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Producing recombinant adeno-associated virus (rAAV) for
gene therapy via triple transfection is an intricate process
involving many cellular interactions. Each of the different ele-
ments encoded in the three required plasmids—pHelper, pRep-
Cap, andpGOI—plays a distinct role, affecting different cellular
pathways when producing rAAVs. The required expression bal-
ance emphasizes the critical need to fine-tune the concentration
of all these different elements. The use of design of experiments
(DOE) tofind optimal ratios is a powerfulmethod to streamline
the process. However, the choice of theDOEmethod and design
construction is crucial to avoidmisleading results. In this work,
we examined and compared four distinct DOE approaches:
rotatable central composite design (RCCD), Box-Behnken
design (BBD), face-centered central composite design
(FCCD), and mixture design (MD). We compared the abilities
of the different models to predict optimal ratios and interac-
tions among the plasmids and the transfection reagent. Our
findings revealed that blocking is essential to reduce the
variability caused by uncontrolled random effects and that
MD coupled with FCCD outperformed all other approaches,
improving volumetric productivity 109-fold. These outcomes
underscore the importance of selecting a model that can effec-
tively account for the biological context, ultimately yielding su-
perior results in optimizing rAAV production.

INTRODUCTION
Gene therapy is a revolutionary medical technology that involves the
in vivo introduction, alteration, or deletion of genetic material to treat
or prevent diseases. It aims to correct faulty genes, supplement
missing or defective ones, or modulate gene expression to restore
normal cellular function. Gene therapy has shown great potential, ad-
dressing a wide range of genetic disorders, such as cancer, blood dis-
orders, muscular dystrophies, or cardiovascular diseases.1 Its poten-
tial lies in providing a treatment for hitherto untreatable diseases or
an alternative where existing treatments are accompanied by severe
side effects that significantly compromise the patient’s quality of
life. Although only 10 gene therapy products have been approved
by the FDA, there is a high number of gene therapies in clinical trials,
paving the way for future personalized medicine.2

Several platforms are available for delivering therapeutic genes to the
patient, including viral vectors, liposomes, inorganic nanoparticles,
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and cationic polymers. Recombinant adeno-associated viruses
(rAAVs) have gained high attention in recent years as in vivo gene de-
livery vectors, due to their favorable safety profile, high efficiency in
gene delivery, and broad tropism for specific tissues.3 The predomi-
nant method to produce rAAVs to date involves triple transfection
of mammalian cells. Meeting the high demand for rAAVs is impeded
by the scalability of this production process and the challenges asso-
ciated with large-scale transient gene expression (TGE).4,5 Optimiza-
tion is crucial but can be challenging due to the involvement of mul-
tiple parameters, including cell line, cell culture conditions such as
culture medium and cell density, and transfection conditions such
as total plasmid DNA amount, the plasmid ratio employed in the
transfection process, and the total amount of transfection reagent.6–10

The use of design of experiments (DOE) to study, characterize, and
optimize a process is well established in the industry and widespread
inmultiple anddifferentfields, such as foodmanufacturing, agriculture,
material design, and even e-commerce and big data analysis, among
others. This systematic and efficient approach allows researchers to
study the effects and interactions of multiple variables simultaneously,
minimizing experimental runs and providing statistically robust
models for prediction of optimal solutions.11–14 However, applying
DOE to tackle biological problems can be challenging, due to the
high variability of biological systems and the complicated nature of in-
teractions of biological components.2,15 In the past, optimization of
rAAV production was mainly based on one-factor-at-a-time (OFAT)
methods, which are easier to approach but more time consuming.16–19

Recently, DOE approaches started gaining attention as a tool for rAAV
production optimization. By systematically varying the different pa-
rameters, different DOE approaches lead to an efficient exploration
of different experimental spaces.11 Traditionally, response surface
methodologies (RSMs) have been employed for modeling and opti-
mizing responses in biological systems. Central composite design
(CCD) and Box-Behnken design (BBD) are the most-used approaches
to optimize biological processes.20–26 Regarding rAAV optimization,
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most of these studies also rely on RSM, and the factors used in the de-
signs are sometimes not independent, making it challenging to analyze
the generated models.10,27,28 These models employ second-order poly-
nomials to identify optimal combinations of the studied variables.29

While a CCD combines factorial points at the extremes of the studied
limits of the variables, BBD tests combinations of factors at the mid-
points of the limits of the experimental space and lacks points at the
edges, ensuring that all design points remain within the safe operating
zone, avoiding extreme factor settings simultaneously.30 One of the ad-
vantages of using these RSMmethods is that they can present rotatabil-
ity, meaning that all tested points in the experimental space have equal
distance from the design center, ensuring a consistent variance predic-
tion in all runs and enhancing the design’s efficiency. ACCDmodel can
always be made rotatable (RCCD), adjusting the limits of some of the
runs, while a BBD is fully rotatable only for specific designs.30 More-
over, depending on the biological response, we might need to test
both the edges and the midpoints of the experimental space. In this
case, a CCD can also be made to test both, adjusting its axial points
to the center, in a face-centered CCD (FCCD). This configuration lacks
rotatability and, thus, does not allow for assessment of potential curva-
ture within the system.30 These designs can be generated and executed
inmultiple orthogonal blocks, allowing for the independent estimation
of model terms and uncontrolled random effects. This approach min-
imizes variation in regression coefficients, contributing to amore robust
and accurate analysis of the experimental factors.31,32

Apart from RSM designs, mixture design (MD) is a specialized exper-
imental approach used to study the effects and interactions of
different factors when varying their proportions in a mixture, always
adding up to a fixed quantity. This dependency on a constant total is a
key distinguishing feature of MD compared to RSM, where each fac-
tor varies independently. MDs are particularly valuable in fields like
chemistry, pharmaceuticals, and food science, where products often
consist of a blend of various ingredients, and understanding the
optimal ratio combination is crucial.33,34 Park et al. showed that an
MD approach can be used to study rAAV production and plasmid ra-
tios in the triple-transfection protocol.35

However, these studies differ in the parameters selected as factors and
do not compare the outcome and potential of each methodology. In
this study, we conducted a comparative analysis of four distinct
DOE methodologies, a complete fractional RCCD, FCCD, BBD,
and MD, with the aim to evaluate their differences when studying
and optimizing rAAV production (Figure 1). We intend not only to
find optimal parameters for the rAAV triple-transfection method
with each model but also to analyze advantages and disadvantages
for the use of each type of model, facilitating the identification of
the most suitable DOE approach tailored to individual cases.

RESULTS
Model diagnostics

The first step before analyzing the constructed models is to check if
the obtained data meet the requirements for the assumptions of the
models to be valid. The first requirement is that the residuals (the dif-
2 Molecular Therapy: Methods & Clinical Development Vol. 32 Decemb
ference between predicted and observed values in each run) are nor-
mally distributed. This was routinely checked for all models using the
normal probability plot (normal probability vs. the externally studen-
tized residuals) and the Box-Cox plot. To achieve a normal distribu-
tion of the residuals, a log transformation was applied to all exponen-
tial data from volumetric productivity (Vp). Log(Vp) data fulfilled the
requirements for the models to be valid. Likewise, the presence of out-
liers was routinely checked in all models for both responses—log(Vp)
and viability—by the representation of residuals vs. predicted
(Figures 2D, 3D, 4D, and 5D for log(Vp) and Figures 2H, 3H, 4H,
and 5H for viability) and residuals vs. row (Figures 2E, 3E, 4E, and
5E for log(Vp) and Figures 2I, 3I, 4I, and 5I for viability). No outliers
were detected in any of the models, emphasizing the validity of the
conclusion that arose from the model analysis.

Blocking is required when uncontrolled factors are introduced

To study whether the strategy of dividing the runs into three orthog-
onal blocks was successful, we analyzed the corresponding half-
normal plots of each model, with each block treated as a fixed factor
(Figures 2B–2E, 3B–3E, and 4B–4E). In these plots, the y axis repre-
sents the normal estimate (orthog t), while the x axis presents the
normal quantile for each RSM (RCCD, FCCD, or BBD), each
response (log(Vp) or viability), and each time point (48 or 72 hours
post-transfection [hpt]). The blue line intersects the origin with a
slope equal to Lenth’s estimate of s, and any significant effect will
not conform to this line. The primary objective was to identify signif-
icant effects in each scenario, with a particular focus on whether the
blocking strategy was necessary for our system.

For instance, for log(Vp) at 72 hpt in the RCCD model (Figure 2B),
block 1 and block 2 are significant, and therefore, this source of vari-
ability must be considered. Since the blocks were assigned based on
the qPCR plate used, it was henceforth treated as a random effect.
Every qPCR plate used was in nature different, and the noise intro-
duced into the system by each plate was random in nature. After
defining blocking as a random effect, we repeated the model analysis
using the restricted maximum likelihood method (REML). We then
compared the p value, the root mean square error (RMSE) and
R-square, and the percentage of variability attributed to blocking
for the three RSM models at both 48 and 72 hpt with and without
blocking as a random effect (Table S9).

When analyzing viability as a response in each of our models, block-
ing was not required, as the samples were all quantified at the same
time and did not suffer from the external source of uncontrolled noise
coming from the qPCR plate. This was supported by two facts: (1) the
highest variability observed in viability due to blocking was 5.66% for
FCCD at 72 hpt (Table S4), while in BBD and RCCD, the blocking
accounted for only 0.87% and 0.00% of the variability, respectively
(Tables S6 and S2), and (2) the highest p value for all models concern-
ing viability was 0.0022 (Table S9).

Regarding the response of log(Vp), blocking had a different impact on
each model. For RCCD, blocking improved the model fitness,
er 2024



Figure 1. Comparison of models

Model comparison between RCCD, FCCD, Box-Behnken design (BBD), and mixture design (MD) with the selected limits, characteristics, and statistical parameters for both

log(Vp) and viability responses for each model. aRuns for MD are calculated by adding MD (13 runs) and FCCD (12 runs). Two additional runs are added to every model,

accounting for the two required controls for qPCR.
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increasing the R-square value from 0.57 to 0.72 at 48 hpt and from
0.29 to 0.81 for 72 hpt, with a subsequent decrease in the p value
from 0.2526 to 0.1158 and 0.9396 to 0.246, respectively. Furthermore,
the blocking accounted for 64.67% of the total variability at 72 hpt
(Table S2).

In contrast, in the FCCD, blocking worsened the model fitness at
48 hpt, raising the p value from 0.0597 to 0.2877, with a decrease in
the R-square from 0.68 to 0.589. At 72 hpt, the obtained model fitness
parameters were not relevantly different, with an R-square value of
0.59 when blocking was applied vs. 0.58. As expected, only 0.89%
of the variability originated from the blocking at 72 hpt.

Finally, for the BBD, the introduction of blocking at 48 hpt was not
largely different from the parameters obtained after blocking. For
instance, the p value and R-square with blocking were 0.0684 and
0.6516, whereas the same parameters without blocking were 0.0474
and 0.70. However, at 72 hpt, blocking was crucial to decreasing
the p value from 0.7885 to 0.4273 and to increasing the R-square
from 0.38 to 0.67757. The variability stemming from the blocking
was 34.39% at 72 hpt. For both RCCD and BBD, blocking accounted
for a substantial proportion of the observed variability, 65% and 35%,
Molecular T
respectively (Table S9), considering that blocking improved both
p value and R-square fitness parameters.

The large disparities between the three models further affirmed the
random nature of the uncontrolled factor coming from the different
qPCR plates, underscoring the need for blocking in our experimental
setup. Hence, blocking must not only be encouraged but considered a
crucial factor when not all samples can be accommodated in a single
qPCR run or any other equipment generating high intrinsic vari-
ability and uncontrolled noise.

Different models work differently for each response

DOE approaches serve as invaluable tools in optimizing bioprocess
conditions for multiple responses simultaneously. Our study high-
lights the variability in model efficiency among different DOE ap-
proaches when optimizing viability and Vp during rAAV production,
as well as the variability in the identification of factors significantly
affecting the studied responses.

Regarding the response of log(Vp), we discovered significant vari-
ability in the ability of the models to identify significant factors.
The only and most significant factor affecting response variability
herapy: Methods & Clinical Development Vol. 32 December 2024 3
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at 72 hpt in RCCD appears to be pHelper (p = 0.04) (Table S2), under-
scoring the importance of helper functions in rAAV productivity. In
contrast, when using FCCD, the model could identify only the trans-
fection reagent as significant (p = 0.01) (Table S4). BBD failed to
identify any significant factors affecting log(Vp) (Table S6), while em-
ploying a MD followed by a two-factor FCCD provided insight into
previously unstudied interactions, highlighting all three plasmids,
the transfection reagent, and the total DNA amount as significant fac-
tors (Table S8).

Moreover, we observed variability in the model fitting for log(Vp)
among the studied approaches. MD followed by a two-factor FCCD
yielded the highest R-square (0.952) (Table S8) and was the only sig-
nificant fitting (p = 0.0002) for this response. The R-square value for
RCCD was the second highest, with a value of 0.82 (Table S2), fol-
lowed by BBD and FCCD (0.68 and 0.59, respectively) (Tables S4
and S6). In addition, all RSM models analyzed by REML exhibited
high p values (>0.25) (Tables S2, S4, and S6), compared to MD and
two-factor FCCD for optimizing rAAV Vp.

Similar to log(Vp), we observed variability between the studied
models regarding the response of viability. In all cases, pGOI and
two-factor interactions between the transfection reagent and at least
one of the plasmids were identified as significant. pHelper and
pRepCap were significant for viability in all models at 72 hpt, except
BBD (Tables S2, S4, S6, and S8). In the case of MD, all three plasmids
were identified as significant (p < 0.002) (Table S8), while in the
coupled two-factor FCCD, the transfection reagent, the total DNA
amount, and the interactions between these two were all significant
(p < 0.01) (Table S4). However, lower variability was observed in
the model fitting when studying viability, indicating that all models
could be efficiently used for optimizing this response. In this case,
all models presented significant p values (<0.0003) (Tables S2, S4,
S6, and S8) and high R-square values. MD-two-factor FCCD had
the highest R-square value (0.97) (Table S8), followed by BBD
(R-square = 0.95) (Table S6), FCCD (R-square = 0.89) (Table S4),
and last, RCCD (R-square = 0.87) (Table S2).

Here, we show that minor differences in the design of the experi-
mental space can greatly affect the ability of the model to identify sig-
nificant interactions between the factors and their effects in the stud-
ied responses. Interestingly, we observe that among RSM approaches,
RCCD would be the most efficient option for optimizing rAAV pro-
ductivity. However, it would be the least preferred option for viability
optimization, as BBD showed the best performance among the three
RSM approaches, highlighting that selecting and using an RSM
Figure 2. RCCD 72 hpt

(A) Graphic representation of the experimental space of a four-factor RCCD (left) and lim

72 hpt showing the absolute value of the effects to identify parameters that are deviating f

origin with a slope of Lenth’s estimate of s. (C) Comparison between actual and predicte

log(Vp) vs. predicted log(Vp) at 72 hpt to check if the values are randomly scattered aroun

(G), (H), and (I) are equivalent to (B), (C), (D), and (E) for viability. (J–O) Surface plots for

FectoVIR, (M) pHelper and pGOI, (N) pGOI and pRepCap, and (O) pGOI and FectoVIR
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method to analyze and optimize both responses at the same time
can be challenging. Regarding only viability, BBD and MD followed
by a two-factor FCCD emerged as preferred options. However, for
simultaneous optimization of both viability and log(Vp), MD fol-
lowed by a two-factor FCCD outperformed the RSM approaches.
These findings underscore the importance of selecting the appro-
priate DOE approach tailored to the specific response of interest in
bioprocess optimization studies.

Significant factors for harvesting-time-point selection

The selection of an appropriate harvest time point is crucial, as it
significantly impacts both the quantity and the quality of the final
product. Balancing our productivity metric with viability consider-
ations is essential, as low viability levels may trigger protease release,
potentially compromising product quality.36 Our results indicate that
different parameters should be considered when selecting the harvest-
ing time point. For the four-factor RCCD model, the highest log(Vp)
values are observed at 72 hpt, with high viability achievable at both 72
and 48 hpt (Figure 6). When harvesting at 72 hpt, implementing a
blocking method is crucial, as it significantly affects Vp (Figure 2B).
However, this trend is not observed at 48 hpt, where pGOI and
pHelper play a more significant role in response variability (Fig-
ure S1B). Plasmid interactions with the transfection reagent were
identified as significant factors for viability at both 48 and 72 hpt.

For the four-factor FCCD model, the highest log(Vp) and viability
values among the runs were both achieved at 48 hpt (Table S3), indi-
cating that 48 hpt would be the optimal harvest time point when using
this model to analyze our system. The amount of the transfection re-
agent emerged as the most significant factor for Vp at both time
points (Tables S3 and S4). The transfection reagent was significant
only for viability at 48 hpt, with pGOI and pHelper affecting culture
viability more than other factors (Tables S3 and S4). When opti-
mizing log(Vp) using BBD, we observed the highest values at
48 hpt, reaching 9.88, followed by high viability levels above 75%
(Table S5). At this time point, the transfection reagent appeared to
be the most significant factor for both log(Vp) and viability
(Figures S3A and S3D). At 72 hpt, similar to RCCD, blocking was
observed to be crucial for optimizing log(Vp) (Figure 2B; Table S9).
However, viability was still observed to be mostly affected by the
transfection reagent (Figure 4F). Last, the highest log(Vp) values,
achieved with MD followed by a two-factor FCCD, were observed
at 72 hpt, with viability levels exceeding 78% (Figure 1; Table S8),
highlighting the efficacy of this model in finding optimal values for
log(Vp) while maintaining favorable viability levels. Notably, this
model yielded the highest log(Vp) values among all studied
its used for the model (right). (B) Normal estimate (orthog t) against normal quantile at

rom normality. The red line has a slope of 1, whereas the blue line passes through the

d log(Vp) at 72 hpt with the line of fit in red and the mean value in blue. (D) Residual of

d 0 (blue). (E) Residual vs. row number visualization at 72 hpt with a line at 0 (blue). (F),

log(Vp) and (J) pHelper and pRepCap, (K) pHelper and FectoVIR, (L) pRepCap and

. Contour lines with log(Vp) values are at the bottom for all plots.
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approaches, reaching 12.7 (Figures 1A, 2, 3, 4, and 5). Combining
these approaches provided insight into new interactions, and we
were able to identify the transfection reagent, the total amount of
DNA, and their interactions as the most significant factors for both
responses at 72 hpt (Figures 5A and 5E). At 48 hpt, Vp and viability
were mainly driven by the three plasmids involved in the triple trans-
fection (Figures S2A and S2D).

Our data revealed that each DOE model offered a unique perspective
on the optimal harvest time point for rAAV production. These find-
ings underscore the complexity of harvest-time-point selection in
rAAV production, emphasizing the need to properly select the design
approach to avoid misleading conclusions regarding both productiv-
ity and viability metrics.

Different optimal ratios were obtained using each model

We derived the optimal plasmid ratio and FectoVIR-AAV (FV) con-
centration from each strategy using the generated models to maxi-
mize log(Vp) at 72 hpt. For some models, visualizing the optimal re-
gions of the experimental space was clear (Figures 2K, 2L, and
S3I–S3K).

However, when considering both responses at the same time and for
some models like FCCD and BBD, the presence of saddle points
(Figures 3J–3L) required the use of the desirability function (Equa-
tions 4 and 5) to determine the optimal ratio for maximum produc-
tivity.We prioritized log(Vp) with a desirability of 1 and viability with
a desirability of 0.3.

Ultimately, the suggested optimal concentration of each plasmid and
FV derived from each model was different. For instance, the optimal
DNA concentration ratio for the four-factor RCCD at 72 hpt was
0.72:0.93:0.38 (pHelper:pRepCap:pGOI) with an FV concentration
of 2 mg/mL, whereas for the four-factor FCCD it was 0.56:0.38:0.38
with a total of 2 mg/mL FV. Interestingly, when validating both
optimal solutions, both RCCD and FCCD optimal values were
non-significantly different. For the BBD, the optimal ratio was
0.66:0.64:0.38 coupled with 2.5 mg/mL FV. The only value shared by
the three RSMmodels was the 0.38 mg/mL pGOI concentration. How-
ever, whereas FCCD required the same concentration of pRepCap,
both BBD and RCCD demanded a higher concentration of the re-
maining plasmids, with pRepCap being the one with the highest con-
centration in RCCD (0.99 mg/mL) and pHelper being the highest
concentration in BBD (0.66 mg/mL). Moreover, the optimal total
amount of DNA in each model ranged from 2.09 mg/mL in RCCD
to 1.31 mg/mL for FCCD, with BBD falling in the middle at
Figure 3. FCCD 72 hpt

(A) Graphic representation of the experimental space of a four-factor FCCD (left) and limi

72 hpt showing the absolute value of the effects to identify parameters that are deviating f

origin with a slope of Lenth’s estimate of s. (C) Comparison between actual and predicte

log(Vp) vs. predicted log(Vp) at 72 hpt to check if the values are randomly scattered aroun

(G), (H), and (I) are equivalent to (B), (C), (D), and (E) for viability. (J–O) Surface plots for

FectoVIR, (M) pHelper and pGOI, (N) pGOI and pRepCap, and (O) pGOI and FectoVIR
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1.67 mg/mL. The calculated ratio between DNA and FV was 1.19 for
RCCD, and despite the different plasmid ratios, BBD and FCCD
had similar DNA:FV ratios of 0.67 and 0.66, respectively. Regarding
theMD, the optimal concentration ratio was 0.80:0.70:0.50 with a total
amount of DNA of 2 mg/mL and 2 mg/mL FV. From the optimal
plasmid ratio, the subsequent FCCD found the optimal ratio
DNA:FV at 2.37.

All optimal values were successfully validated (Figure 6), showing that
the selection of suboptimal DOE models can provide misleading
optimal values. For instance, the optimal ratio and consequently high-
est log(Vp) achieved with BBD was on average 10.4, whereas the
maximum log(Vp) predicted in MD followed by FCCD was 12.77
(Figures 1 and 6), proving how the optimal value obtained from
BBD was indeed suboptimal. The combination of MD and two-factor
FCCD achieved a process improvement of 109-fold compared to the
non-optimized condition (Figure 6).

Coupling MD with FCCD outperformed RSM approaches

Among the various DOE approaches studied, MD followed by a two-
factor FCCD emerged as the most efficient in enhancing both viral
productivity and viability. This approach yielded the highest log(Vp)
values and required only 27 experimental runs in total, compared to
the four-factor RSM models that consisted of 32 runs. This indicates
high efficiency in experimental resource utilization (Figure 5A) and
reduced variability due to the absence of the need for blocking. Using
a D-optimal MD, we determined that the optimal plasmid ratio in the
mixture was 0.4:0.35:0.25 for pHelper:pGOI:pRepCap. After fixing
this optimal ratio, we explored whether a two-factor RCCD or
FCCD could further optimize the total DNA amount and the trans-
fection reagent volume. The FCCD emerged as the preferred option,
demonstrating better model fitting (Figures S5 and S6) and comple-
menting the MD to identify transfection conditions that further
improved log(Vp) and viability values to 12.7 and 78.8%, respectively
(Figure 6). Moreover, the two-factor FCCDmodel after MD exhibited
satisfactory R-square and adjusted R-square model fitting values at
72 hpt (Table S8). Importantly, this was the only approach to yield
significant p values for both responses (0.0002 for log(Vp) and
<0.0001 for viability), unlike the RSM designs. Validation runs further
confirmed the model’s fitting and accuracy in predicting viability and
log(Vp) values at 48 and 72 hpt (Figure 6).

DISCUSSION
Full vs. reduced models

A common strategy for better model fit and more accurate predic-
tions is reducing the model to where only the significant interactions
ts used for the model (right). (B) Normal estimate (orthog t) against normal quantile at

rom normality. The red line has a slope of 1, whereas the blue line passes through the

d log(Vp) at 72 hpt with the line of fit in red and the mean value in blue. (D) Residual of

d 0 (blue). (E) Residual vs. row number visualization at 72 hpt with a line at 0 (blue). (F),

log(Vp) and (J) pHelper and pRepCap, (K) pHelper and FectoVIR, (L) pRepCap and

. Contour lines with log(Vp) values are at the bottom for all plots.
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are considered. In this way, higher R-square values and lower model
p values can be achieved, improving predictions. However, in our
study, the reduced models had lower performance than their respec-
tive full ones in almost all cases (Tables S1–S10). The optimization of
the triple transfection for rAAV system is a particular biological chal-
lenge, as we know beforehand that all studied factors influence the
final titer and are relevant for our final responses, both Vp and
viability. All components of the triple transfection are essential for
rAAV production, and their interactions can have profound effects
on the overall yield and quality of the viral vectors. We know we
cannot neglect any of them for successful rAAV optimization, and
theoretically, the model able to identify these four factors as signifi-
cant will explain better our system and most probably lead to better
predictions. The synergistic effects and interactions between the plas-
mids involved in triple transfection can be overlooked in some
models; this is why the analysis of the full model also helps compare
the ability to identify these interactions in the different tested designs.
Regarding the two-factor interactions, to have a working model for
both Vp and viability, we need to consider the significant terms of
both responses when reducing the model. Therefore, the models
needed to be reduced based on the response with the highest number
of significant factors. These reduced models did not present better-
fitting parameters. This underscores the complexity of comprehen-
sive modeling in biological processes where multiple factors interact
with one another and even more in the production of rAAVs.

Blocking

We have demonstrated the need for blocking when uncontrolled
factors are introduced, such as when using qPCR for rAAV quan-
tification. It is crucial to emphasize that the failure to apply block-
ing when experimentally necessary could lead to misleading con-
clusions. This became evident when we individually assessed the
effect of blocking on each RSM approach. Interestingly, FCCD ap-
peared not to require blocking, as evidenced by the lack of relevant
changes in the p value with and without blocking and the low vari-
ability introduced due to blocking (Table S9). Conversely, RCCD
showed the opposite effect—the introduction of blocking increased
the model fitness and was able to explain a high percentage of the
data variability. In addition, BBD demanded blocking only at 72
hpt. We hypothesize that the different impacts of blocking on
each RSM are attributable to their unpredictable random effect.
Therefore, to prevent incorrect conclusions and suboptimal solu-
tions, it is necessary to first statistically test if blocking is influ-
encing the studied response when uncontrolled factors are
involved. Only in the absence of such factors would blocking not
be recommended.
Figure 4. BBD 72 hpt

(A) Graphic representation of the experimental space of a four-factor BBD (left) and limit

72 hpt showing the absolute value of the effects to identify parameters that are deviating f

origin with a slope of Lenth’s estimate of s. (C) Comparison between actual and predicte

log(Vp) vs. predicted log(Vp) at 72 hpt to check if the values are randomly scattered aroun

(G), (H), and (I) are equivalent to (B), (C), (D), and (E) for viability. (J–O) Surface plots for

FectoVIR, (M) pHelper and pGOI, (N) pGOI and pRepCap, and (O) pGOI and FectoVIR
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Optimal designs

Optimal designs are a different type of DOE approach where the runs
are placed in the experimental space in such a way that the resulting
model minimizes the variance of either the regression coefficients
(A optimal and D optimal) or the prediction variance in the design
space (I optimal), among others. These designs are especially useful
when the experimental region is irregular, the model is non-standard,
the sample size is limited by the researcher, or the factors are con-
strained.30 In this case, only MD was constrained by definition, since
no plasmid concentration could reach 0; otherwise, no rAAVs would
be produced. Consequently, an optimal design was appropriate to
select the runs in the constrained experimental space. Among all
optimal designs, the most widely used is D optimal. D-optimal de-
signs maximize the determinant of the information matrix, thereby
minimizing the determinant of the variance-covariance matrix of
the regression coefficients. For the rest of the RSM approaches, there
was no need to select an optimal design, as the experimental space was
not constrained, and the standard design could be applied.

The biological understanding of the system leads to MD

The primary objective of this work was to provide necessary tools to
address challenges encountered in optimizing current rAAV
manufacturing processes. When selecting an appropriate model, a
thorough understanding of the biological context is crucial. In the tri-
ple-transfection process, there are many factors that affect the final
outcome, and they should be appropriately analyzed to avoidmasking
and confounding effects in the models. The cell density is crucial for
transfection-based processes. However, the biological reason behind
the effects of the cell density in the process is substantially different
from the biological reason to define a certain plasmid ratio, for
instance. The cell density effect (CDE) acts as the limiting factor for
cell density, imposing a threshold beyond which transfection effi-
ciency and cell-specific productivity decrease. This is a common phe-
nomenon shared across different cell-line platforms and expression
methods, unrelated to the expression of AAV elements.4,37 Therefore,
to thoroughly study the interactions between AAV elements and
reduce variables to optimize the experimental design, the cell density
can be fixed at a value that is not yet affected by the CDE in our
system.

Subsequently, the three plasmids and the transfection reagent can be
defined as independent factors and were treated as such in all RSM
designs (RCCD, FCCD, and BBD), resulting in two different ratios:
pGOI:pHelper:pRepCap and DNA:transfection reagent. However,
the total DNA amount added to the cell can lead to independent ef-
fects, driven solely by the DNA total concentration. These effects are
s used for the model (right). (B) Normal estimate (orthog t) against normal quantile at

rom normality. The red line has a slope of 1, whereas the blue line passes through the

d log(Vp) at 72 hpt with the line of fit in red and the mean value in blue. (D) Residual of

d 0 (blue). (E) Residual vs. row number visualization at 72 hpt with a line at 0 (blue). (F),

log(Vp) and (J) pHelper and pRepCap, (K) pHelper and FectoVIR, (L) pRepCap and

. Contour lines with log(Vp) values are at the bottom for all plots.
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overlooked when using RSM approaches. When optimizing ratios us-
ing an RSM approach, the total DNA concentration should be fixed.
Thus, a relationship between all plasmid concentrations will emerge
in the form of a ratio, and they can no longer be treated as indepen-
dent variables, as an increase in one would cause a proportional
decrease in the others. This could lead to suboptimal solutions or
misleading estimate factors when analyzing these models. Conse-
quently, the MD is necessary to successfully study the system. The
different possible DNAmixtures lead to different expression balances
of the AAV and adenoviral proteins, affecting cellular processes and
homeostasis. On the other hand, FV affects the cell through the trans-
fection process. The transfection process itself affects viability and
cellular homeostasis independently,38 and the factors driving this ho-
meostasis disruption are DNA amount—regardless of the content of
the plasmids—and transfection reagent. To study both phenomena
independently, the MD approach separates the analysis of the
plasmid interactions and their effects on the studied responses, treat-
ing the three plasmids as parts of a total mixture. The biological effects
of expressing the different AAV elements and their interactions with
cellular homeostasis are separate from the effects of just a high trans-
fected DNA amount, regardless of the coded proteins. The first step of
the MD studies the expressed proteins and the significance of their ef-
fects on the studied responses and the process. This is the main bio-
logical reasoning behind the optimal plasmid ratio. Subsequently, this
optimal ratio is used to study the separate effects of the total amount
of DNA and transfection reagent concentration. Although still related
to the coded proteins, these effects have a separate biological effect,
shared by any transfection-based process. Using four-factor RSM ap-
proaches, these two biological scenarios are mixed, leading to
confounded effects. The coupling of MD-RSM enabled us to better
analyze biological phenomena by separating variables according to
their biological relevance. This approach provides insight into the
role of the total DNA amount, something that is impossible when us-
ing RSM methodologies, as described above.

One of the most crucial variables in the process is the gene of interest
(GOI), whose effects and interactions in the cell will substantially vary
for each rAAV-based product. Unless engineered not to be expressed
in the host cell line,39 the GOI will have an impact on the cell meta-
bolism and physiology, with potential interactions with the rest of the
AAV elements that the DOE model should be able to identify and
analyze. Moreover, the limits of the experimental space to study
new GOIs will be constrained to their effect on the cell. Since the
behavior of the GOI may differ depending on the final product, we
anticipate that testing other GOIs will yield different responses.
Our results showed that a D-optimal quadratic MD approach is the
Figure 5. MD 72 hpt

(A) Graphic representation of the experimental space of a three-factor MD (left) and limits

hpt showing the absolute value of the effects to identify parameters that are deviating fro

origin with a slope of Lenth’s estimate of s. (C) Comparison between actual and predicte

log(Vp) vs. predicted log(Vp) at 72 hpt to check if the values are randomly scattered aroun

(G), (H), and (I) are equivalent to (B), (C), (D), and (E) for viability. (J) Experimental space s

threshold for log(Vp) is set at 10.4 and for viability at 53%. (K) Surface plot for log(Vp), t

Molecular T
most suitable design to study these effects, as it is able to focus on
plasmid interactions better than RSM approaches.

Two-factor FCCD showed relevant relationship between DNA

and the transfection reagent

The two-factor FCCD after MD allowed for the specific study of the
effects of total DNA in the system. Here, we observed two areas for
optimal log(Vp) at 72 hpt. The first area corresponded to the lowest
concentration of DNA (0.93 mg/mL) and the highest concentration of
FV (2.7 mg/mL), while the second area occurred with the highest DNA
concentration (3.06 mg/mL) and the lowest FV concentration
(1.29 mg/mL). To understand the appearance of these opposing solu-
tions, we investigated the dynamics of the transfection system.

There are two different strategies to increase the number of plasmid
copies in the cell: increase the plasmid concentration in the culture
or increase the transfection reagent. However, high concentrations
of transfection reagent can be cytotoxic and trigger cellular death.38

Therefore, it is crucial to find the ideal concentrations to maximize
endogenous protein synthesis pathways while not compromising
viability.

For instance, when DNA amount and FV are at their highest, it could
potentially result in the highest amount of DNA in the cell, the highest
cytotoxic protein synthesis, and FV toxicity. Therefore viability and
log(Vp) drastically decreased (Figure 5; Table S8). This is supported
by the two opposing areas for optimal log(Vp) in the two-factor
FCCD. In addition, the cytotoxic effect of FV can be observed, as
increasing concentrations lead to a steady decrease in viability. The
obtained optimal DNA concentration of 1 mg of DNA per milliliter
of culture agrees with the manufacturer’s recommendations for
optimal expression. However, the observed ratios to maximize
log(Vp) were 3.06:1.29 and 0.93:2.70 DNA:FV, diverging from the
generally recommended 1:1. Using an MD-FCCD approach allows
the analysis of the DNA-transfection reagent interaction showing
that when DNA concentration is close to 1 mg/mL, a high concentra-
tion of FV will be necessary to ensure high productivity. However,
when DNA concentration is high, an FV concentration close to
1.29 mg/mL should suffice to achieve maximum productivity.

Alternatively, in the two-factor RCCD after theMD, FV being toxic at
high concentrations could also be observed (Tables S8 and S10).
However, on the opposite end, with a low concentration of FV,
log(Vp) did not suffer any relevant change, regardless of the quantity
of DNA. This response proved that FCCD is more suitable to better
study all biological phenomena and provide better-defined ratios.
used for themodel (right). (B) Normal estimate (orthog t) against normal quantile at 72

m normality. The red line has a slope of 1, whereas the blue line passes through the

d log(Vp) at 72 hpt with the line of fit in red and the mean value in blue. (D) Residual of

d 0 (blue). (E) Residual vs. row number visualization at 72 hpt with a line at 0 (blue). (F),

howing how both log(Vp) in blue and viability in green change at different ratios. The

otal DNA, and FectoVIR. Contour lines with log(Vp) values are at the bottom.
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Figure 6. Validations and process improvement

(A and B) Predicted and actual experimental values for all validated conditions at 48 and 72 hpt for all models regarding (A) log(Vp) and (B) viability. Only viability for RCCD at 72

hpt presented a significant (p = 0.01) difference between predicted and obtained values usingmultiple comparison two-way ANOVA. The rest were non-significant, validating

the models. (C and D) (C) Obtained volumetric (Vp) productivity and (D) obtained viability for all validated optimal points in each model compared to the non-optimized

condition prior to any DOE optimization. Conditions framed in black are those showing the highest process improvement and the selected approach: MD + FCCD. Fold

improvements are shown for the four studied DOE approaches at 72 hpt. Error bars represent standard error of the model for the predicted values and standard error, with

N = 3 for most experimental values. MD 72 hpt had N = 7 and the non-optimized condition N = 9.
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Recommendations for rAAV optimization

Achieving standardized guidelines or specific optimal transfection
conditions that work for every rAAV production system is not
feasible due to the significant variability introduced by factors,
including the GOI, producer cell line, medium, and AAV serotype,
among others. In this work, we offer a robust methodological frame-
work that researchers can follow to tailor their optimizations to their
specific projects and rAAV systems. The first recommendation is to
always consider blocking in the experimental design. It should be
one of the first steps in the designing phase, as it can be critical for ac-
counting for potential confounding of the factors to study in the
model. The second recommendation is to couple MD with an
FCCD as the best approach to systematically optimize plasmid ratios
and the amount of transfection reagent and total DNA. This approach
has proven significantly better than conventional RSM methods. The
third recommendation is to understand and consider the biological
12 Molecular Therapy: Methods & Clinical Development Vol. 32 Decem
context of the system to optimize. The biological implications of
each factor to be included in the DOE design is crucial when selecting
the appropriate design. Moreover, our last recommendation when
determining optimal conditions is to consider all relevant responses
together when analyzing the different generated models to ensure
that predictions, beyond being statistically sound, will indeed be
applicable in the biological system.
MATERIALS AND METHODS
Cell culture

HEK293SF-3F6 cells from the National Research Council of Canada
(NRCC) were cultivated in disposable polycarbonate 125-mL baffled
shake flasks equipped with vented caps (Corning Life Sciences, USA)
in 20 mL of HyCell TransFx-H (Cytiva Life Sciences, USA) supple-
mented with 4 mM GlutaMAX (Gibco, Life Technologies, Thermo
ber 2024
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Fisher, USA) and 0.1% Pluronic F-68 non-ionic surfactant (Gibco,
Life Technologies). Cultures were maintained at 37�C and 5% CO2

in a Hera Cell 150 incubator (Thermo Fisher, USA) with agitation
at 130 rpm provided by Celltron (Infors HT, Switzerland) to ensure
optimal growth conditions.

Samples were collected for cell count and viability assessment at 24,
48, and 72 hpt using NucleoCounter-250 (Chemometec, Denmark)
according to the manufacturer’s instructions.

Triple transient transfection in HEK293SF-3F6 cells

HEK293SF-3F6 cells were subjected to triple transfection using the
following plasmids: PF1451 (pGOI), pXR2 (pRepCap), and pXX6-
80 (pHelper). PF1451 (Plasmid Factory, Germany) carries the GOI
GFP flanked by inverted terminal repeats (ITRs), pXR2 (National
Gene Vector Biorepository, USA) contains the Rep and Cap genes
from AAV2, and pXX6-80 (National Gene Vector Biorepository,
USA) provides the helper genes E2 and E4. HEK293SF-3F6 cells
were seeded at 1 � 106 cells/mL the day prior to transfection to
ensure that the cultures were at 2 � 106 cells/mL when the transfec-
tion was performed. The transfection mix corresponded to 5% of the
total working volume. Briefly, DNA was added to the corresponding
volume of culture medium and vortexed for 10 s, followed by the
addition of the necessary amount of the transfection reagent FV
(Polyplus, France). The DNA and FV mix was vortexed three times
for 3 s and incubated in accordance with the manufacturer’s instruc-
tions. The ratios between each plasmid and between the DNA and
the transfection reagent were determined by the corresponding
experimental design.

DOE and models used

In this study, we analyzed the effect of viability, measured in percent-
age of live cells, on the production of rAAV, and we maximized
the Vp, expressed in vg � mL�1 � day�1. Vp data were transformed
to log(Vp) as presented in Equation 1 to achieve normal distribution
of residuals. Normal probability and Box-Cox plots were routinely
used to validate that the log transformation was in fact required
and successful. With a normal distribution of residuals, four different
designs were used: an RCCD, a BBD, an FCCD, and an MD:

Log ðVPÞ = log10
titer

� vg
mL

�
time ðdayÞ : (Equation 1)

The first three designs (RCCD, BBD, and FCCD) treat all four factors
as independent variables (pHelper, pGOI, pRepCap, and FV) to pre-
dict optimal plasmid and DNA:FV ratios. MD includes only pHelper,
pGOI, and pRepCap, presenting the mathematical constraint of the
sum of all plasmids being constant, to study plasmid ratios. To study
the DNA:FV ratio, fixing the optimal plasmid ratio from MD, a two-
factor FCCD and RCCDwere fit. Considering the nature of the triple-
transfection system, all designs were constrained to have a minimum
quantity of each plasmid and FV to ensure successful production
of rAAV.
Molecular T
The experimental design and statistical analysis were conducted using
JMP 16 Pro (SAS Institute, USA) for all designs.
RSMs

All RSMmodels (RCCD, BBD, and FCCD) fit the experimental space
to a second-order polynomial equation (Equation 2) where y is the
response, either log (Vp) or viability (%); b0 is the offset term; bi is
the linear coefficient; bii is the quadratic coefficient; bij is the interac-
tion coefficient with xi and xj as the independent variable; and e is the
noise observed in the response:

y = b0 +
X

bixi +
X

biix
2
i +

XX
bijxixj + ε: (Equation 2)

In terms of rotatability, the difference between the three designs lies in
the variance of the predicted response at points of interest. If the vari-
ance is the same for all points that are at the same distance from the
center, the design will be rotatable. To ensure rotatability, the distance
from the axial points to the center of the experimental space, a, must
be equal to the fourth root of the number of points in the factorial
portion of the design (nF) (Equation 3). For instance, in the four-fac-
tor RCCD presented in this work, nF equals 16, meaning that to have
rotatability, a equals 2, while the FCCD has, by definition, a equal to
1, and therefore, it is not rotatable:

a = ðnFÞ1=4: (Equation 3)

Regarding BBD, all experimental runs lie on a sphere of radius O2
from the center of the experimental space, making BBD rotatable
for our four-factor design.

All RSM designs screened the four factors at three levels: a low level
coded as �1, an intermediate level coded as 0, and a high level coded
as +1 (Figure 1).

Due to the high complexity of some models, we used the desirability
function (Equation 4) to identify the optimal values.40 In the desir-
ability function, T is the target, L is the lower limit, y is the response
to be maximized, and r is a number between 0 and 1 to show the rel-
evancy of the response. To analyze more than one response simulta-
neously, such as viability and log(Vp) in our case, we merged both de-
sirabilities in Equation 5, where k is the response:

d =

8>>>><
>>>>:

0 y < L�
y � L
T � L

�r

L% y%T

1 y >T

; (Equation 4)

D = d1=k
1 d1=k2 ::: d1=ki : (Equation 5)

Finally, the contribution of the quantification method to the
observed variability was studied as both fixed and random effects
for RCCD, BBD, and FCCD, as they required more than 24 runs,
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and quantification by qPCR was limited to batches of 24 samples
simultaneously. To do this, all RSM designs were split into three
blocks of 10 runs each, with a total number of 6 central points
(2 per block) to ensure the robustness of the design. To analyze
the blocks as fixed effects, the significance was calculated by the
analysis of variance (ANOVA). When the blocks were treated as
random effects, the significance of each model was determined by
the REML.41
MD

The MD was defined as a mixture of the three required plasmids for
the successful production of rAAV with a minimum of 10% and a
maximum of 60% of each plasmid in the final mixture.

Compared to a cube (RCCD and FCCD) or a sphere (BBD) for the
experimental space, in the case of MD we selected an optimal design
to place the runs in the experimental space so they minimize the vari-
ance of the estimators. This is achieved by minimizing the covariance
matrix. This D-optimal criterion is one of the most popular designs
and it is available in JMP, Minitab, Design-Expert, and other software
packages.

All factors were fitted to the quadratic formula presented in Equa-
tion 6, where b corresponds to the expected response to the pure
blend xi = 1 and xj = 0 when j s i:

EðyÞ =
X

bixi +
XX

bijxixj: (Equation 6)

No blocking was required, as the number of runs was only 12 and,
consequently, the significance of the model was determined by an
ANOVA.
qPCR-based rAAV quantification

Cell culture was harvested at 48 and 72 hpt and diluted 1:1 with
lysis buffer (Tris HCl 400 mM, Triton X-100 1%, and MgCl2
20 mM, adjusted to pH 7.5). After 1 h incubation at 37�C and
agitation at 130 rpm, the lysate was centrifuged for 20 min at
4,000 � g and 4�C. The supernatants were stored at �70�C for
long-term storage.

For quantification, samples were thawed in a controlled manner at
room temperature. Then, 5 mL of sample was mixed with 2 mL of
1 U/mL DNase I (Thermo Fisher Scientific, USA) and 13 mL of 10�
DNase I reaction buffer with MgCl2 (Thermo Fisher Scientific). The
mix was incubated for 16 h at 37�C. To inhibit the activity of DNase
I, 4 mL of 50 mM EDTA (Thermo Fisher Scientific) was added to the
mix, followed by a 30-min incubation at 70�C. Last, 5 mL of proteinase
K (Thermo Fisher Scientific) was added to the sample and incubated
for 2 h at 55�C. The proteinase K was inactivated for 15 min at 95�C.
Twomicroliters of the freshly treated sample wasmixed with 0.5 mL of
10 mM forward primer (50-ACGTCAATGGGTGGAGTATTT-30)
and reverse primer (50-AGGTCATGTACTGGGCATAAT-30) bind-
ing to the GFP sequence with 5 mL of Brilliant III Ultra-Fast SYBR
14 Molecular Therapy: Methods & Clinical Development Vol. 32 Decem
Green QPCR Master Mix (Agilent Technologies, USA) and 0.15 mL
of 2 mM reference dye.

Amplification was executed in a QuantStudio 5 real-time PCR system
(Thermo Fisher Scientific) with the following conditions: 50�C for
2 min, 95�C for 10 min; 40� 95�C for 15 s, 60�C for 1 min, 95�C for
15 s, 60�C for 1 min, and 95�C for 1 s. Plates run in the QuantStudio
5 real-time PCR system were analyzed via ThermoCloud (Thermo
Fisher Scientific).

To ensure the reliability of the generated data, two controls were
added: saturate lysate control (SLC) and transfected lysate control
(TLC). The SLC was prepared from a non-transfected cell culture
that underwent the lysis protocol in parallel with the transfected sam-
ples. Then, 5 mL of cell lysate was mixed with 40 ng of pGOI plasmid,
9 mL of 10� DNase I reaction buffer with MgCl2, and 2 mL of 1 U/mL
DNase I. The SLC aimed to verify that the DNase step was successful.
For the generation of the TLC, a single plasmid transfection was per-
formed with pGOI following the triple transfection, lysis, and the
quantification protocol. The TLC aimed to guarantee that the effect
of DNase I remained independent of whether the plasmid had been
transfected or spiked afterward.

DATA AND CODE AVAILABILITY
Raw data from viability and titer measurements for each run can be found in the supple-
mental information.
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