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T cell interaction with activated
endothelial cells primes for
tissue-residency
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Fjodor A. Yousef Yengej1, M. Marlot van der Wal1,
Annet van Royen-Kerkhof2 and Femke van Wijk1*

1Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands,
2Pediatric Rheumatology and Immunology, Wilhelmina Children’s Hospital, University Medical
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Tissue-resident memory T cells (TRM) are suspected drivers of chronic

inflammation, but their induction remains unclear. Since endothelial cells

(EC) are obligate interaction partners for T cells trafficking into inflamed

tissues, they may play a role in TRM development. Here, we used an in vitro

co-culture system of human cytokine-activated EC and FACS-sorted T cells to

study the effect of EC on T(RM) cell differentiation. T cell phenotypes were

assessed by flow cytometry, including proliferation measured by CellTrace

Violet dilution assay. Soluble mediators were analyzed by multiplex

immunoassay. Co-culture of T cells with cytokine-activated, but not resting

EC induced CD69 expression without activation (CD25, Ki67) or proliferation.

The dynamic of CD69 expression induced by EC was distinct from that induced

by TCR triggering, with rapid induction and stable expression over 7 days. CD69

induction by activated EC was higher in memory than naive T cells, and most

pronounced in CD8+ effector memory T cells. Early CD69 induction was

mostly mediated by IL-15, whereas later effects were also mediated by

interactions with ICAM-1 and/or VCAM-1. CD69+ T cells displayed a

phenotype associated with tissue-residency, with increased CD49a, CD103,

CXCR6, PD-1 and CD57 expression, and decreased CD62L and S1PR1. EC-

induced CD69+ T cells were poised for high production of pro-inflammatory

cytokines and showed increased expression of T-helper 1 transcription factor

T-bet. Our findings demonstrate that activated EC can induce functional

specialization in T cells with sustained CD69 expression, increased cytokine

response and a phenotypic profile reminiscent of TRM. Interaction with

activated EC during transmigration into (inflamed) tissues thus contributes to

TRM-residency priming.
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Introduction

Endothelial cells (EC) play a crucial role in the homeostasis

of immune responses. During tissue inflammation, EC become

actively engaged in response to pro-inflammatory cytokines, as

is observed in a variety of inflammatory conditions such as acute

graft-versus-host disease (aGvHD) and immune-mediated

inflammatory diseases, including (juvenile) dermatomyositis,

systemic lupus erythematosus, and scleroderma/systemic

sclerosis (1–8). Especially the T cell-derived cytokines IFNg
and TNFa are important cues for EC, as they can induce the

expression of costimulatory molecules and adhesion molecules

(VCAM-1, ICAM-1) on EC and increase the secretion of chemo-

attractants (1, 9, 10). With these, activated EC recruit leukocytes,

including T cells, to inflamed tissue sites and facilitate their

transmigration into tissues. This process is crucial to the

surveillance and effector functions of the immune system, such

as eradication of invading pathogens, but also contributes to the

immunopathogenesis of inflammatory, auto- and allo-immune

disorders (1, 11–13).

Transmigration of immune cells across the endothelium is a

complex and slow process, which is regulated at different stages.

Following priming in the lymph nodes, antigen-experienced T

cells are recruited to sites of inflammation by chemo-attractants

released by activated EC and tissue cells. T cells are captured from

the circulation by interactions between integrins expressed by T

cells, and both selectins and integrins like ICAM-1, VCAM-1 on

EC. Subsequently, T cells adhere to EC and migrate through the

endothelial layer into the tissue (10, 14, 15). Since the process of

transmigration involves prolonged, close interaction between T

cells and EC, this process might induce functional changes in

transiting T cells that prepare them for the tissue environment.

However, the exact changes induced by non-cognate interactions

between EC and T cells are still elusive.

T cells can either transiently pass through tissues to perform

their effector function and subsequently re-enter circulation, or

become resident and stay in tissues for prolonged periods. These

so-called tissue-resident memory T cells (TRM) play a role in

tissue homeostasis, but have also gained interest because of their

relevance in chronic inflammation, vaccine development, and

transplantation settings (16–21). TRM are characterized by high

and sustained expression of CD69, which prevents tissue egress by

sequestering sphingosine-1-phosphate receptor 1 (S1PR1) from

the cellular surface (22, 23). In activated T cells, short-term

expression of CD69 is suggested to temporarily limit egress

from lymph nodes, while constitutive expression, as found in

TRM, enables long-term tissue-residency (24). Also in immune-

mediated inflammatory diseases, tissue-infiltrating T cells show

increased expression of CD69 and have been implicated in disease

chronicity (18, 25–27). TRM are characterized by an ‘activated yet

resting state’, are poised to rapidly respond to pathogens by

secretion of cytokines like IFNg, and have a decreased turnover
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rate compared to circulating memory cells (22, 25, 28).

Furthermore, CD49a, CD103, CXCR6, CD57 and PD-1 were

described as core markers for TRM, as their expression patterns

best discriminate between CD69+ and CD69- cells in different

tissues (22, 29). Despite the efforts made to elucidate human TRM

phenotype and function, key events in the induction of the TRM

program are still poorly understood. Also the potential role of EC

in the activation of T cells migrating to inflamed tissue sites is still

under discussion (10).

We hypothesized that transmigration through activated

endothelium into inflamed tissues may prime T cells for tissue-

residency and initialize the functional specialization towards TRM.

We used an in vitro co-culture system of human cytokine-activated

EC and highly purified T cell populations to investigate the effect of

EC on T cell activation and phenotype and elucidate the involved

mechanisms. To mimic the microvascular EC activation involved

in immune-mediated inflammatory diseases, we used a

microvascular EC line.
Materials and methods

Endothelial cell culture

The human dermal microvascular EC line HMEC-1

(HMEC, ATCC) was cultured in MCDB-131 medium (Life

Technologies) with 10 mM L-glutamine (Gibco), 10 ng/ml

epidermal growth factor (EGF) (Invitrogen), 1 mg/ml

hydrocortisone (Sigma), 1% Penicillin Streptomycin (p/s,

Gibco) and 10% fetal calf serum (FCS) (Biowest). Human

umbilical vein EC (HUVEC) were cultured in EGM-2 medium

(Lonza) containing hEGF, hydrocortisone, GA-1000

(gentamycin, amphotericin-B), VEGF, hFGF-B, R3-IGF-1,

ascorbic acid, heparin and 10% FCS. Medium was refreshed

every 3-4 days and cells were suspended at confluence, using

0.05% Trypsin (Gibco). For phenotyping, 250.000 EC were

stimulated with 10 ng/ml TNFa (Miltenyi) and/or 10 ng/ml

IFNg (eBioscience) for three days. EC were detached using 0.25

mL trypsin 0.5% EDTA (Life Technologies) and stained with

surface antibodies for flow cytometric analysis.
Lymphocyte isolation

Fresh peripheral blood was obtained from healthy adult

volunteers, after informed consent, as approved by the Medical

Ethical Committee of the University Medical Center Utrecht.

Peripheral Blood Mononuclear Cells (PBMCs) were isolated by

Ficoll-Paque™ PLUS (GE Healthcare) density centrifugation.

PBMCs were frozen at -80°C until further use. CD3+ bulk T cells,

CD3+ memory (CD3+CD45RO+CD45RA-) or naive (CD3+

CD45RO-CD45RA+) T cells , CD8+ memory subsets
frontiersin.org

https://doi.org/10.3389/fimmu.2022.827786
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wienke et al. 10.3389/fimmu.2022.827786
(CD3+CD8+CD45RA+/-CCR7+/-(CD27+/-)) and HLA-

DR+CD14-CD11c+ conventional dendritic cells (cDc) were

obtained by fluorescence-activated cell sorting (FACS) using a

FACSAria™ III cell sorter. The four CD8+ memory T cell

subsets were defined as central memory (CM, CD45RA-

CCR7+), terminally differentiated CD45RA+ effector memory

(TEMRA, CD45RA+CCR7-) and two subsets of effector memory

(EM, CD27+ and CD27-, both CD45RA-CCR7-). For

proliferation assays, T cells were labeled with 2 mM Celltrace

Violet (CTV, Life Technologies) and proliferation was assessed

by flow cytometric CTV dilution assay.
Endothelial cell-T cell co-culture

EC were plated in culture medium (RPMI 1640 with L-

glutamine, p/s, and 10% FCS) in round-bottom 96-well plates

(12.500 cells/well) overnight and stimulated with 10 ng/ml

TNFa and/or 10 ng/ml IFNg for three days. Afterwards, TNFa
and IFNg were removed and 50.000 FACS-sorted T cells were

added per well, either with or without blocking antibodies. In

control conditions, T cells were cultured in the absence of EC,

in the presence of resting EC, or in the presence of 1 mg/mL

soluble anti-CD3 or anti-CD3/CD28 human T-activator

Dynabeads™ (1:50, Gibco) and/or 10.000 cDCs as indicated

in the figure legends. Samples were incubated for up to 7 days

and protein expression levels were analyzed using flow

cytometry. Monoclonal antibodies blocking interleukin (IL)-

15, transforming growth factor b (TGF-b), ICAM-1, or

VCAM-1 were added to the co-culture in different

concentrations (details in Supplementary Table 1). MHC-I

interactions were blocked with an antibody against HLA-

ABC (W6/32, 35 mg/mL, Bioceros). To assess the effects of

EC cultured medium on T cells, supernatant of cultured EC

was transferred to T cells and diluted 1:1 with culture medium.

Protein levels of IL-15, TGF-b, soluble ICAM-1 and soluble

VCAM-1 were analyzed in undiluted EC supernatants by

multiplex immunoassay, as described previously (30). To

further compare the effects of soluble factors with direct cell-

cell contact, a transwell co-culture assay was performed with

24-well Transwell® cell culture chambers with a Polycarbonate

Membrane with 0.4 mm pores (Corning). EC were either grown

in the lower wells (75.000 cells/well) overnight (soluble factors

only) or in both the lower wells (62.500 cells/well) and the

upper wells (12.500 cell/well) (direct cell-cell contact and

soluble factors). EC were then stimulated with TNFa and

IFNg as described above. After three days, FACS-sorted

CD3+ memory T cells were added to the upper wells (50.000

cells/well), either with or without blocking antibodies, after

removal of TNFa and IFNg. Samples were incubated up to 7

days after which CD69 expression levels of the T cells were

analyzed using flow cytometry.
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Viability of all cells was assessed with fixable viability dye

eFluor505 (eBioscience™), by 30-minute staining at 4°C in PBS.

Surface staining was performed in PBS (Sigma) with 2% FCS, 2%

normal mouse serum (Fitzgerald) and either 0,1% NaN3 (Severn

Biotech Ltd.) or 2 mM EDTA, for 20 minutes at 4°C (antibodies

in Supplementary Table 2). For intracellular and intranuclear

staining, cells were fixated and permeabilized with 1:3 Fixation/

Permeabilization concentrate and Fixation/Permeabilization

diluent (Invitrogen) for 30 minutes at 4°C. Intracellular

staining was performed in permeabilization buffer (Invitrogen),

at 4°C and for 25 minutes. Expression of cytokines was measured

after four hours of restimulation with 20 ng/ml Phorbol 12-

myristate 13-acelate (PMA, Sigma) and 1 mg/ml ionomycin

(Sigma) in RPMI 1640 with 10% AB serum (Sanquin) in the

presence of 1:1500 diluted GolgiStop (BD bioscience). Cells were

subsequently rested for 90 minutes at 37°C. For optimal

measurement of CD69 in PMA/ionomycin stimulated samples,

CD69, CD3, CD4 and CD8 were stained prior to stimulation.

Samples were measured on a BD FACSCanto™ II machine.
Statistical analysis

Data were analyzed with FlowJo™ V10 software (FlowJo,

LLC). GraphPad Prism 7.02 (GraphPad Software Inc) was used

for statistical analysis and graphic display of the results. For

comparisons between two groups, a non-parametric T-test

(Mann-Whitney U test) was used. For comparisons between

more than two groups, a non-parametric ANOVA (Kruskal-

Wallis test with Dunn’s post-hoc test) was used. For multi-level

analyses (e.g. expression over time), a 2-Way-ANOVA with

Sidak post-hoc test was used.
Results

Activated EC induce T cell CD69
expression, but not proliferation

To study the effect of the activation state of EC on T cell

function, HMEC were stimulated with IFNg and/or TNFa for 3

days. HMEC stimulated with both cytokines expressed high

levels of adhesion molecules ICAM-1 and VCAM-1, HLA-DR,

HLA-ABC and CD40, but negligible levels of CD80 and CD86

(Supplementary Figure 1). Total CD3+ T cells co-incubated with

stimulated, but not resting HMEC, showed significantly

increased expression of early activation marker CD69

compared to unstimulated T cells (Figures 1A, B). Additional

activation of T cells by T cell receptor (TCR) stimulation with

soluble anti-CD3 did not further increase CD69 expression. The
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combination of the cytokines TNFa and IFNg in the absence of

HMEC did not induce CD69 expression in T cells, indicating

that the effect was mediated by HMEC. Although co-incubation

with activated HMEC induced CD69 expression, which is

usually associated with subsequent T cell proliferation (31, 32),

this was not observed (Figure 1C). A control condition with T

cells co-incubated with conventional dendritic cells (cDC)

showed that the proliferative capacity of these T cells was

intact. Expression of two other markers associated with T cell

proliferation, Ki67 and CD25 (32), was also low in the condition

with activated EC (Figure 1D). This indicates that activated

HMEC induce CD69 expression in T cells, without inducing
Frontiers in Immunology 04
proliferation or conventional activation. In all follow-up

experiments, T cells in co-culture with EC were not stimulated

with anti-CD3.
Activated EC induce a T cell CD69
expression dynamic distinct from
conventional TCR stimulation

To investigate the dynamics of this unusual proliferation-

independent CD69 expression induced by EC, we assessed its

expression over time in CD4+ and CD8+ T cells. As a control for
B

C

D

A

FIGURE 1

Activated EC induce CD69 expression in T cells, without proliferation or activation. HMEC were left unstimulated or stimulated with TNFa and
IFNg for 3 days before addition of FACS-sorted CD3+ T cells to the co-culture, in the presence or absence of soluble anti-CD3 stimulation.
Conventional dendritic cells (cDC) were added as a positive control to induce T cell proliferation. CD69 expression was analyzed by flow
cytometry after 4 days of co-culture. (A) Representative flow cytometry plot, (B) percentage of positive cells and median fluorescent intensity
(MFI). Kruskal-Wallis with Dunn’s post-hoc test compared to unstimulated, c.q. only anti-CD3 stimulated T cells. *p < 0.05. (C) Proliferation was
assessed by CellTrace Violet (CTV) dilution assay. Kruskal-Wallis with Dunn’s post-hoc test. (D) Expression of CD25 and Ki67 after 4 days of co-
culture with unstimulated T cells, resting/activated HMEC or anti-CD3/CD28 beads. N = 3, mean+SEM. Kruskal-Wallis with Dunn’s post-hoc
test. *p < 0.05, **p < 0.01.
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conventional TCR stimulation-induced CD69 expression, T cells

were stimulated with anti-CD3/anti-CD28 beads. HMEC-

induced CD69 expression was rapid, showing an increase

already after 2.5 hours, which peaked at 18 hours and

maintained a marginally lower, but rather stable expression up

to 7 days (162 hours) of co-culture (Figures 2A, B). Bead-

induced CD69 expression showed a slower increase, with a

peak at 18-42 hours and a sharp decline afterwards. This
Frontiers in Immunology 05
indicates that activated HMEC can induce rapid and sustained

CD69 expression in T cells, a dynamic distinct from CD69

expression induced by TCR stimulation (33). Whereas the

expression pattern of CD69 was similar in CD4+ and CD8+ T

cells, the peak fluorescent intensity of CD69 induced by HMEC

was higher in CD8+ T cells (Figure 2C). Remarkably, in CD8+ T

cells HMEC induced an even higher fluorescent intensity of

CD69 than beads. Again, in contrast to bead-stimulated T cells,
B

C

D

A

FIGURE 2

Activated EC induce a distinct dynamic of CD69 expression on T cells. HMEC were left unstimulated (resting) or stimulated with 10 ng/mL TNFa
and IFNg for 3 days (activated) before addition of FACS-sorted CD3+ T cells to the co-culture. CD69 expression and proliferation were assessed
at various time points of the co-culture. As a positive control, T cells were cultured with anti-CD3/CD28 beads. (A) Representative flow
cytometry plots of CD69 expression in CD4+ and CD8+ T cells over time. (B) Percentage of CD69+ cells within CD4+ and CD8+ T cells. (C)
Median fluorescent intensity (MFI) of CD69 expression on T cells. (D) Percentage of proliferated T cells assessed by CellTrace Violet dilution
assay. N = 3, mean+SEM. 2-Way-ANOVA with Sidak post-hoc test. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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HMEC-stimulated T cells did not proliferate (Figure 2D). To

assess whether the capability to induce CD69 was specific to

humanmicrovascular EC or would be a general feature of EC, we

repeated these experiments with HUVEC. The dynamic of CD69

expression induced by HMEC and HUVEC was essentially

identical, indicating that this is a global endothelial effect

(Supplementary Figure 2). Taken together, activated EC induce

sustained CD69 expression (without proliferation) in T cells,

with a dynamic distinct from CD69 expression induced by

TCR stimulation.
EC-induced CD69 expression is most
pronounced in effector memory
CD8+ T cells

To assess which T cell subsets were most responsive to

induction of CD69 expression, FACS-sorted naive
Frontiers in Immunology 06
(CD45RA+CD45RO-) and memory (CD45RA-CD45RO+) CD3+

T cells were separately co-cultured with HMEC. Both CD4+ and

CD8+ memory T cells showed higher CD69 expression than their

naive counterparts, especially after a longer culture period, and

CD8+ memory T cells in particular had the highest and most

stable expression of CD69 over time (Figure 3A). To identify

which subpopulation(s) of CD8+ memory T cells were responsive

to CD69 induction, we sorted 4 different subsets of CD8+ T cells:

central memory (CM, CD45RA-CCR7+), terminally differentiated

CD45RA+ effector memory (TEMRA, CD45RA+CCR7-) and two

subsets of effector memory (EM, CD27+ and CD27-, both

CD45RA-CCR7-) CD8+ T cells. After co-culture with activated

HMEC, the two effector memory subsets, and especially the

CD27- subset which is associated with increased effector

function (34), showed a trend of the highest and most stable

CD69 expression (Figure 3B). These results indicate that CD8+

effector memory T cells are most responsive to induction and

maintenance of CD69 expression by activated EC.
B

A

FIGURE 3

EC-induced CD69 expression is most pronounced in effector memory CD8+ T cells. HMEC were stimulated with 10 ng/mL TNFa and IFNg for 3
days before addition of FACS-sorted naive CD3+ or memory CD3+ T cells to the co-culture. CD69 expression was assessed at various time
points of the co-culture by flow cytometry. (A) Percentage of CD69+ cells (left panel) and median fluorescent intensity (MFI) of CD69 (right
panel) on naive and memory CD4+ and CD8+ T cells. N = 4, mean+SEM. 2-Way-ANOVA with Sidak post-hoc test. */#P < 0.05, **P < 0.01,
***P < 0.001,****P < 0.0001. (B) Percentage of CD69+ cells (left panel) and median fluorescent intensity (MFI) of CD69 expression (right panel)
on sorted CD8+ memory T cell subsets after co-culture with activated HMEC. TEMRA, terminally differentiated CD45RA+ effector memory T
cells (CD45RA+CCR7-); CM, central memory T cells (CD45RA-CCR7+); EM, effector memory T cells (CD45RA-CCR7-). N = 6, mean+SEM. 2-
Way-ANOVA with Sidak post-hoc test.
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EC-induced CD69 expression is partly
mediated by synergistic action of IL-15,
ICAM-1 and VCAM-1

To elucidate the mechanism behind EC-mediated induction

of CD69, we separated effects mediated by cell-contact and

soluble factors by culturing T cells in the direct presence of

HMEC or their cultured medium. HMEC culture supernatants

induced a rapid, but lower CD69 expression on CD8+ T cells

than direct co-culture with HMEC (Figure 4A). Supernatant-

induced CD69 expression was also less stable, possibly due to

consumption of soluble factors. We therefore validated the

contribution of soluble factors to CD69 expression in a

transwell co-culture system (Figure 4B). Although HMEC-

derived soluble factors induced a substantial CD69 expression

in the transwell co-culture, CD69 expression induced by direct

contact was significantly higher. This indicated that soluble

factors contributed to, but were not solely responsible for

CD69 induction, thereby attributing an important role to

direct cell-contact.

HMEC showed differential upregulation of adhesion and

costimulatory molecules in response to stimulation with IFNg
and TNFa (Supplementary Figure 1). To identify candidate

molecules which could mediate CD69 induction by cell-

contact or in solution, we analyzed the differential effect of

IFNg- and/or TNFa-stimulated HMEC on CD69 expression by

T cells. Both direct co-culture and supernatant of TNFa-
stimulated HMEC induced higher levels of CD69 than IFNg-
stimulated HMEC (Figure 4C), indicating that molecules

upregulated by HMEC upon TNFa stimulation contributed

most to CD69 induction. HMEC stimulated with both

cytokines effected only slightly more CD69 expression than

HMEC stimulated with only TNFa, which suggested that the

IFNg-mediated effect was small. Expression of ICAM-1 and

VCAM-1 on HMEC was most dependent on TNFa
stimulation, thereby mirroring the identified pattern of CD69

induction, which rendered them plausible candidate molecules.

Soluble levels of ICAM-1 and VCAM-1 as measured in culture

supernatants of activated HMEC were also induced by TNFa
stimulation (Figure 4D).

Two soluble factors, IL-15 and TGF-b, have been previously

shown to increase CD69 expression on T cells (35–37). In culture

supernatant of activated HMEC IL-15 production was similarly

induced by IFNg and TNFa stimulation, whereas TGF-b
appeared to be constitutively produced and downregulated by

IFNg stimulation (Figure 4E). Although these patterns did not

match the preferential pattern of CD69 induction by TNFa-
stimulated HMEC, we empirically blocked their actions in

memory T cell-HMEC co-cultures, as well as that of ICAM-1

and VCAM-1. Expression of their respective receptors on T cells is

shown in Supplementary Figure 3A. Respective blockade of IL-15,

ICAM-1 and VCAM-1 resulted in a dose-dependent trend of

reduction of CD69 expression, indicating that these factors are
Frontiers in Immunology 07
likely involved in HMEC-mediated CD69 induction (Figure 4F).

Blockade of IL-15 reduced CD69 induction on T cells by up to 40-

45% in the early phase of culture (Figures 4F, G). Blockade of

ICAM-1 also caused a small reduction in CD69 expression,

whereas blockade of TGF-b and VCAM-1 had no effect.

Combined blockade of IL-15 and TGF-b contributed most to

early suppression of CD69 expression on T cells (Figure 4G). After

4 days of co-culture, IL-15 blockade also reduced CD69 induction

up to 40%, but blockade of TGF-b rather increased than decreased
CD69 expression. Combined blockade of these two cytokines

significantly reduced CD69 expression with an effect size similar

to blockade of IL-15 alone. Blockade of ICAM-1 or VCAM-1

alone caused a non-significant reduction in CD69 expression.

However, combined blockade of ICAM-1 and VCAM-1 showed a

synergistic effect after 4 days of co-culture, reducing CD69

expression by up to 50%. The combined blockade of all 4

molecules caused a further reduction of CD69 expression to up

to 65% on day 4. This indicates that likely a multitude of signals

provided by activated EC induces CD69 expression in T cells, and

that it is partly mediated by the synergistic action of IL-15, ICAM-

1 and VCAM-1. To elucidate whether the soluble or membrane-

bound forms of these molecules contributed most to CD69

induction, we compared blockade of IL-15, ICAM-1 and/or

VCAM-1 in a transwell setting with direct co-cultures. The

effect of IL-15 blockade was similar in both settings, and,

although we did not observe significant differences, the effect of

ICAM-1 blockade appeared larger in the direct co-culture

(Figure 4H). Blockade of all three molecules also had the largest

impact in direct co-cultures. This indicates that both soluble IL-15

and cell-bound ICAM-1 appear to contribute to CD69 induction,

whereas the role of (cell-bound or soluble) VCAM-1 is less

evident. We observed similar effects in CD4+ T cells, suggesting

that they respond to similar signals provided by EC

(Supplementary Figures 3B–F). Lastly, to test whether MHC-I

dependent allogeneic recognition of EC by T cells contributed to

CD69 expression, we co-cultured T cells and HMEC in the

presence of an MHC-I blocking antibody (Figure 4I). Blockade

of MHC-I-TCR interactions did not reduce CD69 expression.

This indicates that MHC-I-TCR interaction is not required for

CD69 induction and that most observed effects are mediated by

non-cognate interactions with EC. This was further supported by

the superior effect of TNFa-stimulated HMEC over IFNg-
stimulated HMEC, even though IFNg more potently induced

MHC expression.
T cell – EC interaction as a priming
signal for tissue-residency

To investigate whether proliferation-independent CD69

expression induced by interaction with activated EC may

represent one of the first signs of T cells adopting a specialized

program that primes them for prolonged residency in tissues, we
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FIGURE 4 (Continued)

EC-induced CD69 expression onmemory CD8+ T cells is partly mediated by synergistic action of IL-15, ICAM-1 and VCAM-1. (A+B+C) HMECwere left
unstimulated (resting) or stimulated with 10 ng/mL TNFa and/or IFNg for 3 days (activated) before addition of FACS-sortedmemory CD3+ T cells to the
co-culture or HMEC culturedmedium. CD69 expression and proliferation were assessed at various time points of the co-culture. (A) Percentage of CD69
+ cells (left panel) andmedian fluorescent intensity (MFI) of CD69 (right panel) within CD8+ T cells after co-culture with TNFa and IFNg-stimulated HMEC,
resting HMEC, their culturedmedium (sup), or TNFa and IFNg alone (cyt only). N=3, mean+SEM. 2-Way-ANOVAwith Sidak post-hoc test. */#/0P < 0.05,
**/##/00P < 0.01, ***/###/000P < 0.001,****/####/0000P < 0.0001. (B) Percentage of CD69+ cells (left panel) andmedian fluorescent intensity (MFI) of
CD69 (right panel) within CD8+ T cells after culture with activated HMEC culturedmedium (sup), transwell co-culture or direct co-culture with activated
HMEC. N = 5, median. 2-Way ANOVAwith Sidak’s multiple comparison test; *p < 0.05, ns = not significant. (C) Percentage of CD69+ cells (left panel) and
median fluorescent intensity (MFI) of CD69 (right panel) within CD8+ T cells after co-culture with TNFa- and/or IFNg-stimulated HMEC or their cultured
medium (sup). N = 3, mean+SEM. 2-Way-ANOVAwith Sidak post-hoc test. */#/0P < 0.05, **/##/00P < 0.01, ***/###/000P < 0.001,****/####/0000P <
0.0001. (D+E) Levels of soluble ICAM-1 and VCAM-1 (D) and IL-15 and TGF-b (E)measured in culturedmedium of resting or TNFa- and/or IFNg-
stimulated HMEC after 3 days, by multiplex immunoassay. N = 3, mean+SEM. Kruskal-Wallis with Dunn’s post-hoc test versus resting EC. *P < 0.05, **P <
0.01. (F+G) Co-culture of TNFa and IFNg-stimulated HMECwith FACS-sortedmemory CD3+ T cells in the presence of (increasing concentrations) of
monoclonal antibodies blocking IL-15, TGF-b, ICAM-1 and/or VCAM. (F) The percentage of CD69+ cells wasmeasured by flow cytometry after 18 hours
and normalized to the percentage of CD69+ cells in the condition with isotype control (set to 100). N = 3, median. Kruskal-Wallis with Dunn’s post-hoc
test versus isotype. (G) The percentage of CD69+ cells was measured by flow cytometry after 18 and 90 hours and normalized to the condition with
isotype control (set to 100). N = 4, median. 2-Way-ANOVAwith Sidak post-hoc test versus isotype. *P < 0.05, **P < 0.01. (H) Transwell and direct co-
culture of TNFa and IFNg-stimulated HMECwith FACS-sortedmemory CD3+ T cells in the presence of monoclonal antibodies blocking IL-15, ICAM-1
and/or VCAM. Percentage of CD69+ cells within CD8+ T cells was measured by flow cytometry after 90 hours and normalized to the condition with
isotype control (set to 100). N = 4, median. 2-Way-ANOVAwith Sidak post-hoc test versus isotype. (I) Co-culture of TNFa and IFNg-stimulated HMEC
with FACS-sortedmemory CD3+ T cells in the presence of 35 mg/mLmonoclonal antibody blocking HLA-ABC or isotype control. The percentage of
CD69+ cells andmedian fluorescent intensity (MFI) of CD69 wasmeasured by flow cytometry after 18 and 90 hours. N = 4. Dotted lines indicate paired
measurements. 2-Way-ANOVAwith Sidak post-hoc test versus isotype. *P < 0.05, ***P < 0.001.
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analyzed the co-expression of TRM-associated markers with

CD69. As previously shown, after 4 days of co-culture expression

levels of activation markers CD25 and Ki67, but also ICOS and

CTLA-4, were significantly lower in HMEC-stimulated than in

bead-activated T cells and not increased compared to T cells

cultured without HMEC (Figure 5A), again indicating that

CD69 expression in these cells does not represent conventional

activation. Memory/effector marker CD38 was marginally but

not significantly higher in CD69+ than CD69- T cells cultured

with activated HMEC, but lower than in bead-activated cells

(Figure 5B). Expression levels of CD62L showed a trend of

specific downregulation in CD69+ compared to CD69- cells,

indicating specialization towards an effector phenotype.

Markers associated with tissue-residency were assessed after

7 days of co-culture. S1PR1 was upregulated in CD69- cells in

response to co-culture with HMEC, but downregulated in

CD69+ cells, as also described for TRM (Figure 5C) (22, 23).

Remarkably, the TRM-associated marker CD49a (ITGAM1)

showed specific upregulation in CD69+ cells co-cultured with

HMEC, but not beads, both in CD4+ and CD8+ T cells

(Figure 5D). Other integrins CD49b and CD49d were not

upregulated, indicating that EC specifically induce expression

of integrin CD49a (Supplementary Figure 4). Expression of

other TRM-related markers CD103 (ITGAE), CXCR6, CD57,

CX3CR1 and PD-1 all showed a trend of higher expression in

CD69+ compared to CD69- T cells co-cultured with HMEC, but

lower than in T cells stimulated with beads.

Intracellular cytokine expression was assessed after 7 days of

co-culture and re-stimulation. T cells co-cultured with activated

HMEC were poised for production of pro-inflammatory

cytokines TNFa and IFNg (Figure 5E). We observed high

expression of TNFa specifically in CD4+CD69+ cells co-
Frontiers in Immunology 09
cultured with HMEC, which was even higher than in bead-

stimulated CD4+ T cells, and expressed in 80-100% of CD4+

cells. IFNg expression was (non-significantly) higher in CD69+

than CD69- T cells, and comparable between HMEC-stimulated

and bead-stimulated T cells. IL-17 expression was increased in

CD69+ cells compared to CD69- CD4+ T cells, whereas IL-2

expression was induced by HMEC and beads irrespective of

CD69 expression. Absence of granzyme B expression indicated

that the high cytokine response of CD69+ T cells co-cultured

with HMEC was likely not reflective of direct cytotoxicity

towards HMEC. Increased expression of Th1-related

transcription factor T-bet in 25-60% of CD4+CD69+ and 45-

95% of CD8+CD69+ T cells was consistent with increased IFNg-
production in CD69+ cells (Figure 5F).

Taken together, CD69+ T cells induced by activated HMEC

do not appear to be conventionally activated, but rather express

TRM-associated markers at higher levels than their CD69-

counterparts, and specialize into Th1-like effector memory T

cells with an increased pro-inflammatory cytokine response

upon stimulation.
Discussion

Although the TRM phenotype and function in human

tissues have been extensively investigated, the process of TRM

induction remains a major outstanding question in the field (22,

24, 25, 38). Here, we have demonstrated that activated EC can

induce sustained CD69 expression on T cells in the absence of

TCR stimulation, without inducing proliferation or activation.

The dynamic of this sustained CD69 expression was clearly

distinct from TCR-dependent T cell activation, and EC-
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FIGURE 5

Expression of tissue-resident memory T cell associated markers in EC-stimulated T cells. (A–F) Co-culture of resting or TNFa and IFNg-stimulated
HMEC or anti-CD3/CD28 beads with FACS-sorted memory CD3+ T cells. Expression of activation markers (A) and effector/memory markers (B) was
assessed by flow cytometry after 4 days of co-culture. Expression of markers associated with tissue-residency (C+D), cytokines (E) and transcription
factors (F) was assessed by flow cytometry after 7 days of co-culture. Cytokine expression was measured intracellularly after restimulation. N = 5,
boxplots with median. Cond, condition; T, T cells only (CD69-); ECr, resting EC (CD69-); ECa, activated EC (CD69- and CD69+); B, anti-CD3/CD28
beads (CD69- and CD69+). Kruskal-Wallis with Dunn’s post-hoc test. *P < 0.05, **P < 0.01,***P < 0.0001.
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mediated induction of CD69 expression was partly dependent

on IL-15, VCAM-1 and ICAM-1. Moreover, EC-induced CD69+

T cells expressed multiple markers associated with tissue-

residency in T cells and were poised for a pro-inflammatory

cytokine response. Our observations are consistent with the

described “activated yet resting” functional phenotype of TRM

(28). Therefore, close interaction with EC during transmigration

appears to be one of the first cues priming tissue-infiltrating T

cells for tissue-residency.

Interaction with EC, and especially transmigration, can

influence T cell function and even induce proliferation in the

presence of TCR stimulation during co-culture (39–41). Only a

few studies have demonstrated the induction of CD69 on T cells

by activated EC without TCR triggering, but this was linked to

activation and not to potential TRM programming at that time

(35, 42, 43). In line with our results, these previous studies

showed that CD69 expression was dependent on LFA-1/ICAM-

1 interaction and enhanced in the presence of IL-15 (35, 43). IL-

15 can induce CD69 expression and proliferation in naive and

memory T cells, but was also shown to be a crucial factor for

TRM development (29, 44, 45). Based on these previous results

combined with our own data, including the downregulation of

S1PR1 which limits egress from tissues, we would like to propose

an alternative hypothesis in which interaction of effector

memory T cells with activated EC primes T cells for tissue-

residency. This is also in line with published data showing that

EC-T cell interaction enhances T cell responsiveness to antigenic

challenge and increases T cell motility, features required for and

conducive to TRM fate (43). In addition, transmigration has

been shown to increase T cell survival in an ICAM-1 dependent

manner, which could partly prepare them for the longevity of

TRM in tissues (46, 47).

As tissue environments provide specific cues regulating

functional characteristics of immune cells, TRM may represent a

plasticT cell population, andbothCD4+andCD8+TRMsmayhave

the ability to up- and downregulate described TRM markers

depending on the microenvironmental cues present at their

specific tissue site (24, 38, 48, 49). The context of the tissue

environment may therefore support a two-step model for

development of TRM: first, interaction with or transmigration

through EC primes T cells for increased receptivity towards

environmental signals and increased migratory capacity, inducing

an “activated yet resting” state and CD69 upregulation preventing

tissue egress. Second, microenvironmental signals from the tissue

environment further shape, support and consolidate the specific

TRMprofile that is ‘required’ at a certain tissue site. This hypothesis

for TRM development is consistent with a previously suggested

model of T cell trafficking, which also emphasizes a role for EC

shaping T cell function (50, 51).

In steady-state conditions, TRM provide rapid on-site

immune protection against known infectious pathogens.

However, aberrantly activated or autoreactive TRM can

contribute to the pathogenesis of chronic inflammatory
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diseases (18). Indeed, pathogenic TRM have been implicated

in the initiation and/or relapsing course of psoriasis, Crohn’s

disease and rheumatoid arthritis (18, 52). In the context of

allogeneic hematopoietic stem cell transplantation (HCT),

cytotoxic tissue-infiltrating donor T cells have also been

demonstrated to acquire TRM features during gastrointestinal

aGvHD in animal models, driving tissue destruction (21, 53).

Interestingly, transcriptional analysis of these actively infiltrating

cells revealed a clinically relevant gene signature associated with

adhesion, extravasation and migration (21), underlining the role

of the endothelium as interaction partner. Our data are further

supported by newly emerging, promising therapeutic strategies

targeting endothelial activation to prevent complications post-

HCT (54–56). Defibrotide, for instance, a drug currently

approved for hepatic veno-occlusive disease after HCT, has

been shown to protect EC from pro-inflammatory activation

in in vitro HCT models, and reduced the risk and severity of

aGVHD in a large pediatric prospective randomized trial

(54–56).

In our in vitro experimental setting with allogeneic EC, we

cannot rule out that direct allorecognitionofECbyTcellsmayhave

accounted for some of the observed effects. However, direct

allorecognition accounting for CD69 expression is unlikely, due

to the lack of induction of CD25 expression, proliferation and the

absenceof effect of theMHC-Iblockade, as alsoobservedpreviously

(10, 35, 39, 57). Since we studied the effects of EC on T cell

phenotype and function only in an in vitro system, it would be

important to further investigate the hypothesis concerningpriming

for tissue-residency in more detail, if possible in vivo, to also take

into account the effect of a tissue-environment.

In conclusion, we have constructed an in vitro system using

T cells and cytokine-activated EC, with which we recapitulated

the peculiar phenotypical and functional characteristics of TRM.

These included sustained expression of CD69 and markers of

tissue residency, as well as an “activated yet resting” state poised

for rapid cytokine production. These findings support our

hypothesis that interaction with EC may be one of the first

events priming transmigrating T cells for the specific functional

requirements of tissue-residency.
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