pollution health 

impacts, as discussed below.  
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Table 4. Studies of effect modification of social stresses on chemical health impacts. 

Health outcome Chemical stressor Non-chemical stressor Results Reference 

Mortality      

Short-term studies CoH (PM indicator); SO2 SES indicators: unemployment, 

poverty, education, high 

manufacturing employment  

Effect modification by SES measures; 

slightly higher relative risks and more 

significant results across the lag periods 

tested 

[89] 

 PM2.5  SES indicators: household income, 

poverty, education 

Effect modification only significant for 

household income 

[90] 

 PM10 adjusted for O3, SO2, NO2, CO SES indicators: education, annual 

income  

No effect modification by SES [91] 

 PM10  SES indicator: education Evidence of weak effect modification by 

education 

[87] 

 PM10 SES indicators: unemployment, 

poverty level, education 

No effect modification by SES [92] 

 PM10, O3 SES indicator: sociospatial 

development index (based on homes 

with electricity, homes with piped 

water and drainage, literacy, and 

indigenous language speakers) 

PM10 not associated with mortality; 

ozone was significantly associated with 

mortality, but no consistent effect 

modification observed 

[93] 

 PM10 SES indicators: education, income, 

living in slums 

Effect of PM on respiratory mortality 

was negatively correlated with % college 

education, % family income > $3,500, 

living in slums 

[94] 

 PM10 SES indicator: composite index Larger effect in higher SES areas but not 

statistically significant 

[95] 

  TSP, CO, NO2, SO2, O3, PM10, CoH, 

PM10-2.5 

SES indicator: income Only NO2 was associated with mortality 

in low income groups 

[96] 
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Table 4. Cont. 

Health outcome Chemical stressor Non-chemical stressor Results Reference 

Short-term studies PM10  SES indicator: education Larger mortality risk estimates were 

observed in least-educated for all cause, 

respiratory, and heart disease-related 

mortality  

[97] 

 PM10  SES indicator: income, index that 

includes education, occupation, 

unemployment rate, family size, 

crowding, home ownership 

The PM10-mortality association was 

greater in lower income and lower SES 

communities 

[98] 

 O3  SES indicator: education, income, 

unemployment, poverty 

Effect modification only for 

unemployment; higher mortality rates for 

higher unemployment 

[99] 

Long-term studies PM2.5, sulfates SES indicator: education Significant effects for both PM2.5 and 

sulfates in least educated 

[84] 

 PM2.5, sulfates SES indicator: education Patterns are similar to previous study but 

effect modification is less clear; for 

ischemic heart disease pattern was 

reverse (most educated has greatest risk) 

[85] 

 TSP, BS, NO2 SES indicator: education No effect modification by educational 

attainment 

[100] 

 BS SES indicator: education No effect modification by educational 

attainment 

[101] 

 TSP, SO2 SES indicator: income Relative risks were higher for the low 

household income category 

[102] 

  Air pollution index: sum of 

standardized measures of TSP and 

SO2  

Deprivation index (includes 

unemployment and education) 

No effect modification [103] 
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Table 4. Cont. 

Health outcome Chemical stressor Non-chemical stressor Results Reference 

Neurological effects Blood lead SES indicator: income Cognitive deficits (Kaufman 

Assessment Battery) associated with 

neonatal blood lead only in poorer 

families 

[104] 

 Blood lead SES indicator: income No modifying effect of SES on blood 

lead-learning/IQ association, but 

observed trend of greater vulnerability 

in lower SES subgroup  

[105] 

 Blood lead SES indicator: parents' occupational 

prestige 

Modifying effects by SES were 

observed for IQ and blood lead, but 

interaction became non significant when 

adjusted for other factors (age at testing, 

iron status, birth weight, etc.) 

[106] 

  Blood lead SES indicator: composite index 

including education and father's 

occupation 

Effect modification of lead-related 

decreased performance in visual-motor 

integration and choice reaction tests 

[107] 

 Blood lead SES indicators: Hollingshead’s  

Four-Factor Index of Social Class, a 

measure of parents’ occupational and 

educational achievements 

Modifying effects by SES were 

observed for Mental Development 

Index and blood lead only at ages 18 to 

24 months 

[108] 

  Bone lead  SES indicators: neighborhood 

psychosocial hazards (neighborhood 

violent crimes, 911 calls, etc.) 

Psychosocial stress exacerbated effects 

of lead on 3 of 7 cognitive measures 

[109] 

Cardiovascular Disease Lead (bone lead) SES indicators: stress (based on 

standardized questionnaire and self-

reported) 

Effects of lead on hypertension were 

more pronounced in stressed individuals 

[110] 

 O3, CO, NO2 SES indicators: education, income No effect modification by SES on 

cardiac hospital admissions 

[111] 
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Table 4. Cont. 

Health outcome Chemical stressor Non-chemical stressor Results Reference 

Asthma and other 

respiratory diseases 

NO2 (proxy for traffic) SES indicators: exposure to violence Elevated risk of developing asthma with 

increased NO2 exposure only in children 

with higher exposure to violence 

[69] 

 Traffic-related air pollution  

(Nitrogen Oxides) 

SES indicators: parental education, 

parental stress 

High parental stress was associated with 

higher incidence of traffic-related risk of 

developing asthma. An increased risk of 

asthma was also observed for low SES 

families exposed to air pollution 

[112] 

 O3, SO2, NO2 SES indicators: education, income Greater hospitalizations for respiratory 

effects in lower education and lower  

income strata 

[113] 

 NO2, SO2, O3, CO SES indicator: average household 

income adjusted for household size 

Male children had higher asthma 

hospitalizations in low SES group with 

exposure to NO2; female children had 

higher asthma hospitalizations for SO2 in 

the low-income group. No associations for 

O3 or CO 

[114] 

 NO2  SES indicator: insurance status Children without insurance had higher risk 

of asthma admissions than those with 

private insurance 

[115] 

 PM10, O3, sulfates, strong acidity SES indicator: insurance status The overall hospital admissions association 

for both O3 and PM10 was driven by the 

uninsured minority population 

[116] 

  NO2 Life stress Greater inflammatory markers associated 

with high stress in low pollution exposure 

group 

[117] 

CoH = coefficient of haze; SO2 = sulfur dioxide; PM10 = particulate matter > 10 µm; O3 = ozone; NO2 = nitrogen dioxide; CO = carbon monoxide;  

TSP = total suspended particulate matter 
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Indictors of low SES have traditionally been treated as confounders in epidemiological 

investigations [83-85]). The definition of a confounder is a variable that is associated with both the 

exposure and the outcome, but is not on the exposure-disease causal pathway. Therefore, in a sense, 

factors such SES have been accounted for, but often not as a causal disease agent. However, 

researchers have begun to explore whether aspects of SES are actually effect modifiers of air  

pollution-related health effects [86,87]. An effect modifier is a factor that results in a change in the 

magnitude of an association between an exposure and an outcome when data are stratified by that 

factor [88]. By stratifying the analysis by non-chemical stressors, researchers can gain a better 

understanding of their influence and the magnitude of the modifying effect. 

There is no clear consensus on how to treat social stressors in epidemiological studies, whether as 

confounders or effect modifiers, and the answer may be that it depends on the stressor and how it is 

defined and measured. Care must be taken in epidemiological studies to test stressors, particularly for 

confounding, as biased estimates will result if confounding is not properly accounted for. This is one 

of the most challenging and complicating aspects of current epidemiological efforts to incorporate  

non-chemical stressors. These challenges have been explored most extensively with regard to the 

combined effects of social environment and neurological deficits associated with lead exposure and the 

association between mortality and PM exposure, as discussed below. 

5.2.1. Mortality 

A significant disparity in mortality rates exists among populations of different SES, both for all-cause 

mortality and for specific causes of death, such as cardiovascular disease and cancer [118,119]. 

Moreover, several researchers have suggested that air pollution contributes to the observed disparities 

in specific health effects (e.g., asthma or cardiovascular disease), leading to premature death. The two 

suggested hypotheses relate to the vulnerability factors discussed earlier, namely: (1) differential 

exposures (i.e., low SES populations are differentially exposed to air pollution); and (2) differential 

preparedness/recovery or coping (i.e., low SES populations are more vulnerable to the effects of air 

pollution due to, for example, poor health, psychosocial stress, or nutritional status). Most of the 

existing air pollution research has focused on understanding vulnerability related to the biological 

susceptibilities associated air pollution (e.g., pre-existing disease, age, and sex) [120-122], but, in 

support of environmental justice concerns, research has shifted to also consider social condition 

vulnerabilities [26]. 

A large majority of studies that have evaluated the potential modifying effects of non-chemical 

stressors have focused on mortality outcomes in relation to short-term and long-term exposures to air 

pollutants. The results from these studies, which all evaluated different indicators of SES (typically 

educational attainment or income), have been inconsistent, making it difficult to draw any conclusions 

(Table 4). 

 

5.2.1.1. Short-term Studies 

Short-term mortality studies have not found consistent effect modification when analyses included 

stratification by SES. For example, no or weak modifying effects were observed in several large  
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US-based studies that examined the modifying effects of SES indicators on PM10 mortality [87,91,92]. 

Similarly, in a study of residents of Mexico City (>65 years of age), O’Neill et al. [93] reported that 

ozone-related (O3) mortality risks did not show any consistent trends of effect modification when 

stratified by SES indicators. In addition, two studies conducted in São Paulo, Brazil reported 

contradictory results. Martins et al. [94] reported that respiratory mortality for PM10 was negatively 

correlated with percent college education and percent family income (>$3,500), and also reported a 

non-significant positive correlation with percentage of people living in slums. 

In contrast, Gouveia and Fletcher [95] found greater PM10-associated mortality risks in districts 

with higher SES for residents in São Paulo, Brazil, although the results were not statistically significant. 

Jerrett et al. [89] found slightly higher relative risks across lag periods, both for mortality risks 

associated with coefficients of haze (CoH, a PM indicator) and for sulfur dioxide (SO2) in lower SES 

areas of Hamilton, Canada compared to higher SES areas.However, relative risks were not greatly 

elevated compared to the overall regional estimates (e.g., regional CoH multi-lag mortality RR = 1.06, 

whereas low SES RR = 1.08). Villeneuve et al. [96] also reported an increased percent in mortality 

associated with NO2 in a study in Vancouver, Canada for low- and middle-income families (overall 

percentage increase = 3.5% with 1 day lag per 17.5 parts per billion increase in NO2, increased to 

about 10%). Total suspended solid-related (TSP) mortality also increased with stratification by income 

levels, but similar increases were observed across all income strata. The authors stated that results 

should be interpreted with caution due to the small number of deaths in the income strata. No mortality 

effects were reported for other criteria pollutants.  

In a PM10 study of residents in 20 US cities, Zeka et al. [97] found a slightly elevated percent 

increase risk of mortality for non-trauma mortality (0.62%, 95% CI 0.29–0.95) in a cohort of  

less-educated residents (<8 years of schooling) compared to more educated residents (>12 years 

schooling, 0.27%, 95% −0.004–0.54), although the trend was not significant. Similar results were 

observed for cardiac disease mortality, but not other causes of death (e.g., respiratory, stroke, etc.). In a 

study in Rome, Italy that used both income and an SES index (which included census data on 

education, occupation, unemployment rates, family size, crowding, and residence ownership), the 

authors reported higher PM10-related all-cause mortality for lower income and lower SES communities 

(1.9% and 1.4% per 10 μg/m
3
 increase in PM10, respectively) compared to an overall mortality increase 

of 1.1% per 10 μg/m
3
 for all residents [97]. Lastly, in a more recent study, Franklin et al. [90] assessed 

the modifying effects of various community-level socioeconomic variables (median household income, 

percent of population below poverty line, percent of adult population having graduated high school) on 

the mortality risks associated with PM2.5. Of these variables, only household income had a significant 

effect on the mortality estimates (specific results not reported by the authors). Similarly, for ozone-

related mortality, a modifying effect was reported for community-level unemployment rates (with 

higher risks associated with higher unemployment) in 98 US urban communities, but not for other SES 

indicators, such as education, income, and poverty [98]. 

Given the large variability in air pollutants evaluated, together with the diverse SES variables 

included in the short-term studies, it is difficult to draw conclusions from these studies. Furthermore, 

results do not support a definitive modifying effect of SES on mortality related to air pollutants, 

underscoring the need for more research in this area. 
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5.2.1.2. Long-term Studies 

Two seminal US studies [the Harvard Six Cities study and the American Cancer Society (ACS) 

study] have found consistently elevated mortality associations with long-term PM exposures. These 

studies, and in particular the ACS cohort, have been the subject of extensive analysis and follow-up 

and have had a large influence on formulating regulation for PM2.5 since the PM2.5 standards were 

establishment in 1997 [31,84,123-126]. The most recent re-analysis and follow-up studies of the ACS 

cohort have also provided some important insight into the question of the influence of SES and other 

factors on air pollutant related mortality estimates. In 2000, results were published on the re-analysis  

of Harvard Six Cities Study and the ACS of particulate air pollution associations with mortality  

to address potential biases in risk results as well as the robustness of the results to model  

specification [84]. As part of extensive sensitivity analysis of the ACS cohort, the authors tested 

confounding and effect modification for a number of sociodemographic and environmental variables 

including several SES factors (e.g., education, income, poverty and unemployment). The results from 

these analyses indicated that there was no confounding effect of these ecological factors [84]. As the 

analysis relied on multi-level data [individual-level and metropolitan statistical area (MSA)-level 

covariates] in a two-stage random effects Cox model, the authors speculated that the extensive number 

of individual-level variables included in the first stage may have removed possible confounding effects 

before the ecologic covariates were tested in the second stage. 

In addition, as part of the sensitivity analysis, Krewski et al. [84] identified potentially ―susceptible‖ 

subgroups and conducted analyses stratifying by potential modifying factors. The only modifying 

factor that was found to have a significant effect was education, which was chosen as a surrogate of 

SES. In the ACS cohort, Krewski et al. [84] found that cardiovascular mortality was significantly 

associated with both PM2.5 and sulfates among the least-educated. For all-cause mortality, the RRs 

were 1.35 (95% CI: 1.17–1.56) and 1.27 (95% CI: 1.13–1.42) in the <high school education groups for 

PM2.5 and sulfates, respectively. For cardiovascular mortality, the effects in the <high school educated 

were 1.47 (95% CI: 1.21–1.78) and 1.39 (1.20–1.62) for PM2.5 and sulfates, respectively. These effects 

were larger than the effects reported for the complete cohorts. The difference in the relative risks may 

be indicative of the additional risks associated with some component of SES.  

Conflicting results were reported in the recent extended analysis of the ACS cohort [85]. This 

analysis extends the follow-up time to 18 years (1982–2000). As in the previous analyses, the current 

evaluation featured sensitivity analyses that address potential confounding effects of ecologic  

variables (such as education attainment, housing characteristics, and level of income) on the air  

pollution–mortality association, but these variables were examined at both the Zip Code area (ZCA) 

scale, the MSA scale, and by the difference between each ZCA value and the MSA value, whereas in 

the previous analyses only the MSA level was evaluated. The results from this follow-up showed 

increased mortality risks with the inclusion of SES indicators in the model. For example, the strongest 

associations with all-cause mortality was reported with inclusion of the household income variable, 

with mortality hazard ratios of 1.048 (95% CI: 1.030–1.068) compared to the unadjusted ratio of  

1.034 (95% CI: 1.1016–1.053). In the previous analysis, income had no effect on mortality risk  

estimates [84]. The source of the discrepancy between the results from the previous analysis and the 

follow-up analysis is unclear. Although in this recent analysis the authors used a finer unit of 
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aggregation (ZCA vs. MSA), they also found that when they compared models that utilized different 

geographic units of aggregation (ZCA, MSA, etc.) there was no appreciable difference in the hazard 

ratio estimates [85]. The follow-up also assessed effect modification by education finding that for this 

follow-up cohort, a trend of effect modification by education was more difficult to discern and that for 

some health outcomes (e.g., ischemic heart disease), there was a reverse trend such that greater risks 

were observed for the more educated. As these results suggest, there is a need to more clearly define 

the role that indicators of SES play in confounding or modifying associations between health impacts 

and air pollution exposures. 

The modifying effects of education were also examined in a French study [99]. In this study, the 

authors looked at all-cause mortality associated with long-term exposures to TSP, black smoke (BS), 

and NO2, finding no significant trends in mortality effects as a function of education. Similarly, 

education did not appear to modify the relationship between mortality and BS in a Dutch study by 

Hoek et al. [100].  

Two long-term Canadian studies also evaluated the modifying effects of SES indicators on  

long-term air pollution exposures. Finkelstein et al. [101] reported statistically significant mortality 

associated with TSP exposures in both low- and high-income groups, with larger effects in the  

low-income group (RR = 1.14, 95% CI: 1.07–1.20 vs. 1.04, 95% CI: 1.10–1.06). Mortality associated 

with SO2 exposures were significant only in the low-income group (1.18, 95% CI: 1.11–1.26). In the 

second study, the authors investigated the modifying effects of a deprivation index on cardiovascular 

mortality related to both TSP and SO2 (assessed as an air pollution index), finding no significant 

interactions [102]. 

Laurent et al. [127] reviewed these and other epidemiological studies of the interaction between 

SES and air pollution-related mortality. The authors were not able to make formal comparisons 

between studies due to the large variety of SES indicators used across the studies. One important 

finding was that no effect modification by SES was found in studies that used SES indicators at coarse 

geographic resolutions (city or county level), whereas mixed results were reported for studies that used 

SES measures at finer geographic resolutions; most studies (5 out of 6) that had individual-level SES 

measurements found evidence of greater mortality risks in disadvantaged individuals. The authors 

stated that there is not enough information to conclude that SES modifies the relationship between air 

pollution and mortality outcomes. 

5.2.1.3. Cardiovascular Effects 

Fewer studies have examined the interactions between social stressors and air pollution-related 

cardiovascular effects (other than mortality). In one cross-sectional study of 513 people with 

hypertension and 237 without hypertension, Peters et al. [109] evaluated the how stress modified the 

effects of lead exposure (measured by bone lead levels) on hypertension. Stress was measured using 

the Health and Social Behavior questionnaire, as well as measures of self-reported stress. The authors 

reported that the effects of lead on hypertension were more pronounced in highly stressed individuals. 

Results were robust to inclusion of several confounders including age, body mass index, family history 

of heart disease, education, smoking, alcohol consumption, physical activity, and nutritional factors.  
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In another study, Cakmak et al. [110] analyzed the interaction of SES factors with gaseous air 

pollutant-related cardiac hospital admissions in 10 large Canadian cities using time-series analyses 

adjusted for day of the week, temperature, barometric pressure, and relative humidity. The authors 

found that exposure to O3, CO, and NO2 were individually statistically significantly correlated with 

cardiac hospital admissions, with even larger combined effects. The air pollution-related cardiac 

effects, however, were not modified by consideration of gender or community-level indicators of SES 

(namely education and income). The authors concluded that the community-level indicators of SES 

used in the study did not identify potential susceptibility.  

Several studies have looked at the correlation between cardiovascular risk factors (obesity, 

hypertension, smoking, and physical inactivity) and individual (educational attainment) and 

community-level (unemployment rate and overcrowding) SES indicators. A study conducted in 

Germany and the Czech Republic [128] reported that smoking was significantly correlated with areas 

with the highest unemployment rates in both countries, even with adjustment by individual SES factors. 

In Germany, obesity and low physical activity were also statistically significantly associated with 

community-level SES indicators after adjustment for individual SES factors. Interestingly, these 

effects are similar in magnitude to the cardiovascular health effects observed in air pollution studies 

(see, for example, US EPA [31]). 

As with the mortality studies, epidemiological evidence of an interaction between air pollutant 

exposures, social stressors, and health is limited and inconsistent. Therefore, more research is needed 

to help clarify whether interactions exist, as well as the type of interaction and the potential magnitude.  

5.2.1.4. Neurological Effects  

Controlling for confounding factors in epidemiological studies is complex and requires an 

understanding of all important cofactors that that can distort the true relationship between a chemical 

exposure and a given outcome. If the cofactor is a truly independent predictor of outcome, it can be 

adjusted for using standard statistical techniques. In some cases, however, the chemical and some 

cofactor may be so highly correlated that it is difficult to disentangle it using these standard  

statistical methodologies.  

The complexities of the relationships between chemical exposures and the social environment  

have been studied extensively in the epidemiological research related to lead exposures and 

neurodevelopment. Several studies that have reported declines in test scores per unit increase in lead 

biomarkers have also observed a large reduction in these neurological impacts when adjusting for 

indicators of the social environment. For example, in early studies of lead effects on IQ, no effects 

were observed when social factors were accounted for in regression analyses [129,130]. Also, Tong 

and Lu [131] reported that adjustment for quality of home environment, SES, maternal intelligence, 

and parental smoking reduced the association between lead and intelligence quotient (IQ) by up to 

40%. Similarly, in a pooled analysis of seven prospective studies, the association between lead and 

childhood IQ was reduced from −4.66 (95% CI: −5.76 to −3.60) to −2.70 (95% CI: −3.74 to −1.66), 

when variables for study site, quality of home environment, birth weight, maternal IQ, and maternal 

education were included in the model [132]. In fact, some researchers have determined that blood lead 

may account for only 1–4% of the variability in child IQ scores, compared to about 40% or more for 
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social and parental factors [133]. More recently, researchers have questioned the adjustment of lead 

effect estimates by SES factors as overly conservative and have suggested instead that SES indicators 

are more likely to modify the association between lead and cognitive deficits [105,134]. For example, 

researchers point to the health effects associated with elevated glucocorticoids (a marker of chronic 

stress), which are also elevated with lead exposures and can affect behavioral processes. Thus, an 

important question is whether there is an interaction between risk factors associated with lead exposure 

and those associated with environmental stress, and whether these effects are synergistic. There is 

currently only suggestive evidence of an interaction from both animal and human epidemiological 

studies. In addition, SES can contribute to higher exposures of lead due to living conditions (i.e., older 

housing) and inadequate healthcare, thus contributing to additional vulnerabilities from differential 

exposure and differential preparedness. 

Cognitive deficits in children (measured using the Kaufman Assessment Battery) were reported to 

be associated with neonatal blood lead concentrations in a Cincinnati cohort of four-year-olds, but only 

for children from poorer families [35,103]. In a follow-up on the Cincinnati study Ris et al. [104] 

reported that SES was not a significant modifier of the higher blood lead (taken at age 78 months) 

association with lower learning/IQ scores, but they observed a trend of greater vulnerability in lower 

SES adolescents exposed to higher lead levels. This trend is supported by a study in an Australian 

cohort of children, in which cognitive deficits were reported to be more prevalent in lower SES  

groups [105]. Tong et al. [105] studied 375 children in South Australia prospectively from birth until 

11–13 years old. The researchers evaluated the interaction between blood lead levels and 

sociodemographic factors [gender, parents' occupational prestige (measure of SES), quality of the 

home, and maternal IQ] on children's IQ. The authors reported statistically significant interaction with 

gender (i.e., girls were more sensitive) and with SES measure, but these effects were reduced and 

became non-significant when adjusted for other covariates (e.g., age at testing, grade in school, iron 

status, birth weight, feeding method as infant, marital status of parents, etc.). 

Three cross-sectional studies in Europe among preschool and school-age children found that 

increased lead exposure resulted in decreased IQ and decreased performance in visual-motor 

integration and choice reaction tests, but only in children of low SES [106]. In a similar study 

conducted in the US, the correlation between the Mental Development Index (MDI) and cord-blood 

lead levels were evaluated for infants at ages 6, 12, 18, and 24 months of age [107] stratified by social 

class. Social class was measured based on Hollingshead's Four-Factor Index of Social Class, which 

includes a measure of parents' occupational and educational achievements. The results showed that, at 

ages 6 and 12 months, there was no significant difference of effect of cord-blood lead on MDI across 

social status, but, at ages 18 and 24 months, differences in the relationship between blood lead levels 

and MDI were significant, but only at the low and medium lead exposure levels. In the infants in  

the high blood exposure level category, however, the differences in MDI performance were 

indistinguishable between social status category.  

Bellinger et al. [107] also found that results varied depending on the age at which child was 

exposed to lead. For example, when blood lead levels were taken at 6 months of age, declines in MDI 

score with increased blood lead concentration were observed only in the lower SES group. No trends 

were observed when analyses were conducted using blood lead levels taken at 12, 18, and 24 months 

of age. The authors thus theorized that vulnerability to lead toxicity is dependent on both the infants’ 
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SES and age. It is worth noting that the authors found that the interaction between lead exposure and 

SES did not show evidence of additivity or multiplicativity in these older age groups. In other words, 

children with the worst values on both factors (i.e., highest lead exposure and lowest social stratum) 

did not display the worst performance, as may be expected with a synergistic effect. For example, in 

this study, the children with the highest cord-blood lead levels had similar MDI scores regardless of 

social status. The authors also stated that interactions between risk factors should be interpreted with 

caution due to sample size considerations. These studies highlight much of the uncertainty and 

limitations associated with relying solely on epidemiological studies for use in cumulative  

risk assessments.  

Although most studies have focused on the effects of lead exposures in children, one recent study in 

adults found that psychosocial stress modifies the effects of lead on cognitive function in adults.  

Glass et al. [108] assessed how neighborhood psychosocial hazards, measured independently from 

subjects using neighborhood information on violent crimes, 911 calls, etc., as a measure of a 

―heightened state of vigilance, alarm and threat,‖ may modify the effects of lead (bone-lead 

measurements) on cognitive function in adults aged 50–70 years old. The study, which was conducted 

in Baltimore, Maryland, showed that psychosocial stress exacerbated the effects of lead on three out of 

seven cognitive measures after adjusting for potential confounders (age, sex, race, education, 

technician, time of day)—namely, language, processing speed, and executive functioning.  

Overall, both confounding by SES and effect modification have been reported in epidemiological 

studies of lead exposure and neurological deficits, primarily in studies of children, and more recently 

in adults. These studies provide some of the strongest evidence of potential effect modification by SES 

factors, but inconsistencies have been reported that underscores the need for further research.  

5.2.1.5. Asthma and Other Respiratory Health Effects 

A growing area of research is in understanding the large disparities in asthma morbidity. The excess 

asthma morbidity and mortality observed in inner-city, lower-income, and ethnic minority 

communities in not well-understood, and the relative importance of the urban environment, lower SES, 

or ethnicity as independent risk factors remains controversial [27]. Current research on the modifying 

effects of non-chemical stressors on air pollution-related effects indicate that there is a potential 

interaction. For example, Clougherty et al. [69] assessed the potential modifying effects of exposure to 

violence (ETV) as a measure of a chronic social stressor on traffic-related asthma etiology. The 

authors used novel GIS methods to retrospectively estimate traffic-related air pollution exposures 

(using NO2 as a surrogate) for 413 children in a pregnancy cohort. Air pollution estimates were 

analyzed in conjunction with questionnaire-based data on ETV to assess development of asthma in the 

cohort. The authors found no independent effect of ETV on asthma (OR = 0.98, 95% CI: 0.78–1.22), 

but an elevated risk of asthma was found with increased NO2 exposures only in children that had 

higher ETV, indicating greater air pollution susceptibility. For example, in the cohort of lifetime 

residents, the effects of NO2 on asthma were positive and almost significant (odds ratio (OR) = 1.28, 

95% CI: 0.97–1.69), but in the stratified cohort, NO2 was significantly associated with asthma among 

children with above-median ETV (OR = 2.33, 95% CI: 1.47–3.71), but not the children with  

below-median ETV (OR = 0.87, 95% CI: 0.59–1.28). Similar results were obtained when the analyses 
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included potential confounders (e.g., maternal asthma, exposure to tobacco smoke, education, sex, and 

age). The authors noted the difficulties in interpreting the interactions between air pollution exposures 

and non-chemical stressors, such as ETV, because behaviors among people living in violent 

neighborhoods may differ from those living in less violent areas, such as keeping children indoors, 

where they may be exposed to greater NO2 levels from indoor sources (e.g., smoking and gas stoves) 

or to other indoor pollutants (e.g., indoor allergens). In addition, ETV may be a proxy for other social 

stressors, such as family instability.  

In another study of asthma, Shankardass et al. [111] evaluated effect modification by low SES 

(using parental education) or high parental stress (measured by way of a questionnaire) on  

traffic-related asthma etiology. Approximately 2,500 children (ages 5–9) with no history of asthma or 

wheezing were followed for three years. Exposure to traffic-related air pollution was determined using 

dispersion modeling. High parental stress was associated with higher incidence of traffic-related risk of 

developing asthma. An increased risk of asthma was also observed for low SES families exposed to  

air pollution. 

In contrast to the findings in the studies described above, in which the interaction of the  

non-chemical stressor with the chemical stressor appear to act in combination to increase asthma, a 

study that evaluated the modifying effects of life stress (assessed via interviews) on NO2-related 

inflammatory markers and asthma symptoms, reported greater inflammatory markers associated with 

greater stress at lower air pollution exposures, not higher air pollution [116]. The authors theorized that 

their findings may be related to a threshold effect in which the chronic stressor (in this case stress) 

lowers the threshold such that adverse effects occur at lower pollutant exposures. The authors also 

suggest that the differences observed in this study compared to previous studies may be related to the 

focus on children with existing asthma vs. the onset of asthma, and that different social stressors may 

have a differential effect on asthma exacerbations.  

In a study conducted in 10 large Canadian cities, living in communities in which individuals have 

lower household education and income levels was associated with greater hospitalization for 

respiratory health effects, indicating that these individuals may have increased vulnerability to air 

pollution [112]. Stratification by education yielded significant increases in hospitalizations for the 

lowest educational attainment strata (<Grade 9) for O3 and SO2, but not NO2; the percent increase was 

not significantly different from the unstratified risk values. For example, for O3, the unstratified risk 

was 3.8% (95% CI: 1.9–5.6) and for <Grade 9, the risk was 4.0% (95% CI: 1.6–6.5). Similarly, the 

combined effects of all three gaseous pollutants yielded the greatest percent change in hospital 

admissions in both the unstratified and the stratified models (6.6%, 95% CI: 3.5–9.7 and 7.0%, 95% CI: 

2.5–11.5, respectively). Significant risk of hospitalization stratified by income were found for O3 and 

NO2. The risks for NO2 for the lowest income level (<$21,309) were higher than the unstratified risks 

(5.1%, 95% CI: 1.6–8.8 vs. 2.5%, 95% CI: 0.2–4.8), as was the multi-pollutant effect (8.6%, 95% CI: 

4.3–12.9). In a similar study of asthma hospitalizations in children (ages 6–12) in Vancouver, Canada, 

greater risks from asthma hospitalizations in male children of low SES were observed with exposures 

to NO2, compared to male children in the higher SES group (OR = 1.13, 95% CI: 1.04–1.23 vs.  

RR = 1.04, 95% CI: 0.95–1.14 at lag = 1 day); in female children, significant asthma hospitalizations 

were found for SO2 only at lags = 4, 5, and 6 days [113].  
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Disproportionate asthma hospitalizations were also observed in a study in Phoenix, Arizona using 

insurance status as an indicator of SES. Grineski et al. [114] reported that children without insurance 

had a 1.4 times higher risk of asthma hospital admissions, compared to those with private insurance 

with a 0.02 parts per million (ppm) increase in NO2 above the seasonal mean. Insurance status was also 

found to significantly modify the effect of ozone and PM10-related respiratory hospital admissions in 

New York City. After adjusting for insurance status, significant relative risks of hospitalization were 

reported in the uninsured subgroups, but not in the insured subgroups. In fact, these results also showed 

that the air pollution-hospital admission association was largely driven by the uninsured population.  

The modifying effects of SES on air pollution-related respiratory morbidity are suggestive of an 

effects at this point, but questions remain as to the nature of the modifying effect, i.e., whether these 

effects are additive, synergistic, etc. In addition, because, as with other epidemiological studies, these 

studies used varying indicators of SES or social stress (e.g., education, exposure to violence, and 

insurance status), it is difficult to compare results across studies.  

5.2.1.6. Limitations Associated with the Use of Epidemiological Data 

The epidemiological research to date has contributed to a better understanding of potential 

interactions between social stressors and air pollution exposures, but more research is needed to 

confirm the results and resolve some of the inconsistencies across studies. Limitations and issues 

associated with using epidemiological results include biased effect estimates, exposure errors, and 

assuming causality when biological mechanisms of low-dose exposure effects are not well understood. 

Resolving these issues will be an important step in the current risk ranking efforts so that the best 

indicators of social conditions are being used to identify the communities at risk. In the absence of this 

analysis, cumulative risk ranking programs may be incorrectly targeting communities for further analysis. 

After clearer associations are established for specific indicators of social stress with specific chemicals 

and for specific endpoints, it will be possible to develop more specific risk mitigation measures. 

As mentioned previously, epidemiological studies examining gross measures of disease are not 

likely, in and of themselves, to provide refined estimates of the relative contribution of chemical and 

non-chemical stressors to disease. It is therefore important to consider multiple lines of evidence 

(animal, cellular, and molecular studies) to determine which data will be most informative in 

elucidating MOA, as well as dose-response information. Research is moving towards trying to better 

understand the interactions between environmental exposures and non-chemical stressors. Similarly, as 

mentioned previously, studies of allostatic load (including methods for measuring allostatic load) and 

the effects of multiple stressors offer some promise for identifying potential MOAs [62,135]. Lastly, 

"molecular epidemiology" methods, which incorporate biological events at the physiologic, cellular, 

and molecular levels, and thus enhance the biological understanding of epidemiological findings, may 

prove to be useful in cumulative risk assessments. 

 

6. Research Needs and Conclusions 

The application of cumulative risk assessment to include the incorporation of non-chemical 

stressors to address environmental justice concerns requires improved or new methodologies that can 

be applied at the risk characterization stage of the risk assessment. Examples of robust cumulative risk 
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assessments are available, but generally do not include assessment of non-chemical stressors in any 

quantitative way. In addition, a majority of environmental applications of cumulative assessments have 

focused on evaluating health effects associated with air pollutants, with or without consideration of 

population level indicators for other stressors (e.g., census level demographics, SES, etc.), primarily 

due to the relative availability of geographically based air pollutant data and basic health surveillance 

data (e.g., population level mortality or cancer data). Other metrics of exposure via other media are 

also being explored. In these studies, risk-ranking methods, correlating high incidence of disease with 

potential chemical exposures (measured often crudely by proximity to pollution sources) are typical in 

these assessments and are descriptive in nature. These descriptive applications serve communities by 

providing indicators of exposures and in identifying risk distributions across communities, and, in 

doing so, help to identify environmental health disparities and potentially vulnerable population groups 

(e.g., with the reliance on GIS methods). In this respect, these qualitative assessments remain 

important. Epidemiological research has progressed in the evaluation of the modifying effects of social 

stressors on chemical exposure-related health impacts, albeit with mixed results. This research 

however, offers not only a way to better understand potential interactions, but to potential quantify 

their effects. As with more routine single-chemical risk assessments, there is a substantial challenge in 

linking dose-response information gleaned from animal and in vitro studies with epidemiological 

observations. These challenges are more pronounced in cumulative risk assessment, where both the 

underlying biology and exposure assessment are more complex, particularly when non-chemical 

stressors are involved. 

Challenges remain in the effort to include non-chemical stressors in the cumulative risk assessment 

framework in order to obtain a useful environmental and public health analysis and evaluation tool. 

The present inability to fully quantify risks using comparative metric(s) capable of accounting for  

non-chemical stressors makes it difficult to assess cumulative impacts consistently across different 

populations, locations, or time periods. This inability to compare risks quantitatively, which is 

necessary for designing and evaluating environmental health intervention programs or for assessing the 

effectiveness of environmental regulation, continues to impair the application of cumulative risk 

assessment inclusive of non-chemical stressors. In addition, to communicate intervention strategies and 

regulatory initiatives to any affected communities, fair and clear interpretation of risks and competing 

uncertainties is necessary. To advance the incorporation of non-chemical stressors into risk 

assessments in a manner that will facilitate effective public health interventions, research in the 

following key areas is needed: 

 Identification of the elements of low SES that have the most significant impact on disease 

(e.g., to what relative extent does poor nutrition vs. psychosocial stress vs. lack of quality 

healthcare play a role in disease), investigated on a disease-specific basis. 

 Metrics to describe degrees of psychosocial stress and other key biological effects of  

non-chemical stressors, specifically expressing non-chemicals stressors in manner where 

―dose‖-response relationships can be explored.  

 Correlations between gross measures of exposure (e.g., the presence of a landfill) and actual 

chemical exposure in a population. 
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 Biomarkers that are reliable indicators of the cumulative effects of chemical and  

non-chemical stresses. 

 Correlations between stress induced in animals and psychosocial stress in humans, 

specifically whether these animal stress models are applicable to human conditions. 

 Quantification of the interactions between non-chemical stressors and chemicals and their 

relative role in health outcomes. Specifically, how dose-response curves change with 

combined exposures to chemical and non-chemical stressors.  

 Epidemiological evaluations specifically designed to explore the relative contribution of 

chemicals and non-chemical stressors in disease outcomes, and, specifically, how 

observations relate to dose-response relationships. 

 Focused efforts to better ―link‖ research on dose-response relationships to observations 

gleaned from epidemiological evaluations. 

While much new research is necessary, it should be emphasized that there is a wealth of information 

to draw on from disciplines not usually associated with chemical risk assessment.  

Acknowledgements 

This work was sponsored by the Electric Power Research Institute. We would like to thank Ruth 

Buchman, Jasmine Lai, and Anna Engel for their help in editing and preparing the manuscript.  

References and Notes 

1. Risk Assessment Guidance for Superfund (RAGS). Volume I: Human Health Evaluation Manual 

(Part A) (Interim Final); NTIS PB90-155581, EPA-540/1-89-002; US EPA, Office of 

Emergency and Remedial Response: Washington, DC, USA, 1989. 

2. Alexeeff, G.; Faust, J.; Meehan, L.; Milanes, C.; Randles, K.; Zeise, L. Cumulative Impacts: 

Building a Scientific Foundation (Public Review Draft); California Environmental Protection 

Agency, California Office of Environmental Health Hazard Assessment: California, CA, USA, 

2010. 

3. Strategies for Addressing Environment Environmental Impacts in Environmental Justice 

Communities; Cumulative Impacts Subcommittee, Environmental Justice Advisory Council: 

Trenton, NJ, USA, 2009. 

4. Ensuring Risk Reduction in Communities with Multiple Stressors: Environmental Justice and 

Cumulative Risks/Impacts; National Environmental Justice Advisory Council, Cumulative 

Risks/Impacts Work Group: Washington, DC, USA, 2004. 

5. A Preliminary Screening Method to Estimate Cumulative Environmental Impacts; New Jersey 

Department of Environmental Protection: Trenton, NJ, USA, 2009. 

6. Science and Decisions: Advancing Risk Assessment [The Silver Book]; Committee on Improving 

Risk Analysis Approaches, National Research Council, National Academies Press: Washington, 

DC, USA, 2009. 

7. Levy, J.I. Is epidemiology the key to cumulative risk assessment? Risk Anal. 2008, 28,  

1507-1513. 



Int. J. Environ. Res. Public Health 2011, 8 2065 

 

 

8. Litonjua, A.A.; Carey, V.J.; Weiss, S.T.; Gold, D.R. Race, socioeconomic factors, and area of 

residence are associated with asthma prevalence. Pediatr. Pulmonol. 1999, 28, 394-401.  

9. Smedley, B.D.; Stith, A.Y.; Nelson, A.R. Unequal Treatment: Confronting Racial and Ethnic 

Disparities in Health Care; Institute of Medicine (IOM), Committee on Understanding and 

Eliminating Racial and Ethnic Disparities in Health Care, Board on Health Sciences Policy, 

National Academies Press: Washington, DC, USA, 2003.  

10. Nzerue, C.M.; Demissachew, H.; Tucker, J.K. Race and kidney disease: Role of social and 

environmental factors. J. Natl. Med. Assoc. 2002, 94, 28S-38S.  

11. Schulz, A.; Northridge, M.E. Social determinants of health: implications for environmental 

health promotion. Health Educ. Behav. 2004, 31, 455-471. 

12. Ward, E.; Jemal, A.; Cokkinides, V.; Singh, G.K.; Cardinez, C.; Ghafoor, A.; Thun, M. Cancer 

disparities by race/ethnicity and socioeconomic status. CA Cancer J. Clin. 2004, 54, 78-93. 

13. Gee, G.C.; Payne-Sturges, D.C. Environmental health disparities: A framework integrating 

psychosocial and environmental concepts. Environ. Health Perspect. 2004, 112, 1645-1653.  

14. Framework for Cumulative Risk Assessment; EPA/630/P-02/001F; US EPA, Risk Assessment 

Forum: Washington, DC, USA, 2003. 

15. Concepts, Methods and Data Sources for Cumulative Health Risk Assessment of Multiple 

Chemicals, Exposures and Effects: A Resource Document; EPA/600/R-06/013F; US EPA, 

Office of Research and Development, National Center for Environmental Assessment: Cincinnati, 

OH, USA, 2007.  

16 Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). 

Public Law 96-510, 1980; US Congress, 11 December 1980.  

17. A Review of the Reference Dose and Reference Concentration Processes (Final); EPA/630-P-

02/002F; US EPA, Risk Assessment Forum, Reference Dose/Reference Concentration (RfD/RfC) 

Technical Panel: Washington, DC, USA, 2002.  

18. Food Quality Protection Act. Public Law 104-170, 1996; US Congress, 3 August 1996.  

19. Preliminary Cumulative Risk Assessment of the Organophosphorus Pesticides; US EPA, Office 

of Pesticide Programs: Washington, DC, USA, 2001.  

20. Preliminary OP Cumulative Risk Assessment (Part I); US EPA: Washington, DC, USA, 2002; 

I.A 1- I.A 3.  

21. A Set of Scientific Issues Being Considered by the Environmental Protection Agency Regarding: 

Evaluation of the Common Mechanism of Action of the Pyrethroid Pesticides; SAP Minutes No. 

2009-07; In Proceedings of FIFRA Scientific Advisory Panel (SAP) Meeting, US Environmental 

Protection Agency Conference Center, Arlington, VA, USA, 16–17 June 2009.  

22. National Air Toxics Assessments. US EPA Technology Transfer Network Air Toxics Web Site. 

Available online: http://www.epa.gov/ttn/atw/natamain (accessed on 17 December 2010).  

23. National-Scale Air Toxics Assessment for 1996: Estimated Emissions, Concentrations and Risk. 

Technical Fact Sheet; US EPA, Office of Air Quality Planning and Standards: Research Triangle 

Park, NC, USA, 2002.  

24. US EPA. National-Scale Air Toxics Assessment for 1999: Estimated Emissions, Concentrations 

and Risk (Technical Fact Sheet). Available online: http://www.epa.gov/ttn/atw/nata1999/ 

natafinalfact.html (accessed on 31 January 2011).  



Int. J. Environ. Res. Public Health 2011, 8 2066 

 

 

25. US EPA. National-Scale Air Toxics Assessment for 2002—Fact Sheet. Available online: 

http://www.epa.gov/ttn/atw/nata2002/factsheet.html (accessed on 31 January 2011).  

26. O’Neill, M.S.; Jerrett, M.; Kawachi, I.; Levy, J.I.; Cohen, A.J.; Gouveia, N.; Wilkinson, P.; 

Fletcher, T.; Cifuentes, L.; Schwartz, J. Health, wealth, and air pollution: advancing theory and 

methods. Environ. Health Perspect. 2003, 111, 1861-1870.  

27. Wright, R.J.; Subramanian, S.V. Advancing a multilevel framework for epidemiologic research 

on asthma disparities. Chest 2007, 132, 757S-769S.  

28. Wright, R.J.; Suglia, S.F.; Levy, J.; Fortun, K.; Shields, A.; Subramanian, S.V.; Wright, R. 

Transdisciplinary research strategies for understanding socially patterned disease: the asthma 

coalition on community, environment, and social stress (ACCESS) project as a case study. Cien. 

Saude Colet. 2008, 13, 1729-1742.  

29. Clean Air Amendments of 1970. Public Law 91-604, 1970; US Congress, 31 December 1970.  

30. Pope, C.A.; Dockery, D.W. Health effects of fine particulate air pollution: Lines that connect.  

J. Air Waste Manage. Assoc. 2006, 56, 709-742.  

31. Integrated Science Assessment for Particulate Matter (Final); EPA/600/R-08/139F; US EPA, 

Office of Research and Development, National Center for Environmental Assessment—RTP 

Division: Research Triangle Park, NC, USA, 2009.  

32. Integrated Science Assessment for Carbon Monoxide; EPA/600/R- 09/019F; US EPA, National 

Center for Environmental Assessment—RTP Division: Research Triangle Park, NC, USA, 2010.  

33. Air Quality Criteria for Ozone and Related Photochemical Oxidants (Volume I of III); EPA 

600/R-05/004aF; US EPA, National Center for Environmental Assessment—RTP Division: 

Research Triangle Park, NC, USA, 2006.  

34. Air Quality Criteria for Lead. Volumes I and II (Final); EPA/600/R-5/144aF, US EPA, National 

Center for Environmental Assessment: Research Triangle Park, NC, USA, 2006.  

35. Integrated Science Assessment for Sulfur Oxides—Health Criteria; EPA/600/R-08/047F; US 

EPA, Office of Research and Development: Research Triangle Park, NC, USA, 2008.  

36. Integrated Science Assessment for Oxides of Nitrogen; EPA/600/R-08/071; US EPA, National 

Center for Environmental Assessment—RTP Division: Research Triangle Park, NC, USA, 2008.  

37.  Burin, G.J.; Saunders, D.R. Addressing human variability in risk assessment—the robustness of 

the intraspecies uncertainty factor. Regul. Toxicol. Pharmacol. 1999, 30, 209-216.  

38. Dourson, M.; Charnley, G.; Scheuplein, R. Differential sensitivity of children and adults to 

chemical toxicity. ii. risk and regulation. Regul. Toxicol. Pharmacol. 2002, 35, 448-467.  

39. DeFur, P.L.; Evans, G.W.; Cohen Hubal, E.A.; Kyle, A.D.; Morello-Frosch, R.A.;  

Williams, D.R. Vulnerability as a function of individual and group resources in cumulative risk 

assessment. Environ. Health Perspect. 2007, 115, 817-824.  

40. Morello-Frosch, R.; Shenassa, E.D. The environmental ―riskscape‖ and social inequality: 

Implications for explaining maternal and child health disparities. Environ. Health Perspect. 2006, 

114, 1150-1153.  

41. Field-Deployable Tools for Quantifying Exposures to Psychosocial Stress and to Addictive 

Substances for Studies of Health and Disease; National Institutes of Health, Genes and 

Environmental Initiative Exposure Biology Program, NIH Presentation: Bethesda, MD, USA, 

2006.  



Int. J. Environ. Res. Public Health 2011, 8 2067 

 

 

42. Tucker, P. Report of the Expert Panel Workshop on the Psychological Responses to Hazardous 

Substances; US Department of Health and Human Services, Agency for Toxic Substances and 

Disease Registry (ATSDR): Atlanta, GA, USA, 1999.  

43. Bacigalupe, G.; Fujiwara, T.; Selk, S.; Woo, M. Community violence as psychosocial stressor: 

the case of childhood asthma in Boston. Psychology 2010, 1, 27-34.  

44. EPA Research and Development: Risk Paradigm. US EPA, Office of Research and Development. 

Available online: http://www.epa.gov/ord/htm/risk.htm (accessed on 17 May 2010).  

45. Risk Assessment in the Federal Government: Managing the Process; NRC, Committee on the 

Institutional Means for Assessment of Risks to Public Health: Washington, DC, USA, 1983.  

46. Menzie, C.A.; MacDonell, M.M.; Mumtaz, M. A phased approach for assessing combined 

effects from multiple stressors. Environ. Health Perspect. 2007, 115, 807-816.  

47. Chen, W.C.; McKone, T.E. Chronic health risks from aggregate exposures to ionizing radiation 

and chemicals: Scientific basis for an assessment framework. Risk Anal. 2001, 21, 25-42.  

48. Prasher, D.; Morata, T.; Campo, P.; Fechter, .L; Johnson, A.C.; Lund, S.P.; Pawlas, K.;  

Starck, J.; Sliwinska-Kowalska, M.; Sulkowski, W. NoiseChem: An European commission 

research project on the effects of exposure to noise and industrial chemicals on hearing and 

balance. Noise Health 2002, 4, 41-48.  

49. Biosolids Applied to Land: Advancing Standards and Practices; National Research Council, 

Committee on Toxicants and Pathogens in Biosolids Applied to Land, National Academies Press: 

Washington, DC, USA, 2002.  

50. CADDIS: The Causal Analysis/Diagnosis Decision Information System. US EPA. Available 

online: http://www.epa.gov/caddis (accessed on 17 December 2010).  

51. Ben-Shlomo, Y.; Kuh, D. A life course approach to chronic disease epidemiology: Conceptual 

models, empirical challenges and interdisciplinary perspectives. Int. J. Epidemiol. 2002, 31,  

285-293.  

52. Adler, N.E.; Ostrove, J.M. Socioeconomic status and health: What we know and what we don’t. 

Ann. NY Acad. Sci. 1999, 896, 3-15.  

53. Social Determinants of Health: The Solid Facts, 2nd ed; Wilkinson, R., Marmot, M., Eds.; World 

Health Organization: Copenhagen, Denmark, 2003.  

54. Barzyk, T.M.; Conlon, K.C.; Chahine, T.; Hammond, D.M.; Zartarian, V.G.; Schultz, B.D. Tools 

available to communities for conducting cumulative exposure and risk assessments. J. Expo. Sci. 

Environ. Epidemiol. 2010, 20, 371-384.  

55. Zartarian, V.G.; Schultz, B.D. The EPA’s human exposure research program for assessing 

cumulative risk in communities. J. Expo. Sci. Environ. Epidemiol. 2010, 20, 351-358.  

56. Ryan, P.B.; Burke, T.A.; Cohen Hubal, E.A.; Cura, J.J.; McKone, T.E. Using biomarkers to 

inform cumulative risk assessment. Environ. Health Perspect. 2007, 115, 833-840.  

57. Centers for Disease Control and Prevention (CDC). Interpreting and Managing Blood Lead 

Levels <10 µg/dL in Children and Reducing Childhood Exposures to Lead: Recommendations of 

CDC’s Advisory Committee on Childhood Lead Poisoning Prevention. MMWR 2007, 56 (No. 

RR-8), 1-16.  



Int. J. Environ. Res. Public Health 2011, 8 2068 

 

 

58. Al Zabadi, H.; Ferrari, L.; Laurent, A.M.; Tiberguent, A.; Pris, C.; Zmirou-Navier, D. 

Biomonitoring of complex occupational exposures to carcinogens: the case of sewage workers in 

Paris. BMC Cancer 2008, 8, 67.  

59. Györffy, E.; Anna, L.; Kovacs, K.; Rudnai, P.; Schoket, B. Correlation between biomarkers of 

human exposure to genotoxins with focus on carcinogen–DNA adducts. Mutagenesis 2008, 73, 

1-18.  

60. Sram, R.J.; Binkova, B. Molecular epidemiology studies on occupational and environmental 

exposure to mutagens and carcinogens, 1997-1999. Environ. Health Perspect. 2000, 108, 57-70.  

61. Franco, S.S.; Nardocci, A.C.; Gunther, W.M. PAH biomarkers for human health risk assessment: 

A review of the state-of-the-art. Cad. Saude Publica 2008, 24, S569-S580.  

62. McEwen, B.S. Central effects of stress hormones in health and disease: Understanding the 

protective and damaging effects of stress and stress mediators. Eur. J. Pharmacol. 2008, 583, 

174-185.  

63. Dowd, J.B.; Simanek, A.M.; Aiello, A.E. Socio-Economic status, cortisol and allostatic load: A 

review of the literature. Int. J. Epidemiol. 2009, 38, 1297-1309.  

64. Seeman, T.; Epel, E.; Gruenewald, T.; Karlamanga, A.; McEwen, B.S. Socio-Economic 

differentials in peripheral biology: Cumulative allostatic load. Ann. NY Acad. Sci. 2010, 1186, 

223-239.  

65. Supplementary Guidance for Conducting Health Risk Assessment of Chemical Mixtures; 

EPA/630/R-00/002; US EPA, Risk Assessment Forum: Washington, DC, USA, 2000.  

66. Hertzberg, R.C.; MacDonell, M.M. Synergy and other ineffective mixture risk definitions. Sci. 

Total Environ. 2002, 288, 31-42.  

67. Teuschler, L.K. Deciding which chemical mixtures risk assessment methods work best for what 

mixtures. Toxicol. Appl. Pharmacol. 2007, 223, 139-147.  

68. Cory-Slechta, D.A.; Virgolini, M.B.; Rossi-George, A.; Thiruchelvam, M.; Lisek, R.; Weston, D. 

Lifetime consequences of combined maternal lead and stress. Basic Clin. Pharmacol. Toxicol. 

2008, 102, 218-227.  

69. Clougherty, J.E.; Levy, J.I.; Kubzansky, L.D.; Ryan, P.B.; Suglia, S.F.; Canner, M.J.;  

Wright, R.J. Synergistic effects of traffic-related air pollution and exposure to violence on urban 

asthma etiology. Environ. Health Perspect. 2007, 115, 1140-1146.  

70. Clougherty, J.E.; Kubzansky, L.D. A framework for examining social stress and susceptibility to 

air pollution in respiratory health. Environ. Health Perspect. 2009, 117, 1351-1358.  

71. Wason, S.C.; Smith, T.J.; Evans, J.S.; Perry, M.J.; Levy. J.I. Modeling Organophosphate Dose 

Effects with Other Stressors for Children in an Urban Low-Income Environment. Presented  

at The Society of Risk Analysis Conference, Baltimore, MD, USA, 6–9 December 2009;  

Paper T2-D.4.  

72. Goldstein, D.S. Computer models of stress, allostasis, and acute and chronic diseases. Ann. NY 

Acad. Sci. 2008, 1148, 223-231.  

73. Polkowski, R. Environmental Justice Case Study: Toxic Waste in Chester, Pennsylvania. 

Available online: http://www.umich.edu/~snre492/polk.html (accessed on 31 January 2011).  

74. Environmental Risk Study for City of Chester, Pennsylvania (Summary Report); US EPA Region 

III;, Department of Environmental Resources: Cbester, PA, USA, 1995.  



Int. J. Environ. Res. Public Health 2011, 8 2069 

 

 

75. The Environmental Justice Strategic Enforcement Assessment Tool (EJSEAT), US EPA, Office 

of Enforcement and Compliance Assurance, Environmental Justice. Available online: 

http://www.epa.gov/compliance/ej/resources/policy/ej-seat.html (accessed on 17 December 

2010).  

76. Community-Focused Exposure and Risk Screening Tool (C-FERST), US EPA, Human Exposure 

and Atmospheric Sciences. Available online: http://www.epa.gov/heasd/c-ferst/ (accessed on 29 

November 2010).  

77. Fox, M.A.; Groopman, J.D.; Burke, T.A. Evaluating cumulative risk assessment for 

environmental justice: A community case study. Environ. Health Perspect. 2002, 110, 203-209.  

78. Su, J.G.; Morello-Frosch, R.; Jesdale, B.M;. Kyle, A.D.; Shamasunder, B.; Jerrett, M. An index 

for assessing demographic inequalities in cumulative environmental hazards with application to 

Los Angeles, California. Environ. Sci. Technol. 2009, 43, 7626-7634.  

79. Schneider, J.S.; Lee, M.H.; Anderson, D.W.; Zuck, L.; Lidsky, T.I. Enriched environment during 

development is protective against lead-induced neurotoxicity. Brain Res. 2001, 896, 48-55.  

80. Guilarte, T.R.; Toscano, C.D.; McGlothan, J.L.; Weaver, S.A. Environmental enrichment 

reverses cognitive and molecular deficits induced by developmental lead exposures. Ann. Neurol. 

2003, 53, 50-56.  

81. Clougherty, J.E.; Rossi, C.A.; Lawrence, J.; Long, M.D.; Diaz, E.A.; Lim, R.; McEwen, B.; 

Koutrakis, P.; Godleski, J.J. Chronic social stress and susceptibility to concentrated ambient fine 

particles in rats. Environ. Health Perspect. 2010, 118, 769-775.  

82. Kristenson, M.; Eriksen, H.R.; Sluiter, J.K.; Starke, D.; Ursin, H. Psychobiological mechanisms 

of socioeconomic differences in health. Soc. Sci. Med. 2004, 58, 1511-1522.  

83. Dockery, D.W.; Pope, C.A. III; Xu, X.; Spengler, J.D.; Ware, J.H.; Fay, M.E.; Ferris, B.G., Jr.; 

Speizer, F.E. An association between air pollution and mortality in six U.S. cities. N. Engl. J. 

Med. 1993, 329, 1753-1759.  

84. Krewski, D.; Burnett, R.T.; Goldberg, M.S.; Hoover, K.; Siemiatycki, J.; Jerrett, M.; 

Abrahamowicz, M.; White, W.H. Reanalysis of the Harvard Six Cities Study and the American 

Cancer Society Study of Particulate Air Pollution and Mortality, Part II: Sensitivity Analyses; 

Health Effects Institute: Cambridge, MA, USA, 2000; pp. 129-293. 

85. Krewski, D.; Jerrett, M.; Burnett, R.T.; Ma, R.; Hughes, E.; Shi, Y.; Turner, M.C.; Pope, A.; 

Thurston, G.; Calle, E.E.; Thun, M.J. Extended Follow-Up and Spatial Analysis of the American 

Cancer Society Study Linking Particulate Air Pollution and Mortality; HEI Research Report 140; 

Health Effects Institute: Cambridge, MA, USA, 2009.  

86. Gwynn, R.C.; Thurston, G.D. The burden of air pollution: Impacts among racial minorities. 

Environ. Health Perspect. 2001, 109, 501-506.  

87. Zanobetti, A; Schwartz, J. Race, gender and social status as modifiers of the effects of PM10 on 

mortality. J. Occup. Environ. Med. 2000, 42, 469-474.  

88. Last J.M. A Dictionary of Epidemiology, 4th ed.; Oxford University Press: New York, NY, USA, 

2001.  

  



Int. J. Environ. Res. Public Health 2011, 8 2070 

 

 

89. Jerrett, M.; Burnett, R.T.; Brook, J.; Kanaroglou, P.; Giovis, C.; Finkelstein, N.; Hutchison, B. 

Do socioeconomic characteristics modify the short term association between air pollution and 

mortality? Evidence from a zonal time series in Hamilton, Canada. J. Epidemiol. Community 

Health 2004, 58, 31-40.  

90. Franklin, M.; Koutrakis, P.; Schwartz, J. The role of particle composition on the association 

between PM-2.5 and mortality. Epidemiology 2008, 19, 680-689.  

91. Samet, J.M.; Dominici, F.; Curriero, F.C.; Coursac, I.; Zeger, S.L. Fine particulate air pollution 

and mortality in 20 U.S. cities, 1987-1994. N. Engl. J. Med. 2000, 343, 1742-1749.  

92. Schwartz, J. Assessing confounding, effect modification, and thresholds in the association 

between ambient particles and daily deaths. Environ. Health Perspect. 2000, 108, 563-568.  

93. O’Neill, M.S.; Loomis, D.; Borja-Aburto, V.H. Ozone, area social conditions, and mortality in 

Mexico City. Environ. Res. 2004, 94, 234-242.  

94. Martins, M.C.; Fatigati, F.L.; Vespoli, T.C.; Martins, L.C.; Pereira, L.A.; Martins, M.A.;  

Saldiva, P.H.; Braga, A.L. Influence of socioeconomic conditions on air pollution adverse health 

effects in elderly people: an analysis of six regions in São Paulo, Brazil. J. Epidemiol. 

Community Health 2004, 58, 41-46.  

95. Gouveia, N.; Fletcher, T. Time series analysis of air pollution and mortality: effects by cause, age 

and socioeconomic status. J. Epidemiol. Community Health 2000, 54, 750-755.  

96. Villeneuve, P.J.; Burnett, R.T.; Shi, Y.; Krewski, D.; Goldberg, M.S.; Hertzman, C.; Chen, Y.; 

Brook, J. A time-series study of air pollution, socioeconomic status, and mortality in Vancouver, 

Canada. J. Expo. Anal. Environ. Epidemiol. 2003, 13, 427-435.  

97. Zeka, A.; Zanobetti, A.; Schwartz, J. Individual-level modifiers of the effects of particulate 

matter on daily mortality. Am. J. Epidemiol. 2006, 163, 849-859.  

98. Forastiere, F.; Stafoggia, M.; Tasco, C.; Picciotto, S.; Agabiti, N.; Cesaroni, G.; Perucci, C.A. 

Socioeconomic status, particulate air pollution, and daily mortality: Differential exposure or 

differential susceptibility. Am. J. Ind. Med. 2007, 50, 208-216.  

99. Bell, M.L.; Dominici, F. Effect modification by community characteristics on the short-term 

effects of ozone exposure and mortality in 98 US communities. Am. J. Epidemiol. 2008, 167, 

986-997.  

100. Filleul, L.; Rondeau, V.; Vandentorren, S.; Le Moual, N.; Cantagrel, A.; Annesi-Maesano, I.; 

Charpin, D.; Declercq, C.; Neukirch, F.; Paris, C.; et al. Twenty five year mortality and air 

pollution: results from the French PAARC survey. Occup. Environ. Med. 2005, 62, 453-460.  

101. Hoek, G.; Brunekreef, B.; Goldbohm, S.; Fischer, P.; van den Brandt, P.A. Association between 

mortality and indicators of traffic-related air pollution in The Netherlands: A cohort study. 

Lancet 2002, 360, 1203-1209.  

102. Finkelstein, M.M.; Jerrett, M.; DeLuca, P.; Finkelstein, N.; Verma, D.K.; Chapman, K.;  

Sears, M.R. Relation between income, air pollution and mortality: A cohort study. CMAJ 2003, 

108, 57-70.  

103. Finkelstein, M.M.; Jerrett, M.; Sears, M.R. Environmental inequality and circulatory disease 

mortality gradients. J. Epidemiol. Community Health 2005, 59, 481-487.  



Int. J. Environ. Res. Public Health 2011, 8 2071 

 

 

104. Dietrich, K.N.; Succop, P.A.; Berger, O.G.; Hammond, P.B.; Bornschein, R.L. Lead exposure 

and the cognitive development of urban preschool children: The cincinnati lead study cohort at 

age 4 years. Neurotoxicol. Teratol. 1991, 13, 203-211.  

105. Ris, M.D.; Dietrich, K.N.; Succop, P.A.; Berger, O.G.; Bornschein, R.L. Early exposure to lead 

and neuropsychological outcome in adolescence. J. Int. Neuropsychol. Soc. 2004, 10, 261-270.  

106. Tong, S.; McMichael, A.J.; Baghurst, P.A. Interactions between environmental lead exposure 

and sociodemographic factors on cognitive development. Arch. Environ. Health 2000, 55, 330-335.  

107. Winneke, G.; Kraemer, U. Neuropsychological effects of lead in children: Interactions with 

social background variables. Neuropsychobiology 1984, 11, 195-202.  

108. Bellinger, D.; Leviton, A.; Waternaux, C.; Needleman, H.; Rabinowitz, M. Low-Level lead 

exposure, social class, and infant development. Neurotoxicol. Teratol. 1989, 10, 497-503.  

109. Glass, T.A.; Bandeen-Roche, K.; McAtee, M.; Bolla, K.; Todd, A.C.; Schwartz, B.S. 

Neighborhood psychosocial hazards and the association of cumulative lead dose with cognitive 

function in older adults. Am. J. Epidemiol. 2009, 169, 683-692.  

110. Peters, J.L.; Kubansky, L.; McNeely, E.; Schwartz, J.; Spiro, A. III; Sparrow, D.; Wright, R.O.; 

Nie, H.; Hu, H. Stress as a potential modifier of the impact of lead levels on blood pressure: The 

normative aging study. Environ. Health Perspect. 2007, 115, 1154-1159.  

111. Cakmak, S.; Dales, R.E., Judek, S. Do gender, education, and income modify the effect of air 

pollution gases on cardiac disease? J. Occup. Environ. Med. 2006, 48, 89-94.  

112. Shankardass, K.; McConnell, R.; Jerrett, M.; Milam, J.; Richardson, J.; Berhane, K. Parental 

stress increases the effect of traffic-related air pollution on childhood asthma incidence. Proc. 

Natl. Acad. Sci. USA 2009, 106, 12406-12411.  

113. Cakmak, S.; Dales, R.E.; Judek, S. Respiratory health effects of air pollution gases: Modification 

by education and income. Arch. Environ. Occup. Health 2006, 61, 5-10.  

114. Lin, M.; Chen, Y.; Villeneuve, P.; Burnett, R.; Lemyre, L.; Hertzman, C.; McGrail, K.; Krewski, D. 

Gaseous air pollutants and asthma hospitalization of children with low household income in 

Vancouver, British Columbia, Canada. Am. J. Epidemiol. 2004, 159, 294-303.  

115. Grineski, S.E.; Staniswalis, J.G.; Peng, Y.; Atkinson-Palombo, C. Children’s asthma 

hospitalizations and relative risk due to nitrogen dioxide (NO2): Effect modification by race, 

ethnicity and insurance status. Environ. Res. 2010, 110, 178-188.  

116. Gwynn, R.C.; Thurston, G.D. The burden of air pollution: Impacts among racial minorities. 

Environ. Health Perspect. 2001, 109, 501-506.  

117. Chen, E.; Schreier, H.M.; Strunk, R.C.; Brauer, M. Chronic traffic-related air pollution and stress 

interact to predict biologic and clinical outcomes in asthma. Environ. Health Perspect. 2008, 116, 

970-975.  

118. Adler, N.E.; Newman, K. Socioeconomic disparities in health: Pathways and policies. Health Aff. 

(Millwood) 2002, 21, 60-76.  

119. Steenland, K.; Henley, J.; Calle, E.; Thun, M. Individual- and area-level socioeconomic status 

variables as predictors of mortality in a cohort of 179,383 persons. Am. J. Epidemiol. 2004, 159, 

1047-1056.  

120. Zanobetti, A.; Schwartz, J.; Gold, D. Are there sensitive subgroups for the effects of airborne 

particles? Environ. Health Perspect. 2000, 108, 841-845.  



Int. J. Environ. Res. Public Health 2011, 8 2072 

 

 

121. Goldberg, M.S.; Bailar, J.C.; Burnett, R.T.; Brook, J.R.; Tamblyn, R.; Bonvalot, Y.; Ernst, P.; 

Flegel, K.M.; Singh, R.K.; Valois, M.F. Identifying Subgroups of the General Population That 

May Be Susceptible to Short-term Increases in Particulate Air Pollution: A Time-series Study in 

Montreal, Quebec; HEI Research Report 97; Health Effects Institute, Cambridge, MA, USA, 

2000.  

122. Ito, K.; Thurston, D.G. Daily PM10 mortality/associations: An investigation of at-risk 

subpopulations. J. Expo. Anal. Environ. Epidemiol. 1996, 6, 79-95.  

123. Krewski, D.; Burnett, R.T.; Goldberg, M.S.; Hoover, B.K.; Siemiatycki, J.; Jerrett, M.; 

Abrahamowicz, M.; White, W.H. Overview of the reanalysis of the harvard six cities study and 

American cancer society study of particulate air pollution and mortality. J. Toxicol. Environ. 

Health 2003, 66, 1507-1551.  

124. Pope, C.A.; Burnett, R.T.; Thurston, G.D.; Thun, M.J.; Calle, E.E.; Krewski, D.; Godleski, J.J. 

Cardiovascular mortality and long-term exposure to particulate air pollution: epidemiological 

evidence of general pathophysiological pathways of disease. Circulation 2004, 109, 71-77.  

125. Pope, C.A.; Burnett, R.T.; Thun, M.J.; Calle, E.E.; Krewski, D.; Ito, K.; Thurston, G.D. Lung 

cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. 

JAMA 2002, 287, 1132-1141.  

126. Pope, C.A.; Thun, M.J.; Namboodiri, M.M.; Dockery, D.W.; Evans, J.S.; Speizer, F.E.;  

Heath, C.W. Particulate air pollution as a predictor of mortality in a prospective study of U.S. 

adults. Am. J. Respir. Crit. Care Med. 1995, 151, 669-674.  

127. Laurent, O.; Bard, D.; Filleul, L.; Segala, C. Effect of socioeconomic status on the relationship 

between atmospheric pollution and mortality. J. Epidemiol. Community Health 2007, 61, 665-675.  

128. Dragano, N.; Bobak, M.; Wege, N.; Peasey, A.; Verde, P.E.; Kubinova, R.; Weyers, S.;  

Moebus, S.; Mohlenkamp, S.; Stang, A.; et al. Neighbourhood socioeconomic status and 

cardiovascular risk factors: A multilevel analysis of nine cities in the Czech Republic and 

Germany. BMC Public Health 2007, 7, 255.  

129. Harvey, P.G.; Hamlin, M.W.; Kumar, R. Blood lead, behavior and intelligence test performance 

in preschool children. Sci. Total Environ. 1984, 40, 45-60. 

130. Lansdown, R.; Yule, W.; Urbanowicz, M.A.; Hunter, J. The relationship between blood-lead 

concentrations, intelligence, attainment and behavior in a school population: The second london 

study. Int. Arch. Occup. Environ. Health 1986, 57, 225-235.  

131. Tong, I.S.; Lu, Y. Identification of confounders in the assessment of the relationship between 

lead exposure and child development. Ann. Epidemiol. 2001, 11, 38-45.  

132. Lanphear, B.P.; Hornung, R.; Khoury, J.; Yolton, K.; Baghurst, P.; Bellinger, D.C.; Canfield, R.L.; 

Dietrich, K.N.; Bornschein, R.; Greene, T.; et al. Low-Level environmental lead exposure and 

children’s intellectual function: An international pooled analysis. Environ. Health Perspect. 2005, 

113, 894-899.  

133. Koller, K.; Brown, T.; Spurgeon, A.; Levy, L. Recent developments in low-level lead exposure 

and intellectual impairment in children. Environ. Health Perspect. 2004, 112, 987-994.  

  



Int. J. Environ. Res. Public Health 2011, 8 2073 

 

 

134. Bellinger, D.C. Effect modification in epidemiologic studies of low-level neurotoxicant 

exposures and health outcomes. Neurotoxicol. Teratol. 2000, 22, 133-140.  

135. Evans, G.W.; Marcynyszyn, L.A. Environmental justice, cumulative environmental risk, and 

health among low- and middle-income children in upstate New York. Am. J. Public Health 2004, 

94, 1942-1944.  

© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/3.0/). 


