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Animal Study to Evaluate the Effect 
of Carbon Dioxide Insufflation 
on Recurrent Laryngeal Nerve 
Function in Transoral Endoscopic 
Thyroidectomy
Daqi Zhang1, Shijie Li1, Gianlorenzo Dionigi   2, Jiao Zhang1, Chunbo Niu3, Tie Wang1, 
Nan Liang1 & Hui Sun   1

Data with regard to potential recurrent laryngeal nerve (RLN) compromise caused by intra-neck CO2 
insufflation during transoral endoscopic thyroidectomy vestibular approach (TOETVA) are missing. 
RLN electromyographic (EMG) profiles, metabolic and hemodynamic parameters (oxygen saturation, 
heart rate, blood pressure, experimental time, CO2 partial pressure, pH, O2 partial pressure), central 
venous pressure (CVP), airpocket temperature and pressure were recorded in a TOETVA animal model. 
Twelve pigs were randomly divided into different groups according to increasing CO2 insufflation 
pressures. Nerves segments were then collected for histopathology. Significant variation of metabolic 
and hemodynamic parameters were registered when CO2 insufflation pressures increased x3 and x5 the 
baseline parameters. Combined EMG amplitude drop and latency increase also were documented. There 
was no significant change in the intraluminal temperature. RLNs structure were preserved with normal 
axons, no fibrosis, and no vacuolization and without loss of myelinated fibers during the experiment. 
RLN EMG profiles (but not histology) were altered when CO2 insufflation pressures increased.

Transoral endoscopic thyroidectomy vestibular approach (TOETVA) is a natural orifice transluminal endoscopic 
surgery and is now being widely applied1–3. The advantages of TOETVA consist of improved cosmetic outcomes, 
median approach, near access to thyroid gland, limited tissue dissection and combined level VI and VII lymph 
node clearance2,3.

Carbon dioxide (CO2) insufflation is required at 6 mmHg to produce and maintain an optical working cavity 
that enables the dissection to proceed and lessen external mechanical retraction4.

Data with regard to potential recurrent laryngeal nerve (RLN) compromise caused by intra-neck CO2 insuf-
flation are missing. The hypothesis of the present study is that CO2 may irritate the laryngeal nerves and affect 
the physiology of the surrounding tissue. For instance, post-endoscopic shoulder pain frequently follows a lap-
aroscopic cholecystectomy5. A proposed mechanism is the transient injury of the phrenic nerve (PN) by CO2 
during peritoneal insufflation6. The incidence of such pain varies from 35–50%, and in some cases, the pain has 
been reported to last longer than 72 hours5–7. The actual cause of PN irritation is the result of cellular death caused 
by the combination of a temperature change from the gas at 70 °F and the drying effect of the gas at 0.0002%5–7.

The purposes of this prospective experimental study were: (a) establish TOETVA animal model; (b) assess 
potential adverse effects of CO2 insufflation on RLN function.
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Materials and Methods
Setting, regulations, policies and principles.  The Institutional Animal Care and Use Program 
Committee in Research of Jilin University approved this prospective randomized experimental study, which 
was conducted in 2018 in accordance with the Guidelines of animal research8. The study was supported by 
the National Nature Science Foundation of China (no. 81702651), China Postdoctoral Science Foundation 
(no. 2017M611313), Department of Science and Technology of Jilin Province (no. 20170520018JH and 
20190201225JC) and Department of Finance of Jilin Province (no. SCZSY201714 and SCZSY201504). The con-
duct of experimentation on living animals was exclusively under the supervision of qualified, experienced attend-
ing veterinarian personnel8.

Design.  Prospective randomized experimental study.

Personnel training.  Personnel involved in the present study were provided with defined experimental, thy-
roidal, TOETVA and neural monitoring (IONM) procedures, with adequacy of experience of more than 1.000 
human and 100 animal procedures9,10. They were trained in standardized IONM and TOETVA technique, unu-
sual endoscopic conditions, trouble shooting algorithms, appropriate use of endoscopy9,10.

Animals breads.  Twelve male species of Duroc–Landrace piglets provided by the Animal Research 
Laboratory Center of Jilin University, were tested.

Sedation, analgesia, and anesthesia.  Intraoperatively, animals were in supine position with the neck 
slightly extended. Piglets induction anaesthesia comprised 0.5 mg atropine sulphate via subcutaneous injection, 
and intramuscular administration of 40 mg (2 mg/kg) each of tiletamine/zolazepam and xylazine hydrochloride. 
Electromiographic (EMG) electrode surface endotracheal tubes (standard reinforced 7.0# internal diameter ID, 
Medtronic, Jacksonville, FL, USA) were properly inserted11. The depth and angle of contact between the endotra-
cheal tube (ET) electrode surface and the mucosa of the vocal cord were confirmed by video laryngoscopy. Muscle 
relaxants were avoided during all procedures11. General anesthesia was maintained by using Isoflurane (2.0–3.0%) 
and oxygen (2.0 L/min)11. Animals underwent electrocardiographic monitoring. Animals were ventilated to stabi-
lize PaCO2 at 35–45 mmHg. Then, ventilation was maintained at a constant level for the remainder of the experi-
ment. Intravenous isotonic sodium chloride solution was administered at a constant rate (0.9% sodium chloride, 
75 mL per hour).

Intraoperative neural monitoring equipment.  Nerve Monitoring System 3.0 (Medtronic, Jacksonville, 
FL, USA) software was used to record the electromyogram. Nerves were stimulated with a single-use, incre-
menting stimulating probe (no. 8225490; Medtronic), with an impulse duration of 100 ms and frequency of 
4 Hz11. Real-time EMG data were obtained via continuous VN stimulation using a 2.0 mm Automatic Periodic 
Stimulation (APS) electrode (Medtronic, Jacksonville, FL, USA)11,12. The amplitude and latency waveforms were 
displayed separately, and the upper limit threshold for the latency (+10 percent) and lower limit threshold for 
amplitude (−50 percent) were depicted as separate alarm lines12.

Experimental Set-up, operation, evaluations and endpoints.  APS and central venous catheter (CVC) 
insertion.  The APS was located outside the surgical field. Figure 1 depict APS and CVC insertion. The location 
of the carotid sheet was identified by landmarks and with the use of a ultrasound (US) device. A longitudinal 
incision of about 2 cm was outlined 5 cm above the left clavicle. VN and internal jugular vein were surgically 
exposed (Fig. 1A). APS probe was carefully placed on the VN (Fig. 1B). The functional integrity of the VN was 
confirmed by proximal and distal stimulation of APS location to verify whether the dissection or electrode place-
ment determined VN injury (Fig. 1b). After connecting the APS electrode with the monitor system, baselines 
for the latency and amplitude of the evoked response were calibrated automatically to serve as control data. 
Stimulation frequency for C-IONM was set for every second, thus evaluating the RLN and VN constantly. During 
the experiment, stimulated EMG signals were registered continuously. CVC was tunnelled with disposable sterile 
pediatric catheter (Baihe Medical ABLE®, Guangdong, China) into the internal jugular vein for 10 cm and placed 
into superior vena cava (Fig. 1C,D). US was performed afterwards to confirm that the line was positioned inside 
the superior vena cava. CVC was fix on the the skin and connect to 0.9% saline infusion (Fig. 1D,E). The distal 
port was attached to manometer scale (Medifix®, B. Braun Melsungen, Hessen, Germany) for measurement of 
the central venous pressure (CVP). A supplementary video describes the procedure (Video 1). Baseline CVP was 
continuously measured in the midaxillary left line.

TOETVA and RLN exposure.  TOETVA procedure have been previously described in both human and animal 
series13,14. Figure 2 details surgery. The cavity that was created had the subcutaneous tissue and platysma as the 
roof and the trachea, the sternohyoid and sternothyroid muscles on the floor. The muscles were then separated in 
the midline and the thyroid gland exposed. The gland was freed from the trachea (Fig. 2C). Hemostasis was then 
confirmed. The left RLNs were identified, exposed and monitored unilaterally on the same side of APS location 
(Fig. 2D). Direction of RLN dissection was from cranial to caudal (Fig. 2D).

CO2 insufflation.  During dissection, CO2 insufflation was maintained at 6 mmHg with a flow rate of 15 L/min 
through the 10 mm central trocar. An elastic bandage was placed around the trocars vestibular surfaces to avoid 
air leakage (Figs 2b and 3a). The insufflator (Karl Storz-electronic endoflator #2643050, Tuttingen, Germany), was 
capable of regulating the gas flow and maintaining a constant positive pressure in the closed space.
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Figure 1.  APS and CVC insertion. (A) A longitudinal incision is outlined above the clavicle. (B) APS probe is 
carefully placed on the VN. (C,D) CVC is tunnelled into the internal jugular vein. (E) CVC is fix on the the skin 
and connect to 0.9% saline infusion.

Figure 2.  TOETVA procedure. (A) Surgery is initiated with a 10 mm incision in the center of the oral vestibule 
just above the inferior labial frenulum for the 10 mm trocar insertion. (B) Two 5 mm trocars are then inserted at 
the lateral incisions. (C) The dissection is in the subplatysmal plane above the strap muscles. The boundaries of 
the subplatysmal working space are defined as follows: inferior border at the sternal notch, lateral borders at the 
edges of the sternocleidomastoid muscles, and superior border at the thyroid cartilage. Dissection of the thyroid 
lobe is then continued. (D) RLN is identified at the laryngeal insertion and dissected parallel to the trachea and 
downwards to the trachea.
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Airpocket temperature and pressure determinations.  Figure 3 describes procedures for airpocket temperature 
(Testo 108 Type T Thermometer, Lenzkirch, Germany) and pressure percutaneous determinations (Testo 510 
Portable Pressure Indicator, Lenzkirch, Germany).

Protocol design.  After stabilization of blood gasses and hemodynamic parameters, baseline determinations were 
recorded before insufflation started. The animals underwent TOETVA. To minimize the potential bias of CO2 
pressure on the contralateral nerves, solely unilateral (i.e. left) RLN dissection and monitoring was performed 
(same side of APS location). Twelve pigs (i.e. 12 left RLNs) were randomly divided into 4 groups (i.e. 3 animals, 
3 left RLNs per group) according to CO2 insufflation pressure, which was maintained at a constant level for the 
duration of the experiment at one of the following levels: 1x CVP (Group 1), 2x CVP (Group 2), 3x CVP (Group 
3), 5x CVP (Group 4) (Fig. 4). Carbon dioxide insufflation was maintained 180 minutes in all the pigs.

Main outcome measure.  Recurrent laryngeal nerve and VN EMG parameter values (amplitude and latency) 
from ET electrodes were recorded continually. Testing was conducted without any manipulation or traction on 
the trachea to avoid changes to the contact area of the electrodes. Attempts were to keep the surgical field dry to 
avoid any artifacts and\or signal shunting and\or dispersion. Loss of signal was assumed in the event of signal 
failure or EMG signal <100 μV with a primary intact signal and adequate stimulation of 1–2 mA11. In case of LOS 
during the experimental procedures, the surgeon used the handheld stimulating probe for repeated tests of the 
RLN to observe any modification of amplitude or latency EMG signal and to elucidate location of injury. LOS was 
stratified according to Guidelines into segmental (type 1) or global injury (type 2)11.

Secondary outcomes measures.  Oxygen saturation, heart rate, blood pressure, experimental time, blood gas 
(ABG) analysis (CO2 partial pressure, pH, O2 partial pressure), CVP, airpocket temperature and pressure were 
recorded. Blood analysis was performed using a analyzer (Radiometer ABL 90 FLEX Radiometer Medical, 
Bronshoj, Denmark). The samples were analyzed immediately in a laboratory next to the operating room.

Histopathology.  Inferior laryngeal nerves segments were collected for histopathology to compare the morpho-
logical alterations caused by the experiments above. Hematoxylin and eosin (HE) histological staining will be 
used to distinguish and identify the RLN composition.

Statistical investigation.  Values for each of the variables were obtained at base line, 10 minutes into the exper-
imental procedure and after completion. All data are reported as mean ± standard deviation (SD). Statistical 
analyses were performed using the software package SPSS® v. 22 for Windows® (IBM, Armonk, New York, USA). 
Group comparisons were analysed with one-way analysis of variance. Group comparisons were performed using 
Student’s t-test. P < 0.05 was considered statistically significant. The sample size was estimated based on the prin-
ciple of detecting a difference of −150 mcV between the mean of EMG amplitude with a 90% probability at 
p < 0.05, using power curve and sample size tools for 1-way analysis of variance (ie, a sample size of 24 nerves at 
risk - NAR - i.e. 12 animals) should provide 90% power to detect an amplitude difference of 150 mcV.

Results
Experimental model.  APS and CVP placements, TOETVA were successfully performed in all cases with no 
occurrence of complications. Twelve left RLNs were finely exposed and monitored.

Figure 3.  Airpocket temperature and pressure percutaneous determinations. (A) Pig model; (B) pressure 
gauge; (C) thermometer; (D) intra-neck endoscopic pictures of devices.
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Animals breads and baseline parameters.  There were no significant difference between the Groups per 
age, weight, baseline parameters of blood pressure, heart rate, oxygen saturation, CVP, ABG and nerves EMG 
profiles (p > 0.05) (Table 1).

Hemodynamic parameters.  There were no significant variation of systolic and diastolic pressure, heart 
rate and oxygen saturation in both Group I and II in respect to the baseline parameters (Fig. 5).

Group III measurements are presented in Fig. 5 and supplementary video (Video 2). Average experimental 
time was 83 ± 9.8 (72–91) minutes. In Group III, the hemodynamic indexes decreased and reached the lowest 
value parameter within 30 minutes. After rescue treatment (norepinephrine, dopamine, atropine intravenous 
injection), hemodynamic parameters gradually recovered. Yet, blood pressure continued to decline in the follow-
ing 50 minutes; blood oxygen declined in 60 minutes; heart rate declined after 70 minutes mean (Fig. 5C). Average 
experimental time of Group IV was 11.3 ± 2.19–13 minutes. In Group IV, hemodynamic parameters decrease rap-
idly, and no improvement was seen after rescue treatment (Fig. 5).

Intraluminal temperature.  There was no significant change in the intraluminal temperature between 
Groups. Temperature fluctuation within the groups was lesser than 1 °C (p > 0.05) (Fig. 6A).

ABG analysis.  Figure 6 display no significant variation for CO2 partial pressure, O2 partial pressure and pH 
value in Group I and II in respect to baseline parameters (Fig. 6B–D). In group III, CO2 partial pressure increased, 
decreased at 30 minutes after treatment (intravenous sodium bicarbonate), then-after incresed at 60 minutes 
(Fig. 6B). O2 partial pressure decreased reaching the lowest value after 40 minutes, returned to the normal level 
after treatment (high flow oxygen inhalation) (Fig. 6C). pH values had similar profiles (Fig. 6D). In Group IV, 
CO2 partial pressure increased consistently, O2 partial pressures and pH declined consistently. There was no 
change after rescue treatment (Fig. 6B–D).

VN and RLN EMG profiles.  RLN and VN amplitude and latency profiles were stable during the Group 
I and II experiment all model (Fig. 7) The mean RLN and VN amplitude value at the end of experiment were 
respectively 1.287 ± 328.7 and 1.024.5 ± 237.6 Group I, 1.524 ± 353.2 and 1.499 ± 189.3 Group II. In group III, 
both VN and RLN amplitude decreased continuously, gradually increased at 40 minutes (during hemodynamic 
treatment), decreased again at 60 minutes until the end of the experiment (Fig. 7A,C). VN and RLN latency were 
gradually lengthened, shortened at 40 minutes, and recurring at 50 minutes (Fig. 7B,D and Video 2). In group IV, 
VN and RLN amplitude declined until the end of the experiment (Fig. 7A,C). VN and RLN latency lengthened 
(Fig. 7B,D). In nether Group III or IV, IONM couldn’t elucidate any precise location or segment of RLN injury 
(i.e. global injury, type 2). The mean RLN and VN amplitude value at the end of experiment were respectively 
377 ± 105.5 and 378 ± 98.6 Group III, 553 ± 201.3 and 353 189.6 Group IV. No LOS was registered in the study 
groups.

Figure 4.  (A) Measurement of CVP. Twelve pigs were randomly divided into 4 groups according to CO2 
insufflation pressure: (B) 1x CVP (Group I); (C) 2x CVP (Group II); (D) 3x CVP (Group III); (E) 5x CVP 
(Group IV).
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Histopathology.  Consecutive longitudinal and transverse histological sections with HE stain, at high mag-
nification (HE x100), showed that RLNs structure were preserved without loss of myelinated fibres (Fig. 8). 
Rappresentative sections are depicted in Fig. 8. Figure 8 shows normal axons, no fibrosis, and no vacuolization. 
Nerves structure were identical to the contralateral RLN (Fig. 8).

Group I Group II Group III Group IV

Age ± SD (Days) 54.2 ± 2.3 55.1 ± 4.2 56.3 ± 2.2 55.8 ± 3.2

Gender (M/F) 3/0 3/0 3/0 3/0

Weight ± SD (Kg) 28.3 ± 1.6 28.9 ± 1.5 28.7 ± 1.3 28.5 ± 1.7

Experimental time (Min) 180 ± 0** 180 ± 0 83 ± 9.8 11.3 ± 2.1

Blood pressure (mmHg)

systolic pressure 93.3 ± 8.5 96 ± 6.2 97.7 ± 9.9 95 ± 9.2

diastolic pressure 52.7 ± 6.1 49 ± 3.6 48.3 ± 7.6 53.3 ± 8.9

Heart rate (n/min) 69.7 ± 5.1 68.3 ± 9.3 62.7 ± 6.5 66.3 ± 6.7

Oxygen saturation (n/%) 97.7 ± 1.5 96.7 ± 3.1 96 ± 1 97.1 ± 2.1

CVP (cm H2O) 7.2 ± 0.7 6.7 ± 0.6 6.8 ± 0.4 7.1 ± 0.3

Cavity temperature (°C) 22.3 ± 0.6 23 ± 1 23.3 ± 0.6 22.7 ± 0.6

ABG

pCO2 (mmHg) 22.4 ± 0.8 23.9 ± 1.1 24.2 ± 1.9 24.8 ± 1.7

pO2 (mmHg) 98.7 ± 1.2 99 ± 1 99.3 ± 0.6 99.7 ± 0.6

pH 7.52 ± 0.07 7.44 ± 0.07 7.46 ± 0.06 7.44 ± 0.14

RLN

Amplitude(uv) 1046 ± 331.9 1253 ± 384.5 1067 ± 210.6 1015 ± 268.8

Latency(ms) 2.09 ± 0.35 1.98 ± 0.34 2.07 ± 0.19 2.12 ± 0.32

VN

Amplitude(uv) 815.3 ± 217.5 859.3 ± 172.3 772.3 ± 70.2 785 ± 134.4

Latency(ms) 10.09 ± 0.19 9.79 ± 0.44 9.71 ± 0.19 9.75 ± 0.43

Table 1.  Animal characteristics and baseline determinations. Group I: intraoperative pressure was kept at 
1 times CVP; Group II: intraoperative pressure x2 CVP Group III: intraoperative pressure x3 times CVP.; 
Group IV: intraoperative pressure x5 times CVP. CVP: central venous pressure; ABG: arterial blood gas; 
RLN: recurrent laryngeal nerve; VN: vagus nerve. *P < 0.05, **P < 0.01; analysis of the total four groups with 
Cochran’s and Mantel-Haenszel Chi-square (χCMH

2) test, while the variable of side was controlled.

Figure 5.  Hemodynamic parameters during experimental study, stratified per group. (A) Systolic pressure. (B) 
Diastolic pressure. (C) Heart rate. (D) Oxygen saturation.

https://doi.org/10.1038/s41598-019-45779-8
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Time period.  Figures 9 and 10 depict time trends analysis for metabolic, hemodynamic and EMG values var-
iations in Group III and IV. Interestingly, EMG profiles variations were not anticipated by nether hemodynamic 
and metabolic parameters.

Discussion
TOETVA has added a new option to the surgical treatment of thyroid disease. CO2 insufflation is required during 
TOETVA similar to other endocrine endoscopic techniques.

Additional CO2 insufflation may be necessary for adequate exposure of intra-neck structures.
The lack of studies that address the safety of CO2 neck insufflation on RLN function stimulated us to inves-

tigate the effect of different levels of insufflation pressure on nerve EMG profiles (amplitude and latency), and 
metabolic and hemodynamic parameters in a TOETVA animal prospective randomized model.

We hypothesized that differences in CO2 insufflation pressure could result in different RLN function effects.
The idea that high CO2 insufflation pressure may affect the RLN function is new. This is the first animal model 

to analyze gas insulation on the RLN.

Figure 6.  Figures for (A) intraluminal temperature, (B) CO2 partial pressure, (C) O2 partial pressure, and (D) pH.

Figure 7.  EMG signal profiles: (A) RLN amplitude; (B) RLN latency; (C) VN amplitude; (D) VN latency.

https://doi.org/10.1038/s41598-019-45779-8
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Figure 8.  RLN consecutive longitudinal and transverse histological sections (HE x100). RLNs structure were 
preserved with normal axons, no fibrosis, and no vacuolization and without loss of myelinated fibres. (A) Group I,  
(B) Group II, (C) Group III, (D) Group IV.

Figure 9.  Group III EMG profiles during experiment. Time trends for (A) amplitude values; (B) latency; (C) 
metabolic, hemodynamic and EMG parameters variations. Green dots: increase values. Red dots: decrease 
values. VN: vagal nerve. RLN: recurrent laryngeal nerve. L: latency. A: amplitude. PO2: PO2 partial pressure. 
PCO2: CO2 partial pressure. DP: diastolic pressure. SP: systolic pressure. HR: heart rate.
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Under continuous intraoperative RLN monitoring and after histopathology evaluation, carbon dioxide neck 
insufflation appears to be safe at 6 mmHg for the RLN. RLNs thresholds were remarkably constant in experi-
mental Groups I and II with long exposure times. Metabolic and hemodynamic parameters in Group I and II 
TOETVA animal model were also within the normal range.

In both Group III and IV, both VN and RLN function were impaired.
The results of this study cannot definitively exclude the possibility that CO2 at high pressures could dam-

age the RLN. Higher CO2 insufflation pressures determined combined event of EMG amplitude decrease and 
latency increase11,12. According to Schneider et al., the important combined EMG event is commonly indicative 
of impending RLN injury12.

Additionally, the relationship between CO2 concentration and magnitude of EMG signal could be explained 
by second hypotesis. Hence, EMG is a complicated signal, which is controlled also by the central nervous sys-
tem15. Other possible causative factors of the combined RLN EMG event are the direct intrinsic affect on sig-
nals from biochemical factors (presumably reflecting O2 partial pressures and pH decline, CO2 partial pressure 
increase) and reduced blood flow15.

Furthermore, IONM is an adjunct technique for localizing the site of RLN injury11. In the present study, 
IONM couldn’t locate any precise segment of RLN injury presumably defining a type 2 global nerve injury11,12.

No LOS was registered in any Groups. In detail, the mean RLN and VN amplitude value at the end of exper-
iment were: 1287 ± 328.7 and 1024.5 ± 237.6 Group I, 1524 ± 353.2 and 1499 ± 189.3 group II, 377 ± 105.5 and 
378 ± 98.6 Group III, 553 ± 201.3 and 353 ± 189.6 Group IV. Histological sections of Group III and IV RLNs 
revealed structure preservation, without loss of myelinated fibres, normal axons, no fibrosis, and no vacuolization.

Even though we found that the RLN fuction was altered in the CO2 insufflation pressure more than three times 
than that of the CVP, it may be affected by the systemic alteration of the hemodnamic status of the pigs such as the 
hypotension, bradycardia, hypercarbia and acidosis, which authors identified and described in the result section. 
Interestingly, EMG profiles variations were not anticipated by nether hemodynamic and metabolic parameters 
(Figs 9 and 10).

The study was designed to insufflate the CO2 at the maximal pressure of two, three, and even five times than 
that of the CVP, which will never happen in the endoscopic thyroid surgery in human. In transoral endoscopic 
thyroidectomy which is becoming popular nowadays, surgeons usually insufflate the CO2 at the maximal pressure 
of 6 mmHg which may be equal or less than that of the patient’s central vein. It is essential to maintain the CO2 
insufflation pressure as low as possible not only to avoid systemic hazards including hypotension, bradycardia, 
hypercarbia and acidosis but to avoid local complication such ac subcutaneous gaseous emphysema which may 
develop if the insufflation pressure reaches over 10 mmHg. In addition, it may be beneficial to maintain the low 
CO2 insufflation pressure to prevent the possible CO2 pulmonary embolism which was recently reported in the 
literature.

Our results confirm previous report by Bellantone et al., that eccessive dioxide insufflation in the neck cause 
adverse effects on hemodynamic and blood gas levels16. Hemodynamic parameters were significantly altered 
in both Group III and IV in respect to the baseline parameters. The use of higher insufflation pressures should 
be avoided due to the potential risks16. Close monitoring of metabolic and hemodynamic parameters are 

Figure 10.  Group IV EMG profiles during experiment. Time trends for (A) amplitude values; (B) latency; 
(C) metabolic, hemodynamic and EMG parameters variations. Green dots: increase values. Red dots: decrease 
values. VN: vagal nerve. RLN: recurrent laryngeal nerve. L: latency. A: amplitude. PO2: PO2 partial pressure. 
PCO2: CO2 partial pressure. DP: diastolic pressure. SP: systolic pressure. HR: heart rate.
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recommended during TOETVA, especially if additional CO2 insufflation is necessary for better exposure, as they 
may help an early detection of any abnormality.

The anatomy of the neck and the chest of pig is quite different from human. As the consequence, the amount 
of insufflated gas and its impact on the cardiovascular system (and on the nervous system including RLN) in pigs 
will be quite different from those in humans. This may be important limitation of the study.

In conclusion, it’s dangerous for the surgeon to increase CO2 beyond 6 mm Hg insufflation.

Data Availability
The datasets used and/or analysed during the current study are available from the corresponding author on rea-
sonable request.
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