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High-throughput DNA sequencing techniques enable large-scale measurement of
somatic mutations in tumors. Cancer genomics research aims at identifying all
cancer-related genes and solid interpretation of their contribution to cancer initia-
tion and development. However, this venture is characterized by various challenges,
such as the high number of neutral passenger mutations and the complexity of the
biological networks affected by driver mutations. Based on biological pathway and
network information, sophisticated computational methods have been developed to
facilitate the detection of cancer driver mutations and pathways. They can be cate-
gorized into (1) methods using known pathways from public databases, (2) network-
based methods, and (3) methods learning cancer pathways de novo. Methods in the
first two categories use and integrate different types of data, such as biological path-
ways, protein interaction networks, and gene expression measurements. The third
category consists of de novo methods that detect combinatorial patterns of somatic
mutations across tumor samples, such as mutual exclusivity and co-occurrence. In
this review, we discuss recent advances, current limitations, and future challenges
of these approaches for detecting cancer genes and pathways. We also discuss the
most important current resources of cancer-related genes. © 2016 The Authors. WIREs Sys-

tems Biology and Medicine published by Wiley Periodicals, Inc.
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INTRODUCTION

Decades of cancer research have demonstrated that
cancer is a complex genetic disease caused prima-

rily by somatic mutations in the genome. Somatic
mutations can dysregulate specific cellular pathways
leading to the acquisition of cellular vulnerabilities
that transform a normal cell into an abnormal cancer
cell. These properties, often called cancer hallmarks,1,2

drive cancer initiation and progression. Among others,

they include evading growth suppressors, resisting cell
death, and other abnormal phenotypes.

Many genetic changes in the genomes of
somatic cells initiate and promote tumor growth, and
cancer genomics researchers are now aiming at
detecting all of these cancer driver mutations. There
are several types of somatic mutations varying from
single-nucleotide variants (SNVs), small insertions
and deletions (indels), to larger copy number aberra-
tions (CNAs, >50 bp)3 and large genomic rearrange-
ments or structural variants (SVs). Several of these
genomic alterations have long been studied using
low-throughput approaches, such as targeted gene
sequencing, cytogenetic techniques,4,5 systematic
mutagenesis,6 and genetic linkage analysis.7 How-
ever, these traditional experimental approaches are
laborious, time-consuming, and cost-inefficient.
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Recent high-throughput DNA sequencing tech-
niques have revolutionized cancer genomics, and col-
laborative projects such as The Cancer Genome Atlas
(TCGA)8 and the International Cancer Genome Con-
sortium (ICGC)9 publicly released DNA sequences
from thousands of tumors. Whole-exome sequencing
only targets protein-coding regions (about 2% of the
genome) and hence comes at reduced financial, storage,
and computing costs for the analysis. This makes large
population studies feasible. Whole-genome sequencing,
on the other hand, allows examination of somatic
mutations in the entire genome, enabling also the cov-
erage of regulatory regions like promoters and enhan-
cers. Both approaches contributed to massive cancer
genome sequencing, which recently revealed a variety of
mutational patterns such as kataegis,10 chromothripsis,11

chromosomal chains,12 and other complex chromosomal
rearrangements.13 High-throughput sequencing technolo-
gies can produce billions of short reads, which need to be
aligned to the reference genome in order to detect their
genomic location and difference to the normal human
genome. During the sequencing and alignment proce-
dures, several errors and artifacts are introduced, includ-
ing optical polymerase chain reaction (PCR) duplicates,
and GC, strand, and alignment bias.14 Several of the vari-
ant callers implemented to detect somatic mutations
account for these biases trying to reduce false-positive and
false-negative mutation calls. Hence, computational
approaches for the systematic detection of cancer-related
somatic mutations are increasingly important.

Several cancer mutations can be targeted thera-
peutically. For example, Sorafenib is used as a multi-
kinase inhibitor primarily in kidney and liver cancer
to target extracellular signal-regulated kinases (ERK)
and other signaling pathways, which are important
for tumor cell proliferation and angiogenesis.15

Another example is Crizotinib, an oral tyrosine
kinase inhibitor that targets anaplastic lymphoma
kinase (ALK) in ALK-positive lung cancer patients.16

The availability of mutation-specific drugs leads inev-
itably to the emerging field of precision medicine, in
which treatment of a cancer patient is guided by his
or her individual somatic mutation profile.14

The mutational landscape of cancer has been
proposed to consist of ‘mountains’ of very frequently
mutated genes and of ‘hills’ of significantly, but less
frequently mutated genes.17 Existing drugs mainly
target the mountains that are present in a high num-
ber of patients with the same cancer type or even
across several cancer types. At the same time, the
hills are much higher in number and more cancer
type-specific. Moreover, intertumor heterogeneity18

(denoting the large differences in mutations occurring
in tumors of the same type) makes it even more

complicated to narrow down the mutated genes that
drive cancer progression. All together, these issues
result in the requirement of generating a large num-
ber of personalized treatment options by using spe-
cific drugs or combinations of drugs.

For most cancer genes, their involvement in the
physiological process of cancer development is yet to
be discovered.19 In addition, we do not know how
many cancer driver genes remain to be revealed. It is
believed that a plateau is being reached, because in dif-
ferent tumor types, the same mutated cancer driver
genes are increasingly rediscovered.17 The catalogue of
somatic mutations in cancer (COSMIC)20 is currently
reporting 572 genes for which mutations have been
causally implicated in cancer. However, most variant
callers tend to produce long lists of potential somatic
mutations, many of which are neutral passenger muta-
tions and only a few are selectively advantageous driver
mutations. There is a wide variability of the average
number of nonsynonymous mutations that occur in
different cancer types, ranging from ~10 in pediatric
cancers to several hundred in colorectal cancer. Only
around 1–2.5% of these mutations are probably dri-
vers.17 Hence, additional methods have been developed
in order to filter the mutation lists further for drivers.
Some of these methods use protein structure and func-
tion or spatial clustering of mutations to predict the
functional impact of mutations. So far, reviews are
mainly focusing on variant callers,14,21 methods to pre-
dict the functional impact of mutations,22 and pro-
blems such as tumor purity estimation.14

In this review, we will focus on three different
classes of approaches that use methods for predicting
cancer genes and pathways in order to narrow down
further the number of candidate drivers. The three cate-
gories comprise (1) methods using given biological
pathways, (2) network-based methods, and (3) methods
learning pathways de novo by detecting combinatorial
patterns of cancer mutations (Figure 1). Methods that
use given biological pathways compare a set of cancer-
related genes (e.g., mutated genes) to known biological
pathways. Network-based methods search for cancer
genes and pathways in biological networks that repre-
sent the interactions between cellular molecules. Meth-
ods learning pathways de novo do not use any prior
knowledge about the genes (pathways or interactions)
and infer cancer genes and pathways based on patterns
of co-occurrence or mutual exclusivity between the
genetic aberrations. Before discussing each of them sep-
arately (Table 1), we summarize the available resources
for storing cancer-related genes and drugs as well as
important properties of the cancer-related genes such
as mutation frequency, expression profiles, and cellular
function. Finally, we will discuss current challenges in
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the automated prediction and functional interpretation
of cancer genes and pathways.

DATABASE SOURCES OF
CANCER-RELATED GENES

Several databases exist that contain information about
cancer genes and their function. COSMIC20 currently
comprises 572 genes in which mutations have been
found and causally implicated in cancer. Among these
genes, 484 harbor only somatic mutations, 35 only
germline, and 53 harbor both. Vogelstein et al.17 pro-
posed a list of 54 oncogenes and 71 tumor suppres-
sors by defining the 20/20 rule, which assumes that
cancer genes must have either at least 20% inactivat-
ing mutations or at least 20% of the mutations must
be in recurrent positions and missense. The Atlas of
Genetics and Cytogenetics in Oncology and Haema-
tology (AGCOH)46 contains 1452 cancer genes based
on merging the results of several collaborative pro-
jects. AGCOH also comprises a set of genes that have
not been associated with cancer before and can be

used as a negative control set of noncancer genes. The
Network of Cancer Genes (NCG)47 is a web-based
repository of systems-level properties of cancer genes
and collects information on 518 known (i.e., experi-
mentally supported) and 1053 candidate (i.e., inferred
using statistical methods) cancer genes. The Cancer3D
database48 is focusing on the impact of missense
somatic mutations on protein structure and helps
users analyze distribution patterns of mutations as
well as their association with changes in drug activity.
It displays mutations from over 14,700 proteins
mapped to more than 24,300 protein structures from
the Protein Data Bank.49 However, it should be noted
that databases such as COSMIC and NCG review the
literature to predict cancer genes, which need further
experimental validation. For example, only 120 of the
1053 candidate cancer genes in NCG are supported
by cell line experiments that demonstrate the effect of
gene silencing or gene overexpression.47

Other databases focus on therapeutic agents that
may be used against specific cancer alterations. The
Cancer Cell Line Encyclopedia50 is a considerable
resource for the systematic translation of SNVs, CNAs,
and mRNA expression into therapeutic possibilities by
generating genetic, lineage, and gene-expression-based
predictors of drug response. Together with Genomics
of Drug Sensitivity in Cancer, these databases can aid
in determining the genetic factors that lead to the resist-
ance and sensitivity to drugs. The Drug–Gene Interac-
tion database (DGIdb) is the largest database with
drug-related information. It combines 15 existing
resources that contain information about disease genes,
drugs, drug–gene interactions, and potential druggabil-
ity.51 Pharmacological data coupled with genomic data
provided in these databases can be an important tool
for clinicians in the process of accelerating the transla-
tion of novel cancer biology discoveries into treatments.

Although the data in the aforementioned data-
bases become more and more accurate and compre-
hensive, the problem of cancer genome interpretation
and respective treatment choice is far from being
solved. In the future, we expect that the development
of more accurate computational tools and experi-
mental approaches will play an important role in
linking cancer genotype and phenotype. To facilitate
this process, effective policies and technologies for
sharing cancer data are required.8,9

METHODS BASED ON KNOWN
PATHWAYS

Variant callers21 and tools predicting the functional
impact of mutations22 are focusing only on single
genes, their mutations, and the functional impact in

Whole exome or genome
sequencing

Variant callers / detection
of recurrent mutations

Functional impact of
somatic mutations

Network-based
methods

Detection of novel
cancer genes

Experimental
validation

Methods detecting
pathways de novo  

Methods based on
known pathways

Databases (GO,
KEGG, ...)

Protein
interaction
networks

FIGURE 1 | Detecting novel cancer genes begins with the
sequencing of tumor samples (either whole exome or whole genome).
The first step is to detect somatic mutations (single-nucleotide
variants, indels, CNVs, structural variants, and gene fusions) from
sequencing data using variant callers. The list of variant calls needs to
be filtered to remove neutral passenger mutations and to detect
candidate cancer driver genes. The simplest ways to perform such
filtering is by detecting recurrent variants and by predicting the
functional impact of each mutation. Then, methods that are more
sophisticated come into play. They can broadly be categorized into
three types: (1) methods that use preexisting pathways, (2) methods
that are based on existing biological network data, and (3) methods
predicting cancer pathways de novo based on their combinatorial
patterns of occurrence in a group of tumors. Finally, the discoveries
are validated experimentally.
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their gene products. However, genes do not work iso-
lated but they interact through complex cellular reac-
tions whose normal dynamics are altered in cancer.
Based on these interactions, they are organized in
groups, often called pathways.

Early pathway-based approaches interpret
somatic mutations by comparing them to known

pathways from public databases. They compute the
overlap between a list of mutated genes and sets of
genes with known functional annotations and assess
its chance of occurring randomly by using statistical
measures such as Fischer’s exact test or the hypergeo-
metric test. If the probability of the observed overlap
is adequately small under the random null model,

TABLE 1 | Summary of Methods for Predicting and Interpreting Cancer Genes

Category Methods Description

Known
pathways

DAVID,23 FaTiGO,24

GoSTAT25
These methods use a statistical test to assess the significance of the overlap between
a gene set and a known pathway.

GSEA26 Tests if the expression levels of the genes in the gene set correlate with a specific
phenotype.

Grossman et al.27 Gene Ontology (GO) enrichment analysis by taking into account the GO tree
hierarchy. Determines overrepresentation of terms in the context of annotations to
the term’s parents.

PathScan28 Tests if the mutations of different cancer patients exhibit enrichments in the same
pathways.

Network-based NetBox29 Detects network modules in a given list of input genes and accesses the statistical
significance of their modularity.

DriverNet30 Identifies driver mutations by their effect on mRNA expression networks.

Torkamani and Schork31 Identifies functionally related gene modules targeted by somatic mutations by
reconstructing regulatory interactions.

NBS32 Uses network diffusion to stratify patients based on the observation that their
aberrations lie in similar network regions.

HotNet233 Uses insulated network diffusion to detect mutated subnetworks with statistically
significant size. Captures the directionality of interactions.

TieDIE34 Uses network diffusion to link somatic mutations to transcriptional changes.

De novo RME35 Detects gene modules whose members are recurrently mutated and exhibit mutually
exclusive patterns.

Dendrix36 Detects driver pathways characterized by high exclusivity and high sample coverage.
Requires high coverage of the discovered gene modules instead of each gene
separately.

Multi-Dendrix37 Identifies multiple mutually exclusive sets of genes in parallel.

CoMEt38 Identifies multiple sets of mutually exclusive genetic alterations from different
subtypes of the same cancer type.

TiMEx39 Models the interplay between the waiting times to alterations and the observation
time. Highly sensitive to mutually exclusive occurring low-frequency driver
alterations.

pathTiMEx40 Takes into account the evolutionary order constraints among pathways to detect
mutually exclusive cancer alterations.

Sakoparnig et al.41 Identifies low-frequency genomic alterations based on mutational dependencies.

muex42 Models the generative process of mutually exclusive patterns in the presence of
noise.

Combined MEMo43 Detects network cliques of aberrant genes with mutually exclusive patterns.

Mutex44 Identifies mutually exclusive groups of genes with a common effect on a given
signaling network.

MEMCover45 Detects mutually exclusive groups of mutated genes in the same or across different
tissues.
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then the list is considered to be enriched for the
respective function of the annotated gene set or path-
way (Figure 2). Predefined functional annotations
can be found in public databases such as KEGG,52

Gene Ontology (GO),53 MSigDM,26 and Reac-
tome.54 There are also tools that integrate different
databases and methodologies to perform this type of
analysis such as DAVID,23 FaTiGO,24 and GoStat.25

A different, widely used approach, called gene
set enrichment analysis (GSEA),26 determines
whether members of a certain gene set tend to occur
toward the top (or bottom) of the given gene list and
in which case the correlation of the genome-wide
expression profiles of the genes in the list with a phe-
notypic class distinction is tested. Here, the pheno-
typic class distinction is defined by prior biological
knowledge, for example, known biochemical path-
ways or coexpression experiments. Except for gene
expression measurements, GSEA can be used with
other types of data, such as mutation frequency.55

Gene Ontology53 is the database most widely
used in enrichment analysis. It consists of three hier-
archically structured ontologies that describe gene
products in terms of their associated biological pro-
cesses, cellular components, and molecular functions
(GO terms). The straightforward approach to meas-
ure enrichment of GO terms by considering them
independently cannot account for the hierarchical

structure of GO. Grossman et al.27 presented an
approach for GO enrichment analysis that deter-
mines overrepresentation of terms in the context of
annotations to the term’s parents. Goeman and Man-
smann56 proposed a multiple testing method that
preserves the GO graph structure. It requires a user
to choose a focus level in the GO graph, which
reflects the level of specificity of terms in which the
user is most interested. Similar approaches have been
developed in Refs 57,58.

Often the sets of mutated genes and the prede-
fined functional pathways have a very general biolog-
ical characterization or contain a large number of
genes. To overcome these limitations, per-patient
enrichment analysis methods attempt to detect
enriched pathways across all patients, by testing
patient-related gene sets (e.g., mutated genes) versus
known pathways (Figure 2). PathScan28 is one such
approach, which tests if the mutations of different
cancer patients exhibit enrichments in the same path-
ways. PathScan accounts for variations in gene length
and differentiates frequently mutated genes from
genes having only a few mutations. Similarly, Boca
et al.59 computed per-patient gene set enrichment
scores, which were merged to an overall ranking
score. Per-patient gene enrichment analysis has
proved to be more interpretable and statistically
powerful compared with standard GSEA.

Genetically aberrant genes

Genetically aberrant genes in the pathway

Genes in the pathway

Is intersection statistically significant?

(a)

(b)

Combine the per-patient enrichment P-values

FIGURE 2 | Methods that are based on known pathways to identify cancer drivers. (a) Most methods statistically assess the significance of
the overlap between a user-defined gene set (red-colored nodes) and a known pathway (blue-colored nodes).23–25 The user-defined gene set is
usually the result of an experiment (e.g., a list of genetically aberrant genes). Dark red-colored nodes correspond to the genes that belong both to
the known pathway and to the user-defined gene set. (b) Other methods compute per-patient enrichment scores28 for a known pathway in the
same way, which are then combined into an overall score.
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Although pathway-based approaches can be
used to evaluate and interpret gene lists, they cannot
be used to predict novel cancer pathways because they
are based on predefined pathways. Moreover, they
ignore crosstalk between different pathways by con-
sidering them as distinct groups. Finally, each gene is
not equally important for a pathway and the topology
of the interactions, which can capture the dependen-
cies between genes of a specific pathway, is usually
not taken into account by pathway-based approaches.

NETWORK-BASED METHODS

In contrast to pathway-based approaches that ana-
lyze pathways with already well-established func-
tions, network-based approaches use interaction
networks to infer novel cancer genes and pathways
(Figure 3).

Protein networks can be either undirected (physi-
cal protein–protein interactions) or directed (high-level
functional interactions). Although most of the current
approaches use undirected networks, the use of direc-
ted networks is of high importance as they can explic-
itly reveal the different types of interactions that lead
to cancer progression. Reactome54 contains a human
protein functional interaction network60 based on inte-
grating expert-curated pathways, gene coexpression,
protein domain interactions, and other sources. The
interactions of the protein interaction networks can be
either experimentally verified, which is considered
more reliable, or predicted by computational methods.
HPRD61 and BioGRID62 are examples of databases
that contain experimentally verified interactions. Other
databases, like STRING63 for example, contain both
experimentally verified and computationally predicted
interactions. KEGG52 and Reactome54 are considered
the most reliable sources of experimentally verified

Genes with high aberration score

Genes with medium aberration score

Genes with low aberration score

Genes with very low or zero aberration score

Differentially expressed genes

Linkage genes 

Shows network diffusion directionality

Network diffusion

(a)

(b)

Network diffusion

FIGURE 3 | Network-based methods to identify cancer genes. (a) Network-based methods like HotNet233 detect cancer driver genes as
strongly connected components of aberrant genes in the network. Network diffusion is used to estimate how strongly the aberrant genes are
connected in the network. Nodes are initialized with an aberration score that corresponds to the proportion of samples that contain a single-
nucleotide variant or copy number aberration in the gene. Using network diffusion the aberration scores are spread in the network until an
equilibrium state is reached, where there are no more significant changes in the scores during time. Nodes correspond to genes and edges to gene
interactions. Colors correspond to the amount of aberration score that is concentrated at the node before and after network diffusion (red: high,
orange: medium, yellow: low). Gray nodes correspond to very low or zero aberration score. (b) TieDIE34 also uses network diffusion to capture the
genes in the network that link genetically aberrant genes to differentially expressed genes at the transcription level, the so-called linker genes.
Blue colored nodes correspond to differentially expressed genes. The linker genes are represented with purple color and during network diffusion,
they receive flowing aberration scores from both genetically aberrant and differentially expressed genes.
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metabolic reactions. iRefWeb64 has the highest cover-
age of the human interactome, that is, the complete
human protein interaction network, because it inte-
grates interaction data from 10 public databases. It is
common to use several networks of different origins
independently to assess their effect on the final results
of a network-based analysis.

Biological networks have been used in many
cancer-specific studies29,65–68 and in order to detect
patterns across several cancer types.30,68–70 NetBox29

was one of the first network-based approaches that
attempted to distinguish driver from passenger muta-
tions in glioblastoma. It maps genetically aberrant
genes [SNVs or copy number variations (CNVs)] to a
protein interaction network and extracts only the
part of the network that includes the aberrant genes.
The identified network is partitioned into network
modules using the Newman–Girvan algorithm. It
was found that, although being dissimilar between
patients, the glioblastoma genetic alterations tend to
occur within the same network modules. Similarly,
several network-based methods measure the impact
of genetic variations on transcriptional net-
works.30,68,69,71 For example, DriverNet30 identifies
driver mutations by their effect on mRNA expression
networks. Some methods use reverse engineering
approaches to reconstruct networks of cancer-related
interactions,31,72 while other methods discover
altered protein sets in protein interaction net-
works.32,33,73 The idea of the former approaches is
that they reconstruct network interactions
(e.g., regulatory networks) de novo by processing the
expression levels of genes. For example, ARACNE72

defines an interaction between two genes by comput-
ing the mutual information between their expression
profiles. These dependencies have been shown to be
useful in identifying direct regulatory interactions.
Torkamani and Schork31 used ARACNE to identify
functionally related gene modules targeted by
somatic mutations in various cancer types.

Several methods that integrate somatic muta-
tions with interaction networks in order to detect
groups of interacting mutated genes have been pro-
posed. The idea behind these methods is that the
mutations patients suffering from the same cancer
type are divergent in the genes they hit, but the
affected genes participate in the same biological pro-
cesses represented by densely connected subgraphs.
Hofree et al.32 built a patient stratification method
that clusters patients with mutations in similar net-
work regions. Using their network-based stratifica-
tion (NBS) method, the authors identified cancer
subtypes that are predictive of clinical outcomes such
as patient survival and response to therapy. NBS is

less accurate when clustering without network infor-
mation, demonstrating the importance of biological
networks in the procedure. Similarly, Leiserson
et al. and Vandin et al.33,73 performed a TCGA pan-
cancer analysis of 12 cancer types by using three dif-
ferent interaction networks. Their method, HotNet2,
uses insulated network diffusion to detect strongly
connected components of aberrant genes, followed
by a statistical test to determine the significance of
the number and size of the subnetworks (Figure 3).
HotNet2 captures the directionality of interactions
and effectively detects rare driver mutations.

Another method that uses graph diffusion to
detect cancer genes is TieDIE.34 TieDIE is using a
directed graph diffusion from two different sources,
which include genetic aberrations and transcriptional
changes. While scores from genetic aberrations are
diffused along the directions of the interactions of the
network, the scores of the differentially expressed
genes are diffused in the opposite direction. Hence,
TieDIE can detect linker genes that connect genetic
aberrations to transcriptional changes and sheds light
on the way that somatic mutations affect the expres-
sion levels of other genes that are not genetically
altered.

Because of the complex structure of intracellu-
lar pathways, drugs targeting specific molecules often
fail owing to acquired drug resistance caused by
mutations or other molecular alterations. Drug resist-
ance enhances the need for alternative cancer thera-
pies, such as those based on combinations of drugs.
DrugComboRanker74 is the first computational
method to predict combinations of already approved
drugs de novo. It aims to repurpose drugs by com-
bining high-throughput cancer data with a set of
approved drugs for several diseases.75 DrugComboR-
anker constructs a drug similarity network based on
the genomic profiles of the genes they target. Next, it
uses a Bayesian nonnegative matrix factorization
approach to partition the drug network into drug
communities. Given the observation that drugs in the
same community share common functionalities, they
build a drug recommendation system.

Cheng et al.76 exploited the fact that kinases
are often drug targets and created a human kinome
interaction map by merging kinase–substrate,
protein–protein, and kinase–drug interactions. Their
approach is a useful resource for combining and
designing kinase inhibitor drugs. They found that
drug-targeted kinases are significantly enriched as
central hubs in the human protein interactome.
Inhibiting a hub node affects also many other mole-
cules, and it is consequently more likely to lead to
side effects. Moreover, the authors suggested that
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targeting hub kinases could more easily provide the
adaptive crosstalk or feedback within cellular net-
works that leads to drug resistance. Mitsopoulos
et al.77 revealed distinct patterns in the local network
topology of drug targets (higher degree than average)
and suggested how drugs from other therapeutic
areas could be used to create successful drug combi-
nations that overcome drug resistance. Their
approach is the first to propose potential drug targets
as network neighborhoods of genes and not individ-
ual genes. In the future, network models in systems
pharmacology,78 a promising emerging field, are
expected to assist in decoding the complex drug–
target interactions.

The network-based methods mentioned so far
are using large biological networks that integrate dif-
ferent types of interactions and are therefore analyz-
ing the interactome from a global perspective. In this
way, the function of a gene is considered constant
between different tissues. However, in order to inter-
pret the genetic basis of tumors in their environment
we need to use tissue-specific networks that are able
to capture the dynamic nature of gene functions.
A significant effort toward this direction is the
GIANT webserver,79 which integrates tissue-specific
data of various genome-scale experiments using a
naïve Bayes classifier in order to predict functional
interaction networks for 144 human tissues. It pro-
vides NetWAS, a network-based approach that repri-
oritizes genome-wide association study (GWAS)
P values by using the tissue-specific functional net-
works and performs better in predicting gene–disease
associations than using the GWAS P values alone.
A GWAS P value (<0.01) indicates whether the
occurrence of a single nucleotide polymorphism in
the tumor samples of a specific cancer type is
significantly high.

Biological networks are the tortuous wiring dia-
grams of the cell, the disruption of which can lead to
cancer-specific phenotypes. Hence, complete under-
standing of cancer requires complete understanding
of biological networks. In addition to the current
incompleteness of the human interactome, network-
based methods usually do not account for the gene
expression changes that a mutation can cause in
other genes.

COMBINATORIAL PATTERNS OF
CANCER MUTATIONS

Besides network analysis, the detection of combinato-
rial patterns among mutational events is another
promising approach to detect cancer genes and

pathways.80 Here, we discuss two different types of
combinatorial patterns, namely mutually exclusive
and co-occurring mutations. The idea behind the
detection of mutually exclusive mutations is that
once a gene involved in a biological process is
mutated, the tumor cell acquires a selective advan-
tage, for example, increased proliferation, which pro-
motes clonal expansion. A second hit in another gene
of the same process is then much less likely to occur,
because it does not confer an additional selective
advantage to the cell.39 This phenomenon results in
strong negative correlation among mutations in genes
of the same pathway. By contrast, co-occurring
mutations provide evidence for positively correlated
gene mutations. Here, mutations in two or more
genes need to be present simultaneously for the cell
to acquire the selective advantage (Figure 4).

The Recurrent and Mutually Exclusive
(RME)35 algorithm detects gene modules whose
members are recurrently mutated and exhibit mutu-
ally exclusive patterns. It considers only genes that
are mutated with frequency ≥10% and therefore
misses rare driver mutations. Moreover, mutually
exclusive events among rare mutations are more
likely to happen by chance and are therefore more
difficult to detect. MEMo43 uses a statistical permu-
tation test that permutes the mutated genes between
the samples in order to detect mutually exclusive
events between genetic aberrations. The permutation
test is performed on groups of genes detected as cli-
ques from a protein interaction network. Hence,
MEMo integrates different data sources and com-
bines different methodologies (Tables 1 and 2).
Methods that address the limitation due to rare
mutations are Dendrix (De novo Driver Exclusiv-
ity)36 and Multi-Dendrix.37 Dendrix identifies driver
pathways by their high exclusivity and high sample
coverage. Unlike RME, Dendrix requires high cover-
age of the discovered gene modules instead of each
gene separately. Multi-Dendrix simultaneously iden-
tifies multiple mutually exclusive sets of genes by an
integer linear programming approach. It is much fas-
ter than Dendrix on genome-scale data and identified
mutually exclusive mutations in well-studied cancer
pathways such as p53 and PI3K/AKT signaling.

Two recent methods for the detection of mutu-
ally exclusive genomic events include Mutex44 and
CoMEt.38 Mutex detects groups of genes with a
common downstream effect on a signaling network,
by introducing a mutual exclusivity criterion that
avoids large imbalances in the contribution of each
gene to the overall mutual exclusivity pattern. To
achieve this, every gene is tested for mutual exclusiv-
ity against the union of the rest of the group
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alterations. CoMEt performs an exact statistical test
conditioning on the frequency of each alteration and
can therefore more effectively detect rare mutations.
It can detect in parallel multiple sets of mutually
exclusive alterations, which can overlap, vary in size,
and belong to different cancer subtypes. Mutex and
CoMEt have been shown to exhibit an improved per-
formance in the prediction of mutually exclusive
events compared to Dendrix, Multi-Dendrix, MEMo,
and RME.

A unique approach for detecting mutually
exclusive patterns of genetic alterations either within
the same tissue or across different tissue types is
MEMCover.45 MEMCover uses a random permuta-
tion test (similar to MEMo) systematically to detect
mutually exclusive patterns that occur in one tissue
type, in many tissue types, or between tissue-specific
drivers. It then uses interaction data to discover dysre-
gulated pathways that are present across many cancer
types. When compared to HotNet2, MEMCover was
able to detect a higher number of known cancer
genes. Although MEMo, Mutex, and MEMCover are
primarily detecting mutually exclusive groups of

genetic aberrations, they also use interaction data in
their analysis pipeline. Hence, they differ from the
other methods covered in this section (Tables 1
and 2).

Statistical models of mutual exclusivity have
been devised in order to handle the ubiquitous noise
that is present in cancer mutation data as well as
deviation from perfect mutual exclusivity (referred to
as impurity). Szczurek and Beerenwinkel42 developed
an approach that models the generative process of
mutually exclusive patterns and takes into account
the presence of noise in the form of false positives
and false negatives. TiMEx,39 another approach for
the detection of mutually exclusive events, uses a gen-
erative probabilistic model for tumorigenesis that
explicitly accounts for the temporal interplay
between the waiting times to the occurrence of altera-
tions and the observation time. It permits direct esti-
mation of the probability of mutual exclusivity and is
highly sensitive to low-frequency mutually exclusive
alterations.

Although mutual exclusivity is a frequently
observed pattern in cancer mutations, it is not the

Genetically aberrant genes

Mutually
exclusive

Co-occuring
(a) (b)

Pathway 1 Pathway 2

Pathway 3

Genes

P
at

ie
nt

s

Pathway 4

FIGURE 4 | Methods that identify cancer genes de novo by detecting combinatorial patterns of cancer mutations across patients. Red squares
correspond to genetically aberrant genes. The rows of the depicted matrix correspond to different patients and the columns to different genes.
(a) Mutual exclusivity and co-occurrence, as depicted in the figure, are two combinatorial patterns of mutations and the statistical significance of
which can aid in detecting cancer genes de novo. Methods attempt to detect these patterns in the presence of noise; hence, the patterns detected
are not perfectly co-occurring or mutually exclusive. (b) pathTiMEx40 predicts cancer progression at the level of pathways by introducing a
probabilistic waiting time model for mutually exclusive cancer alterations. It explicitly accounts for the evolutionary order constraints among
pathways, which would otherwise confound the detection of mutually exclusive gene groups (directed arrows).
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only one. There are also patterns of co-occurring
mutations in cancer. For example, KRAS and TP53
mutations have been shown to co-occur in lung, pan-
creas, and large intestine cancers. There are also
observations demonstrating contrasting mechanisms
in different cancers. For instance, mutations of genes
in the Ras and Wnt pathways tend to co-occur in the
large intestine but are mutually exclusive in cancers
of the pancreas.80 In contrast to mutually exclusive
mutations, two co-occurring mutations can be mem-
bers of different pathways.81 In recent years, syn-
thetic lethality has emerged as an attractive
therapeutic strategy against cancer.82 Two genes are
synthetically lethal if a combination of mutations in
both of these genes, but not in any single gene, leads
to cell death. It has been observed that pairs of genes
that are frequently aberrant and mutually exclusive
in cancer often constitute synthetically lethal genes.
Intuitively, both genes are performing essential func-
tions and the cell acquires cancer-related properties
by hitting one of them. Mutations in both are not
observed, as this event would lead to cell death.
Hence, pairs of genes characterized by synthetic
lethality can be selectively targeted in order to kill
cancer cells that harbor already one mutated gene.

Another approach to identify low-frequency
genomic alterations based on mutational dependencies
was proposed in Ref 41. This approach is based on the

observation that the cumulative probabilities of neutral
mutations increase linearly with the total number of
mutations in a tumor. By contrast, driver mutations
that depend on other mutations occur with probabil-
ities displaying a nonlinear pattern of increase. The idea
behind this approach is that the occurrence of drivers is
subject to hidden constraints (dependencies between
driver mutations), whereas the passenger mutations are
independent and selectively neutral. For example, muta-
tion of KRAS tends to occur after mutation or loss of
fibroblast activation protein alpha (FAP) in colorectal
tumorigenesis.83 To distinguish independent from
dependent mutations, their rate of occurrence is esti-
mated among tumors. Independent mutations tend to
occur at a constant rate among tumors, and driver–
passenger discrimination is based on detecting deviation
from this behavior.

Cancer progression can be regarded as the
accumulation of mutations in different genes. How-
ever, more robust models can be derived by consider-
ing dependencies among altered pathways, mainly
because of the large interpatient gene-wise muta-
tional heterogeneity.78,84 Cristea et al.40 devised
pathTiMEx, an extension TiMEx39 that introduces a
probabilistic waiting time model for mutually exclu-
sive cancer alterations on the level of pathways
rather than on the level of genes. The idea is to
explicitly account for the evolutionary order

TABLE 2 | Description of the Output of Each Method

Method Driver Genes or Mutations
Groups of Mutually Exclusive Genetic

Alterations Network Modules

NetBox29 √

DriverNet30 √

Torkamani and Schork31 √ √

NBS32 √

HotNet233 √

TieDIE34 √

RME35 √

Dendrix36 √

Multi-Dendrix37 √

CoMEt38 √

TiMEx39 √

pathTiMEx40 √

Sakoparnig et al.41 √

muex42 √

MEMo43 √ √

Mutex44 √ √

MEMCover45 √ √

Only network-based methods and methods based on combinatorial patterns of mutations are included.
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constraints among pathways, which would otherwise
confound the detection of mutually exclusive gene
groups (Figure 4). Raphael and Vandin85 propose a
combinatorial model, corresponding to the special-
ized situation when the dependency structure among
pathways is restricted to be linear.

Combinatorial mutational patterns can suggest
candidate cancer genes and pathways in an unbiased
fashion without using any prior knowledge. Further-
more, the type of combination can give insight into
the functional relationship of the genes.

FUTURE DIRECTIONS AND
CHALLENGES

Data Integration and Combination of
Methodologies
The apposition of several data sources through data
integration allows for improved prediction and inter-
pretation of cancer genome data. For example,
MEMo, MEMCover, and Mutex are pipelines that
integrate different data sources and combine various
methodologies. Specifically, they perform both net-
work and mutual exclusivity analyses (Tables 1 and
2). MEMo detects cliques of genetically aberrant
genes in a protein–protein interaction network and
then assesses their tendency of being mutually exclu-
sive. On the other hand, MEMCover detects mutu-
ally exclusive patterns of mutations that are present
across many tissue types in its first step and subse-
quently uses interaction data to assess the chance of
the detected mutually exclusive groups to be new
pan-cancer dysregulated subnetworks. The combina-
tion of different methodologies is particularly useful
to produce interpretable lists of candidate cancer
genes or gene clusters. For example, the genes in
Memo-derived modules are both interacting and
exhibit mutually exclusive patterns of mutations,
facilitating their biological interpretation and design
of validation experiments. Another example of data
integration is the integration of different types of
somatic mutations (SNVs, CNVs, SVs, etc.) which all
should ideally be taken into account in order to cover
the widest range of driver mutations.32,33,35 There
are also methods that integrate different types of
sequencing86 and omics data,34,87 but more work is
required to fully integrate the various types of data
such as DNA methylation and chromatin modifica-
tions. The type of output of two different methods
can also vary greatly (Table 2). For example, Driver-
Net30 outputs a ranked list of driver mutations,
whereas muex42 outputs groups of genes character-
ized by mutually exclusive mutations.

Other studies explored the dependencies
between different data sources. Reimand et al.88

studied the dependency between the cancer genome
and protein phosphosites. By performing a pan-
cancer analysis, they found that phosphorylation-
related SNVs (pSNVs) occur in ~90% of tumors,
show increased conservation and functional mutation
impact compared with other protein-coding muta-
tions, and are enriched in cancer genes and path-
ways. Jacobsen et al.89 studied the dependency
between miRNA–mRNA networks and genomic
mutations resulting in a method that prioritizes
cancer-related miRNA–target interactions across
11 TCGA cancer types. As expected, miRNAs with
recurrent target relationships were frequently regu-
lated by genetic and epigenetic alterations. Akavia
et al.90 integrated CNAs with gene expression data in
a Bayesian framework to detect driver genes and
pathways in melanoma. They detected cases where a
CNA is correlated with the expression of a group of
genes forming a gene module, assuming that the copy
number produces changes in the expression level of
the gene it affects as well as in the expression levels
of the genes in the module.

Overall, the integration of various types of
cancer-related data, such as interaction networks,
mRNA expression, phosphoproteome abundance,
genetic aberrations, and microRNAs, can shed light
on the underlying molecular mechanisms of cancer.

Cancer Subtypes and Pan-Cancer Analysis
Efficient computational methods are needed to detect
the different subtypes of specific cancers.32 The clas-
sification of a patient in predefined subtypes based
on his or her individual tumor molecular profiles
facilitates the detection of cancer drivers, as mixing
data from different cancer subtypes can complicate
the identification of cancer drivers when studying a
specific cancer type. However, several TCGA pan-
cancer analyses91,92 have demonstrated that proces-
sing data from different cancers at the same time can
improve the prediction of certain subtypes. The
TCGA pan-cancer initiative8 is a significant effort to
compare different cancer types and measure similari-
ties across them. By detecting similar patterns in the
genomic profiles of different cancers, we can make
hypotheses for experimental evaluation about how
cancer therapies that are successful in one group of
patients may be applied to other groups. Several
interesting bioinformatics approaches for pan-cancer
analysis have recently been proposed.89,93–97 Patient
stratification on pan-cancer data can reveal tissue-
specific or tissue-independent molecular subtypes of
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cancer. On the other hand, studying properties of
cancer genes across all samples of the same cancer
type (e.g., recurrent mutations) can be inefficient. For
example, a mutation may be detected as significantly
recurrent in a subset of samples, but insignificantly
recurrent over all samples.

Bias Toward Prior Knowledge
One important bias in the methods that predict cancer
genes is the direct or indirect incorporation of prior
knowledge. In general, we need methods that do not
depend on prior knowledge but are focusing on pre-
dicting cancer drivers de novo. Pathway-based
approaches suffer more from this problem compared
with network-based approaches. The latter use the
entire knowledge about molecular interactions,
whereas pathway-based approaches are based on spe-
cific prespecified sets of genes. Pathway-based
approaches use reference databases, which contain sev-
eral pathways that have been extensively studied in
cancer such as Wnt and MAPK signaling. As a result,
these pathways will always show up in the top of the
list of enriched pathways. Although less than pathway-
based approaches, network-based approaches also suf-
fer from certain biases. For instance, many proteins or
genes have been extensively studied and hence have a
higher number of connections in the protein networks.
Hub genes or genes associated with well-studied cancer
pathways are more likely to be correctly detected by
network-based methods. Although sensitivity toward
well-studied cancer genes is a benchmark for the meth-
od’s performance, rigorous correction for their
increased connectivity can greatly aid in the discovery
of novel targets.

Several techniques for assessing the robustness
of cancer gene and pathway prediction have been
proposed. Ciriello et al.98 assessed the robustness of
different classes of genetic aberrations in stratifying
patients by removing different percentages of samples
and reclassifying the reduced datasets. To analyze the
sensitivity of their variant prioritization method with
regard to a priori gene or disease association biases,
Sifrim et al.99 stratified the positive testing set of
disease-causing variants by year of publication
(2000–2012) while training the model only on data
published before 2000. For network-based
approaches, Brohée and van Helden100 assessed the
robustness of methods for the computational predic-
tion of protein complexes from protein interaction
networks by gradually adding noise (insert random
edges) to the network or removing parts of it (ran-
domly delete existing edges). It is also common to
compare the performance with a certain network to

that obtained from randomizing the network, for
example, by randomly reassigning edges while keep-
ing the degree distribution of the original network
fixed. By contrast, methods detecting combinatorial
patterns of mutations learn pathways de novo and
do not suffer from bias toward prior knowledge of
interactions or pathways.36 Handling noise in the
detection of mutually exclusive events39,42 improves
the sensitivity of these methods. Their robustness is
typically addressed in the framework of the underly-
ing statistical model by assessing the uncertainty of
parameter estimates and model stability.

Another complication is that proteins are
involved in multiple cellular functions. As a result,
they can also participate in several stages of cancer
development and progression. Hence, pathways
should be regarded as dynamic structures because
they have no clear boundary and there is considera-
ble crosstalk between them. This phenomenon has
been partially covered by the use of protein net-
works, which describe the interactome as one entity
and not as a collection of distinct parts. However,
methods that are taking into account the type of
interactions (e.g., activating or inhibiting) and do
not consider only undirected physical protein–
protein interaction networks are of high impor-
tance33,34,101 because the way cancer genes interact
can shed light on the molecular mechanistic basics
of cancer.

Finally, network-based approaches usually use
protein–protein interaction networks and consequently
they are restricted to mutations that affect protein-
coding regions of the genome. Pathway-based
approaches are similarly limited by the characteriza-
tion of the pathway members, which are usually gene
products such as proteins or posttranslational modified
proteins. By contrast, methods predicting cancer path-
ways de novo by using the combinatorial patterns of
mutations are not limited by known pathways or net-
works and can therefore handle mutations in
nonprotein-coding regions of the genome, such as
mutations in intergenic or splice-site regions.

Drawbacks of Protein Interaction Networks
Protein interaction networks are suffering from false
negatives (missing interactions) and false positives
(false interactions).102 Indeed, network biology is still
far from completing the human interactome. There
are around 130,000 estimated interactions among
human proteins, most of which remain to be discov-
ered.103 Consequently, several methods have been
designed to assess the quality of currently available
human interactome maps.104 For instance,
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ClusterONE,105 a method for detecting protein com-
plexes by clustering protein interaction networks,
penalizes for false negatives and achieves a higher
accuracy than other relevant methods. Moreover,
experimental techniques, such as yeast-two-hybrid
(Y2H), and computational techniques for predicting
protein interactions suffer from high rates of false
positives.106 In the future, much computational effort
is needed to complete the human interactome and
increase its confidence.107–109

In this review, we have discussed methods for
detecting genes that drive cancer progression either
alone or in collaboration with other genes. The
network-based approaches and the approaches
detecting combinatorial patterns of mutations detect
groups of interconnected genes but without consider-
ing the series of changes triggered by these mutations.
Gene expression changes due to genetic alterations
can cause further changes in the expression levels of
other genes via gene interactions. Ruffalo et al.101

proposed a method to investigate cancer genes that
work in cooperation with mutated or differentially
expressed genes, but are not aberrant themselves, nei-
ther on the DNA nor on the RNA level. These genes
were detected by measuring their network proximity
to mutated or differentially expressed genes. TieDIE
is another approach34 going beyond networks of
mutated genes. It uses network diffusion to link
somatic mutations to transcriptional changes
(Figure 3). In the future, the development of similar
approaches will help understanding somatic muta-
tions as dynamically changing molecular states in the
cell that drive cancer progression.

Experimental Validation
Although the results of computational methods are
important to understand cancer, their integration
with experimental approaches is always necessary to
produce valid and interpretable outcomes. Creixell
et al.110 created ReKINect, a method that attempts to
explain systematically how somatic mutations per-
turb signaling networks. Somatic mutations can cre-
ate new phosphorylation sites, destroy existing ones,
or rewire interactions between kinases and sub-
strates. A substrate mutation may rewire the interac-
tion with its upstream kinase and a kinase mutation
may rewire the interaction with its downstream sub-
strate. ReKINect combines quantitative proteomic

and phosphoproteomic mass spectrometry with
exome sequencing data to identify direct proteomic
evidence of the destruction of phosphorylation sites.
In another study, Akavia et al. knocked down genes
they detected by CONEXIC90 using shRNAs. By
knocking down these genes, they observed changes in
cancer-related cell properties (e.g., proliferation and
growth).

In general, the results of computational meth-
ods is the first step to create compact lists of candi-
date cancer genes, which is then cost-effective and
time-efficient to validate experimentally. Given that
findings of computational methods always need sup-
porting experimental evidence, both experimental
and computational techniques are important for
detecting and understanding cancer pathways.
Except for postcomputational validation, experimen-
tal techniques are frequently used to generate the
input data for computational methods. For example,
Y2H experiments can construct a protein interaction
network,111 knockout siRNA experiments delineate
pathway-specific interactions,112 and mass spectrom-
etry experiments determine abundance measurements
for protein expression.113

CONCLUSION

Cancer genomics is still in its infancy. The mutational
landscape of primary and metastatic tumors has yet
to be completed. The unprecedented generation of
large amounts of cancer genetic and epigenetic
molecular data holds the promise for better predic-
tion of novel cancer genes and more comprehensive
reasoning on how they are linked to complex tumor
traits like metastasis formation and tissue invasion.
In this review, we have described state-of-the-art
approaches for the prediction and characterization of
cancer pathways, and we have speculated on future
strategies to construct better performing methods. As
the number of available tumor samples is increasing,
we expect that these methods will greatly help in
interpreting the complex heterogeneity of tumors,
improve our ability to distinguish driver from passen-
ger mutations, and delineate the pathways that are
dysregulated in cancer and can be targeted by drugs.
Moreover, single-cell sequencing data are expected to
provide a new source of valuable information for
decoding tumor heterogeneity.
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