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Every year, Coronary Artery Disease (CAD) claims lives of over a million people. CAD occurs when the 
coronary arteries, responsible for supplying oxygenated blood to the heart, get occluded due to plaque 
deposits on their inner walls. The most critical fact about this disease is that it develops gradually over 
the years and by the time symptomatic changes such as angina or shortness of breath appear, the 
disease has already become severe. The overall aim of the proposed work is to detect CAD efficiently 
in its early stage while utilizing (radial) arterial blood pressure (ABP) along with photoplethysmogram 
(PPG) signals so that necessary clinical measures may be taken timely. To achieve this objective, firstly, 
ABP and PPG data of 73 CAD and 64 non-CAD (not suffering from any cardiac condition) subjects have 
been collected from MIMIC-II waveform database with matched subset. Secondly, the collected data is 
pre-processed using band pass filters having bandwidths of 2.5 to 16 Hz and 1.5 to 16 Hz for ABP and 
PPG respectively. Thirdly, nineteen features have been extracted from each of the two signals; some 
of the key features include mean of pulse duration, mean of rising slope and ratio of low frequency 
to high frequency. Finally, extensive analysis on CAD and non-CAD classification is carried out on 
the basis of extracted features while employing state-of-the-art classifiers such as support vector 
machines (SVM), K-nearest neighbors (KNN) and neural networks(NN). The numerical experiments 
have led to the interpretation that neural network outperforms other classifiers, claiming an accuracy 
of about 90%. Moreover, accuracy of the proposed approach is found to be better than the state-of-
the-art works reported in literature where one of or combinations of cardiovascular signals, namely, 
electrocardiogram (ECG), phonocardiogram (PCG) and photoplethysmogram (PPG) have been utilized 
for the CAD detection.
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The global mortality rate due to cardiovascular diseases (CVDs) cause a major concern, approximately 17.9 
million deaths in 2019 is being attributed to CVDs1. Coronary artery disease is one of the major CVDs; in 
this pathological condition, the coronary arteries, responsible for supplying oxygenated blood to the heart, get 
occluded due to plaque deposits on their inner walls2. This may further lead to symptoms such as chest pain, 
shortness of breath, heart attack in the advanced stage of disease development. The risk factors include high 
blood pressure, high cholesterols, diabetes, smoking, obesity and a family history of heart disease3. Treatment 
options for the said condition range from lifestyle changes, medication to surgery. It may be noted that once 
the disease has become severe, it requires clinical intervention, else, it may prove to be fatal. While coronary 
catheterization is a gold standard for diagnosing CAD2, it is an invasive and expensive procedure conducted 
by skilled cardiologists. The proposed approach for detecting CAD would be easily accessible, low-cost, non-
invasive, and suited for domestic use. Some study’s have shown that different machine learning techniques have 
remarkable impact on heart disease detection4.

Medical assessment of CAD typically includes electrocardiography (ECG), treadmill test (TMT), and cardiac 
catheterization3. CAD may not exhibit any of the symptoms or changes in ECG signal until stenosis has become 
severe5. Moreover, cardiac catheterization is a completely invasive process as mentioned above. Also, The 
sensitivity of TMT is 25–71% for subjects having one artery blockage; the sensitivity of this test improves to 81% 
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in case of 2–3 arteries’ blockage6. Therefore, preventive and precise diagnosis of CAD is crucial for reducing 
mortality rates. Early detection is critical to avoid an increased cardiovascular risk. The overall contribution of 
this research is to develop a non-invasive and efficient method for screening of CAD subjects while utilizing ABP 
and PPG measurements. In this context, selected state-of-the art works on detection of CAD are reviewed below.

ECG signal has been readily used for detection of cardiac conditions, as reported in the literature. Al. Hosani 
et al. has used a linear feature extraction approach with KNN, DT(Decision Tree), and SVM classifiers to detect 
CAD with maximum accuracy of 90%7. U. R. Acharya et al. utilized entropy feature extraction technique with the 
same set of classifiers8. V. Jahmunah et al. have utilized convolutional neural networks (CNN) for CAD detection 
using ECG signals9. Advanced machine learning approaches, such as deep neural networks and reinforcement 
learning, have demonstrated significant potential in analyzing and predicting physiological signals like ECG for 
cardiac abnormalities10. Such techniques can address challenges like missing data segments, providing robust 
signal predictions and enabling accurate feature extraction for clinical applications. In a similar study using ECG 
signal, the authors analyzed 303 records, examining 26 features that were selected as target features with input 
from clinical experts. They tested several key classification algorithms such as Multilayer Perceptron (MLP), 
Support Vector Machine (SVM), Logistic Regression (LR), J48, Random Forest (RF), K-Nearest Neighbors 
(KNN), and Naive Bayes (NB)11. The accuracy level of ECG-based models has been quite good, but preventive 
healthcare seems to be difficult in this case, as discussed earlier. Khan et al.12 utilized PCG signal for CAD-
detection and revealed 89% of accuracy, but PCG signals can easily be subjected to noise artefacts which makes 
the data collection process more complicated and difficult.

Now, PPG based models overcome the limitations of ECG and PCG based models for CAD detection7,13. 
Banerjee R et al. extracted time domain as well as frequency domain features from PPG signal to detect CAD 
with sensitivity of 73% and specificity of 87% while employing SVM classifier14. Paradkar et al. used temporal 
positioning of systolic and diastolic phases and characteristic points; the sensitivity of 85% and specificity of 
78% for detection of CAD have been reported with SVM classifier15. Ihsan et al. used three methods for feature 
extraction respiratory rate (RR) interval, heart rate variability (HRV) features, and time domain features where 
each technique is used seperately which questions the robustness of the method16. Chakraborty et al. utilized 
statistical features, frequency domain features and time domain features and inter beat variability analysis 
techniques along with SVM, KNN, DT and LR (Logistic Regression) classifiers for CAD detection, revealing 
accuracy of 93%17 but used photo-plethysmographic data, which questions about the robustness of the model.

In some of the recent works, two or more cardiovascular signals have been synchronously used to identify 
markers of CAD. Advances in signal processing for real-time applications have enabled efficient handling of 
ECG and PPG data through innovative compression techniques. For instance, Banerjee et al. proposed a real-
time lossless compression algorithm for ECG and PPG signals using second-order delta encoding and run-
length encoding (RLE), achieving high compression ratios while preserving critical signal features18. Banerjee 
et al. have worked on such a model in which time domain and frequency domain features are extracted from 
PPG and PCG signals together; the accuracy is reported to be 79%19. Zhao et al. demonstrated the effectiveness 
of VCG and CDG features with machine learning for detecting coronary microvascular dysfunction20. CAD 
progression involves hemodynamic changes, particularly in multi-vessel disease, affecting myocardial perfusion. 
Harmouche et al. emphasized the importance of collateral circulation in preserving heart function21. Our ABP 
and PPG-based framework builds on these insights to enable non-invasive early CAD detection. To address the 
aforementioned challenges we propose a novel Integrated Fusion Module which combines the features extracted 
from both the signals for better classification results and clinical applicability of the proposed framework towards 
CAD detection. In the proposed work, ABP and PPG signals are together utilized along with state-of-the-art 
classifiers to identify markers of CAD. The key contributions of this study are as follows:

•	 A set of Nineteen clinically significant features are extracted from both the ABP and PPG signals.
•	 An Integrated Fusion Module(IFM) designed for accurate classification. It combines the features extracted 

from the ABP and PPG signals and fed to the Classification Module.
•	 Quantitative and qualitative analysis of the predictive probability of the state-of-the-art classification net-

works for detection of CVDs.
•	 The proposed model demonstrates reliable and robust performance, validated by a large-scale dataset from 

the MIMIC-II database.

Methodology
The proposed Machine Learning framework as depicted in Fig. 1 illustrates the framework for the integrated 
fusion-based analysis of ABP and PPG signals, aimed at early detection of CAD. The framework consists of three 
primary stages: pre-processing, the Integrated Fusion Module (IFM), and the classification module. Each stage 
contributes to optimizing the diagnostic potential of the fused signal data.

In the pre-processing stage, the raw ABP and PPG signals are subjected to noise removal and filtering to 
eliminate unwanted artifacts and enhance signal clarity. This ensures that only the most reliable and relevant 
signal components are used for further processing. Once cleaned, these signals are forwarded to the IFM. In 
the Integrated Fusion Module, feature extraction is performed separately on the ABP and PPG signals, yielding 
19 features from each signal. These features capture key physiological characteristics, such as pulse waveforms, 
amplitudes, and variability, which are crucial for identifying CAD-related abnormalities. The extracted features 
from both signals are then fused into an integrated feature set, leveraging the complementary nature of ABP and 
PPG to provide a comprehensive representation of the cardiovascular state.

Finally, the classification module utilizes the integrated feature set to train and test machine learning 
classifiers, including KNN, SVM, and neural networks. The classifiers are trained using a portion of the dataset 
and then tested to predict whether a subject falls into the CAD or non-CAD category. This stage evaluates the 
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diagnostic performance of the fusion-based approach, assessing metrics like accuracy, sensitivity, specificity, and 
positive predictive value. By combining ABP and PPG signals, the framework enhances diagnostic accuracy and 
reliability, offering a non-invasive and efficient tool for early CAD detection. This integration emphasizes the 
potential of multi-signal fusion to improve the identification of critical cardiovascular conditions.

Dataset
ABP and PPG signals have been analysed from 137 subjects out of which 73 suffer from CAD, and 64 do not 
suffer from any cardiac condition (labeled as non-CAD). Each of the analysed signals have a sampling rate of 
125 Hz. The source of this data is MIMIC-II22 waveform database with matched subset, was obtained from 
PhysioBank ATM23. Figure 2 shows the sample of data while showcasing some of the features.

Pre-processing
The data from MIMIC-II waveform database requires certain pre-processing in order to remove unwanted 
noise and motion artifacts. A body at rest has a low respiratory rate, but a person sprinting may have a very 
high respiratory rate24. This rise and fall in respiratory rate might result in low frequency disruptions in the 
recorded signal. Even the smallest action of a human muscle can result in low frequency sounds25,26. Therefore, 
it’s essential to keep the subject motionless while recording. The raw signal must be cleaned up since it might take 
up low-frequency noise during long recordings. Further, motion artifacts and distorted signals were eliminated 
subsequently. For ABP signals, a fourth order Butterworth band pass filter with a frequency range of 1.5–16 Hz 
and for PPG signals, a sixth order Butterworth band pass filter with a frequency range of 2.5–16 Hz are utilised. 
Figure 3 shows raw signal sample before and after filtering; here boxes indicate the affected area.

Feature extraction
In total, 19 features are extracted from each of ABP as well as PPG signals (Each feature equation presented in 
Supplementary Table S1 and in Figure S1). Table 1 shows average values of the features extracted from ABP and 
PPG for CAD as well as non-CAD subjects. Firstly, Heart Rate Variability (HRV) of the signal is used to extract 
relevant time domain features. HRV is a neuro-cardiac function of the brain and heart signals that contain 
changes or variations in the heartbeat27. Further, HRV is split into its components VLF, LF, and HF rhythms that 
operate within distinct frequency ranges; these are listed as frequency domain features27. The power spectrum 
of the HRV signal is divided into three bands: Very Low Frequency (VLF, 0–0.04  Hz), Low Frequency (LF, 
0.04–0.15 Hz), and High Frequency (HF, 0.04–0.30 Hz) (HF, 0.15–0.4 Hz), which are also listed in Table 1.

Fig. 1.  An overview of the Machine Learning Analysis of Integrated ABP and PPG Signals. This framework 
includes the Integrated Fusion Module (IFM) which combines the features from both PPG and ABP signals for 
better predictive analysis of CAD.
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Integrated fusion module (IFM)
ABP measurements, which include systolic and diastolic pressures are useful for detecting hypertension a major 
risk factor for CAD. Additionally, the analysis of ABP waveform characteristics provides insights into arterial 
compliance and resistance, which are critical for diagnosing CAD. Meanwhile, PPG signals are employed to 
calculate pulse wave velocity (PWV), an indicator of arterial stiffness and a predictor of CAD. In the IFM we 
have combines the features extracted from both the signals. Nineteen features from both PPG and ABP signals 
are extracted which are of important biomarkers for detecting CAD. To enhance the classification accuracy of 
the signals features of the fused ABP and PPG signlas are used for training and testing.

Classification
Three state-of-the-art classifiers, namely, K-nearest neighbours (KNN), Support Vector Machines (SVM) and 
Neural Networks (NN) have been utilized for CAD/non-CAD classification. Ten-fold cross-validation technique 
has been used to validate the models. This kind of validation protects against over-fitting by partitioning the data 
set into folds and estimating accuracy on each fold. In total 70% of data were used for training, for validation 
15% of data were used and for testing also 15% data were employed. In case of KNN, weighted KNN with 10 
Neighbours has been used and for distance matric, the Euclidean method has been utilized. In case of SVM, Fine 
Gaussian SVM has been utilized. In case of Neural Network, 100 iterations has been utilized.

Results and discussion
Experimental results
The classification results are tabulated in Table 2. Performance parameters such as accuracy, sensitivity, specificity 
and PPV for each of the classifiers and for each of the models have been summarized in Table 2. Also, Confusion 
Matrix and ROC (Receiver Operating Characteristic) curves for each of the models are presented in Fig. 4. The 

Fig. 3.  Filtered and non filtered signals (red box indicates the area where filtering has been applied).

 

Fig. 2.  Basic ABP Signal with some features (Tc = Total Time for one Cycle, Ts = Systolic Time, Td = Diastolic 
Time).
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empirical formulae for Accuracy (Acc Eq. 1), Sensitivity (Se Eq. 2), Specificity (Sp Eq. 3) and Positive Predictive 
Value (PPV Eq. 4) are detailed below28–30.

•	 Accuracy (Acc) The proportion of correctly classified cases (both CAD and non-CAD) to the total number of 
cases. Which Indicates the overall effectiveness of the classification model. 

	
Acc = T P + T N

T P + T N + F P + F N
× 100� (1)

 where:
	– TP (True Positives): CAD cases correctly identified as CAD.
	– TN (True Negatives): Non-CAD cases correctly identified as non-CAD.
	– FP (False Positives): Non-CAD cases incorrectly identified as CAD.
	– FN (False Negatives): CAD cases incorrectly identified as non-CAD.

•	 Sensitivity (Se) The ability of the model to correctly identify CAD cases. Measures how well the model iden-
tifies actual CAD cases, minimizing missed diagnoses. 

	
Se = T P

T N + F N
× 100� (2)

S. no. Model Classifier Accuracy (%) Sensitivity (%) Specificity (%) PPV (%)

1 PPG

KNN 84.6 70.5 84.0 80.92

SVM 83.5 65.8 80.9 75.5

NN 82.0 69.7 82.8 80.0

2 ABP

KNN 91.5 78.0 91.1 89.5

SVM 88.8 72.1 86.2 82.8

NN 89.1 76.2 89.1 87.37

3 Fused Model

KNN 89.5 74.7 88.2 85.8

SVM 88.2 70.5 85.0 80.9

NN 90.2 78.0 90.9 89.5

Table 2.  Performance comparison of different classifiers using PPG, ABP, and the fused model.

 

S. no. Feature

PPG range ABP range

CAD Non-CAD CAD Non-CAD

1 Mean of pulse duration 0.810 0.777 0.754 0.741

2 Standard deviation (SD) of pulse duration 0.187 0.139 0.061 0.047

3 Mean of relative crest time 0.026 0.025 0.024 0.023

4 SD of relative crest time 0.005 0.003 0.002 0.001

5 Mean of relative diastolic time 0.053 0.005 0.055 0.056

6 SD of relative diastolic time 0.005 0.003 0.002 0.016

7 Mean of time ratio 0.019 0.019 0.020 0.020

8 SD of time ratio 0.069 0.065 0.027 0.025

9 Mean of pulse height 1.098 4.232 2.241 2.786

10 Mean of rising slope 0.041 0.148 0.083 0.107

11 Mean of falling slope 0.007 0.025 0.012 0.014

12 SD of normal peak-to-peak intervals 0.063 1.113 0.491 0.379

13 SD of normal diastolic peak intervals 0.110 1.118 0.494 0.383

14 Root mean square of Successive Deviations Between Normal 0.093 1.580 0.663 0.521

15 SD of successive deviation 0.096 1.673 0.692 0.548

16 Very low frequency 0.192 0.115 0.776 0.112

17 Low frequency 0.136 0.121 0.761 0.117

18 High frequency 0.014 0.020 0.013 0.017

19 Ratio of LF and HF 9.470 6.840 7.434 7.860

Table 1.  Extracted features and their range (for ABP and PPG signals for both CAD and Non-CAD).
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•	 Specificity (Sp) The ability of the model to correctly identify non-CAD cases. Measures the model’s effective-
ness in avoiding false alarms by correctly classifying non-CAD cases. 

	
Sp = T P

T N + F P
× 100� (3)

•	 Positive predictive value (PPV) The proportion of positive predictions (CAD cases) that are correctly classi-
f﻿ied. Reflects the reliability of positive predictions and reduces false positives in the CAD diagnosis. 

	
P P V = T P

T P + F P
× 100� (4)

•	 Receiver operating characteristic (ROC) curve A graphical plot that illustrates the trade-off between the 
True Positive Rate (Sensitivity) and the False Positive Rate (1 - Specificity) across different thresholds is shown 
in Fig. 4. ROC Evaluates the classifier’s performance irrespective of the decision threshold. In ROC higher 
area under the ROC curve (Area under the curve) indicates better model performance.

•	 Confusion matrix In Fig. 4 confusion matrix is used to summarize the model’s predictions, showing the 
distribution of TP, TN, FP, and FN. Provides a comprehensive view of the classification performance, helping 
identify where the model excels or struggles. Where “0” represents NON-CAD patients and “1” represents 
CAD patients.

Discussion
In this study, several machine learning models were trained and evaluated to classify Coronary Artery Disease 
(CAD) and non-CAD cases using arterial blood pressure (ABP) and photoplethysmogram (PPG) signals. The 
results demonstrate that the Neural Network (NN) classifier, utilizing features from both ABP and PPG signals 
through a fused dataset, outperformed other models in terms of accuracy, sensitivity, and specificity. The NN 
model achieved the highest classification accuracy of 90.2%, surpassing K-Nearest Neighbors (KNN) and 
Support Vector Machines (SVM), which also showed competitive but lower performance metrics. Among the 
single-signal models, ABP-based models performed better than PPG-based models, yet both were significantly 
improved by the integrated fusion approach.

The Receiver Operating Characteristic (ROC) curves provided further validation of the model’s performance, 
clearly demonstrating the superior ability of the fused model to distinguish between CAD and NON-CAD cases. 

Fig. 4.  Confusion Matrix and ROC Curve of best model from ABP(Model 1), PPG(Model 2) and Fused 
Model(Modle 3). Where “0” represents NON-CAD and “1” represents CAD patients.
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The confusion matrix for the NN classifier revealed a balanced trade-off between true positive and true negative 
rates, further highlighting the robustness of the fused dataset in addressing classification challenges.

In contrast, models trained on single-signal datasets lacked the discriminative power provided by the fused 
approach. The results underscore the importance of combining complementary physiological signals for robust 
and reliable classification. This study provides strong evidence that the proposed fusion-based methodology, 
validated on a large-scale dataset, holds significant potential for early, non-invasive CAD detection and 
demonstrates practical applicability for real-world clinical use.

Clinical relevance
The clinical relevance of this work is significant, as it aims to detect CAD at an early stage using radial ABP and 
PPG signals. Early identification of CAD is critical for initiating timely clinical interventions that can prevent the 
disease from progressing to more severe stages. By utilizing these non-invasive and readily accessible monitoring 
techniques, the approach can facilitate regular screening and monitoring, making early detection more feasible 
and widespread. This can lead to prompt medical responses, such as lifestyle modifications, medications, and 
other therapeutic measures, which are crucial for improving patient outcomes and reducing the incidence of 
heart attacks. Additionally, early detection through ABP and PPG signals can improve patient compliance and 
follow-up, as these methods are less intimidating and more comfortable for patients compared to traditional 
techniques. Consequently, integrating ABP and PPG signals for early CAD detection enhances the classification 
results significantly which in-turn holds promising impact on preventive healthcare and reducing the overall risk 
of cardiovascular diseases.

Conclusion and future work
Coronary artery disease is one of the most prevalent diseases and kills millions of people annually. In order to 
treat this condition and thereby reduce mortality rates, it is crucial to detect it early. To achieve this objective, 
arterial blood pressure and photoplethysmogram data have been collected for 137 subjects from MIMIC-II 
waveform database. It is concluded that Neural Network reveals best results with 90% prediction accuracy, 93.3% 
for patients with CAD, and 89.3% for patients without CAD. Despite the above innovation our study has several 
limitations. A comparison shown in Fig. 5 and Table 3 can demonstrate the effectiveness of our proposed method 
over other techniques used. Firstly, validation using external datasets from different institutions or equipment 
was not conducted. Secondly, the proposed method could not be compared with previous methods within the 
same analytical environment. Additionally, in this study we have extracted the features manually further the 
use of deep neural networks for classification on CAD can be implemented. For future work, enhancements 
can focus on improving the generalization of the dataset and incorporating deep learning methodologies. 
Additionally, a more comprehensive analysis of other potential features could be explored to further refine the 
model’s performance.

Fig. 5.  Statistical comparison of different models with our proposed method.
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Data availability
The datasets generated and analysed during the current study are available in the The MIMIC II Waveform Da-
tabase repository, ​h​t​t​p​s​:​​/​/​a​r​c​h​​i​v​e​.​p​h​​y​s​i​o​n​e​​t​.​o​r​g​​/​p​h​y​s​i​​o​b​a​n​k​/​​d​a​t​a​b​a​​s​e​/​m​i​m​i​c​2​w​d​b​/.
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PPG and PCG

1 Time + Frequency19 SVM
Se = 60%

Sp = 93%

2 Time + Frequency31 SVM

Acc = 79%

Se = 80%

Sp = 70%

ECG
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Sp = 75%
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Sp = 90.9%

Table 3.  Comparison of different state-of-the-art models with the proposed model.
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