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Abstract

Species distribution models often use climate data to assess contemporary and/or future ranges for animal or plant species.
Land use and land cover (LULC) data are important predictor variables for determining species range, yet are rarely used
when modeling future distributions. In this study, maximum entropy modeling was used to construct species distribution
maps for 50 North American bird species to determine relative contributions of climate and LULC for contemporary (2001)
and future (2075) time periods. Species presence data were used as a dependent variable, while climate, LULC, and
topographic data were used as predictor variables. Results varied by species, but in general, measures of model fit for 2001
indicated significantly poorer fit when either climate or LULC data were excluded from model simulations. Climate
covariates provided a higher contribution to 2001 model results than did LULC variables, although both categories of
variables strongly contributed. The area deemed to be ‘‘suitable’’ for 2001 species presence was strongly affected by the
choice of model covariates, with significantly larger ranges predicted when LULC was excluded as a covariate. Changes in
species ranges for 2075 indicate much larger overall range changes due to projected climate change than due to projected
LULC change. However, the choice of study area impacted results for both current and projected model applications, with
truncation of actual species ranges resulting in lower model fit scores and increased difficulty in interpreting covariate
impacts on species range. Results indicate species-specific response to climate and LULC variables; however, both climate
and LULC variables clearly are important for modeling both contemporary and potential future species ranges.
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Introduction

Species distribution models (SDMs) are based on the assump-

tion that presence at a given location is based on suitable

environmental conditions to support the species’ ability to find

shelter, feed, and/or reproduce [1,2]. Such models have been

widely used to model current species distributions, either to

establish extant distributions or to understand the specific

environmental variables that drive species distributions [3,4,5]. A

central premise of many SDMs is that climate is a primary driving

force of the distribution of species [6]. Projected climate data are

frequently used with SDMs to explore potential future impacts of

climate change on species distributions [7,8,9], based on the

assumption that the basic physiological tolerances of species to

environmental conditions are constant through time [10].

Jimenez-Valverde et al. [11] modeled typical climate conditions

for 94 bird species in North America and noted the dominant

signal of climate in shaping North American bird distributions.

Thuiller et al. [12] modeled distributions of plants, birds,

mammals, and reptiles in Europe and found that models using

climate alone performed nearly as well as models that included

both climate and landscape variables. Bucklin et al. [13] found

that climate variables were strong predictors for contemporary

species distribution modeling and that additional predictors

(including land cover) were not essential.

Climate is obviously a primary driver of many SDMs. While

land use and land cover (LULC) change is often used for modeling

contemporary species distributions, it is not often used when

examining future time frames [7]. Despite the results from the

studies listed above, other studies have found that including LULC

in bioclimatic models of species distribution can improve the

explanatory power of SDMs [7,12]. Lee and Jetz [14] found that

LULC projections were vital for future modeling, noting that loss

of habitat is a high predictor of extinction for bird species. Barbet-

Massin et al. [7] found that SDMs perform best if both climate and

LULC are included. Sinclair et al. [15] were critical of SDMs for

rarely including anthropogenic impacts on biological systems,

suggesting that changing landscape patterns are likely to have at

least as great an impact on species distributions as climate change.

Many other studies have found that projected land use is a vital

component of SDMs, with loss of predictive power when LULC is

not included in the assessment [1,8,9,16].
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While many state the need to use LULC data when projecting

future change in species distributions, such data are often not

available [17]. Riordan et al. [16] noted the disconnect between

relatively high-resolution climate projections used in global

assessment models and the generally coarse treatment of LULC,

leading to high-resolution, projected LULC rarely being used (or

available) for SDMs. Those studies that have used both projected

climate and LULC data to model future species distributions have

often relied on very coarse spatial-scale LULC data [1,7]. LULC is

much more heterogeneous at local scales than climate. Those

studies that do use LULC but only at very coarse scales miss the

inherent spatial variability in LULC that is typically not found

with climate data.

The goals of this paper are to examine the relative effects of

climate and LULC change on bird species distributions in the

conterminous United States, using maximum entropy modeling

and projected climate and LULC data from 2001 to 2075. Specific

research questions include:

- What are the relative influences of LULC and climate in

modeling contemporary (2001) breeding bird distributions for the

conterminous United States?

- What are the relative impacts of projected climate and projected

LULC change on United States breeding bird distributions in the

future (2075)?

- What are the specific impacts of climate and LULC on one focus

species (Hooded Warbler (Wilsonia citrina) used to demonstrate

individual species results)?

- What are the implications for the use of climate and LULC data

in SDMs?

Materials and Methods

A maximum entropy model (Maxent) was used in conjunction

with species presence data, current and projected climate and

LULC data, and topographic data to model distributions for 50

diverse bird species in the conterminous United States. Twelve

distinct modeling simulations were conducted for each species to

disentangle the effects of climate and LULC on species distribu-

tions for both the ‘‘present’’ (2001 for this assessment) and for

multiple scenarios in the future (2075). Although many supporting

data were available through the year 2100, 2075 was selected as

the assessed ‘‘future’’ year to accommodate the use of 30-year

averaged climate data (as described below). The following provides

a summary of data sources, the model structure, model

parameterization, and the assessment framework.

Materials
The modeling approach described below required spatially

explicit data on both bird species ‘‘presence’’, as well as

environmental variables (covariates) that could be used to model

species distributions. Note the goal was to assess long-term trends

in changes to species distributions. Longer-term aggregate or

average data values were thus used to temper the effects of

seasonal or yearly variation, both for the species presence data

(where distributions of single-season presence records could be

impacted by unusual seasonal conditions such as drought or large

disturbance events) and for the covariates (where single-season

climate data, for example, may be unrepresentative of longer-term

climate trends).

Species Presence Data – eBird. The source of bird species

presence data was eBird, a ‘‘citizen-science’’ database [18,19].

eBird allows public entry of bird sightings, with recorded

information on the time and date of the sighting, location,

observation protocol, quantity of each species, and observer

information. As a citizen science database, there are potential

issues (discussed below) related to the lack of a formal sampling

protocol [20], but eBird offers several potential advantages for

species distribution modeling including 1) large number of sample

points (millions for some species), 2) global data (although

observations are currently heavily biased towards North America

and Europe), and 3) observations for all seasons. eBird data have

been successfully used for a number of SDM assessments

[20,21,22,23]. Hochachka and Fink [20] found strong linkages

between individual species and land cover using eBird data, and

that the data were valuable for examining distribution patterns at

multiple scales.

Fifty bird species with breeding ranges partially or completely

within the conterminous United States were selected for the

assessment (Table 1). Species were selected to ensure variability

in size of breeding range, geographic region, and preferred

breeding habitat. The goal was to ensure that a variety of ‘‘real-

world’’ model applications were represented. To minimize

potential effects of annual variation in species presence, data from

eBird entries from 1992 to 2012 were used to establish ‘‘current’’

breeding records. With current and projected land cover data

available for every year from 1992 to 2100 (see below), a nominal

date of 2001 (middle of the 1992 to 2010 period) was used to

represent contemporary species distributions and tie the 1992 to

2010 species occurrences to one specific date of land-cover

conditions. Data were also filtered by season to ensure records

corresponded to breeding populations; for all species a consistent

June 1 to July 15 observation period was used to represent likely

‘‘breeding’’ presence, a reasonable assumption for the species that

were assessed. Some migratory species initially included in the

assessment were removed from consideration based on dispersed

patterns of eBird sightings for the June 1 to July 15 period,

indicating post-breeding movement had already occurred by July

15 (e.g., Long-billed Curlew (Numenius americanus)). One species

included, the American Goldfinch (Spinus tristis) generally begins

breeding after this period, but is considered non-migratory and

still is within breeding range. For the 50 species assessed, eBird

sightings for the June 1 to July 15 period corresponded well to

published breeding range maps from NatureServe [23].

eBird allows users to enter one of several potential observation

protocols, including ‘‘stationary count’’, ‘‘traveling count’’, or

‘‘exhaustive area count’’. However, regardless of observation

protocol, users only enter one geographic coordinate. A single

coordinate for a ‘‘traveling count’’ where the travel distance was

substantial could result in a data point that was many kilometers

from the actual observation. For exhaustive area counts with a

large search area, a single coordinate may similarly be some

distance from the actual observation. To eliminate potential issues

with unrepresentative locations of eBird sightings, all ‘‘traveling

count’’ sightings with a travel distance of more than 2 km were

eliminated (similar to Fink et al. [23]), as were all ‘‘exhaustive area

count’’ sightings with a search area of more than 100 hectares.

Additional potential issues with eBird data include spatial bias in

presence samples [25]. eBird observations, like other citizen

science data, tend to be clustered around highly populated and/or

easily accessible areas [15,18,19]. Sampling bias has a much

stronger effect on presence-only models (used here) than on

presence-absence models, as model results end up representing

both presence, as well as the density of the sampling effort [26].

Spatial filtering is an effective means to reduce bias in sample data

prior to use in species distribution modeling [27,28]. For this

assessment, the seasonal 1992 to 2012 observations were spatially

Relative Impact of Climate and Land Use on United States Bird Species
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Table 1. Species modeled and number of eBird sample points for each.

Species Scientific Name Original Final

1 American Goldfinch Spinus tristis 236,217 2,663

2 Anna’s Hummingbird Calypte anna 32,047 427

3 Baird’s Sparrow Ammodramus bairdii 513 48

4 Band-tailed Pigeon Patagioenas fasciata 17,415 407

5 Black-capped Chickadee Poecile atricapillus 131,634 1,877

6 Blue-winged Teal Anas discors 15,288 1,243

7 Bobolink Dolichonyx oryzivorus 28,658 1,105

8 Brown-headed Cowbird Molothrus ater 178,324 3,996

9 Brown Thrasher Toxostoma rufum 61,661 2,254

10 Cactus Wren Campylorhynchus brunneicapillus 4,714 215

11 Carolina Wren Thryothorus ludovicianus 107,244 1,893

12 Chestnut-collared Longspur Calcarius ornatus 1,426 105

13 Dickcissel Spiza americana 29,479 1,411

14 Downy Woodpecker Picoides pubescens 150,261 2,925

15 Eastern Kingbird Tyrannus tyrannus 111,057 2,956

16 Ferruginous Hawk Buteo regalis 1,587 238

17 Gambel’s Quail Callipepla gambelii 6,307 198

18 Grasshopper Sparrow Ammodramus savannarum 23,254 1,323

19 Gray Partridge Perdix perdix 616 129

20 Gray Vireo Vireo vicinior 265 43

21 Great Blue Heron Ardea herodias 141,552 3,449

22 Great Horned Owl Bubo virginianus 11,130 1,487

23 Green-winged Teal Anas carolinensis 6,726 530

24 Hooded Warbler Wilsonia citrina 15,482 773

25 Lark Bunting Calamospiza melanocorys 3,268 355

26 Lark Sparrow Chondestes grammacus 20,978 1,467

27 Northern Harrier Circus cyaneus 14,795 1,231

28 Northern Pintail Anas acuta 4,269 466

29 Orchard Oriole Icterus spurius 41,136 1,876

30 Painting Bunting Passerina ciris 15,294 569

31 Pied-billed Grebe Podilymbus podiceps 23,272 1,287

32 Pileated Woodpecker Dryocopus pileatus 48,118 1,982

33 Pygmy Nuthatch Sitta pygmaea 11,848 322

34 Red-eyed Vireo Vireo olivaceus 138,887 2,389

35 Red-headed Woodpecker Melanerpes erythrocephalus 22,809 1,593

36 Red-tailed Hawk Buteo jamaicensis 101,388 3,715

37 Ruby-throated Hummingbird Archilochus colubris 81,241 2,090

38 Savannah Sparrow Passerculus sandwichensis 41,214 1,435

39 Scissor-tailed Flycatcher Tyrannus forficatus 16,571 718

40 Sedge Wren Cistothorus platensis 7,827 478

41 Sharp-tailed Grouse Tympanuchus phasianellus 801 121

42 Short-eared Owl Asio flammeus 760 139

43 Sora Porzana carolina 6,687 649

44 Tufted Titmouse Baeolophus bicolor 129,472 2,058

45 Vesper Sparrow Pooecetes gramineus 16,387 1,164

46 Western Kingbird Tyrannus verticalis 45,319 2,028

47 Western Meadowlark Sturnella neglecta 36,755 1,825

48 Western Tanager Piranga ludoviciana 33,108 1,127
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filtered to eliminate sample points within 20 km of any other

sample point. The threshold of 20 km was chosen because it more

aggressively reduced sampling density in the very dense eBird

database than past studies [27,28], while still maintaining

adequate numbers of points for modeling. The elimination of

sample points based on observation protocol or sampling density

greatly reduced the number of sample points used in the

assessment, often by a factor of 20 or more (Table 1). However,

the filtering successfully eliminated the high concentration of

points in heavily populated areas while maintaining a relatively

large number of observations for most species (minimum of 43

points, maximum of 3,996, mean of 1,313). Only two species had

fewer than 100 sample points (Gray Vireo (Vireo vicinior) and

Baird’s Sparrow (Ammodramus bairdii)), at 48 and 43 points,

respectively. The number of sample points were considered

adequate, as Wisz et al. [29] and Hernandez et al. [30] examined

the effect of sample size on species distribution models and found

that Maxent outperformed other modeling techniques when

sample sizes were small, with ‘‘reasonable’’ models possible with

sample sizes as small as 10.

Land-Use and Land-Cover Data. A newly available suite of

LULC projections for the conterminous United States was used

[31,32]. The LULC projections were produced for the contermi-

nous United States, with annual LULC maps from 1992 to 2100

for four Intergovernmental Panel on Climate Change (IPCC)

Special Report on Emissions Scenarios (SRES) [33]. The spatial

resolution of the data was 250 m, with 16 LULC classes. The four

modeled SRES were the A1B, A2, B1, and B2 scenarios; however,

complimentary climate data were not available for the B2

scenario, so only A1B, A2, and B1 were used in this assessment

(see table 2 for characteristics of the three IPCC SRES scenarios

used in this assessment). To simplify the modeling and interpre-

tation of model results, the original sixteen LULC classes were

aggregated to eight basic LULC classes (table 3). Aggregated

2001 LULC data served as one of the covariates when

constructing the initial models. Projected 2075 LULC data

provided information on LULC change for the 2075 model

simulations.

Error in LULC data obtained from remote sensing sources is a

concern for SDMs [4]. The LULC projections described above

used the 1992 National Land Cover Database (NLCD) [34] as the

mapping starting point. The projections were thus subject to not

only the inherent uncertainty in projecting future LULC

conditions, but also carried the legacy of any mapping error in

the original 1992 NLCD. Given the lack of a rigid sampling

protocol in the citizen-science eBird data, locational inaccuracies

may also be a factor for the species’ presence data. To reduce the

effects of potential locational or mapping error in the LULC and

presence data, LULC covariates used in the model were

‘‘neighborhood’’ measures of abundance for a given LULC class,

rather than per-pixel measures. Use of a neighborhood LULC

measure provided not only site-level habitat information, but also

provided information on habitat in the surrounding area.

Individual species have unique, scale-dependent responses to

landscape structure [35,36,37]. In modeling one individual

species, it would be preferable to identify the appropriate scale

of analysis that captures that species’ habitat preferences.

However, the objective here was to identify relative influences of

climate and LULC across 50 different species. Optimizing

(varying) the scale of analysis for each individual species introduces

another (unwanted) variable into the assessment. One set scale was

thus selected to minimize the scale-dependent impacts on

modeling results. In tests of multiple landscape scales for SDMs,

Cunningham and Johnson [35] found that scales between 800 m

and 1600 m were the most suitable a majority of 19 bird species

tested. For this study, a 565 pixel (1,250 m61,250 m) window

around each point was chosen within which counts were tallied for

each LULC class. The neighborhood counts for each LULC

variable served as the LULC covariates within the modeling

framework. A ‘‘LULC diversity’’ measure was also calculated,

tallying the number of different LULC classes within each 565

window. The LULC diversity measure was also used as a

covariate, as a measure of local landscape heterogeneity. Table 3
summarizes the LULC covariates (as well as climate and

topographic covariates described below).

Climate Data. The goal of this work was to examine long-

term trends in bird species distributions in response to climate and

LULC change. Global circulation models often produce climate

data with monthly and yearly summaries, with year-to-year

variability inherent in the output data. However, the use of

average conditions was preferable to modeling with a single year of

future climate projections, to minimize annual variability and

focus on long-term trends [39]. A suite of global circulation models

(GCMs) was used to obtain 30-year averages of climate consistent

with IPCC SRES characteristics. A downscaling methodology

similar to Hay et al. [39] was used to downscale coarse-scale

climate data to a 4-km resolution for the conterminous United

States [40], with data ultimately resampled to 250 m to match

other covariates. Downscaled output was produced for six GCMs

(BCCR-BCM2, CCSM3, CSIRO3.0-Mk, CSIRO-Mk3.5, INM-

CM3.0, and MIROC 3.2) that provided climate data consistent

with the IPCC SRES storylines (see http://www.ipcc-data.org/

gcm/montly/SRES_AR4/index.html). Monthly data on average

temperature, minimum temperature, maximum temperature, and

precipitation were produced from each of the models. Variable

averages across the six GCMs were calculated to reduce the bias

present in any one individual model.

Covariates available for use in this assessment included not only

yearly averages for temperature and precipitation, but also

monthly averages, and monthly and annual minimum and

maximum temperatures. However, not all variables were used,

in order to reduce potential effects of multicollinearity. Correlation

between potential climate variables was very high, particularly

between the various temperature variables (Pearson correlation

coefficient r.0.90 between nearly all paired temperature

variables, such as monthly temperature and annual temperature).

Table 1. Cont.

Species Scientific Name Original Final

49 White-headed Woodpecker Picoides albolarvatus 4,389 137

50 Yellow-headed Blackbird Xanthocephalus xanthocephalus 16,794 1,031

‘‘Original’’ represents conterminous United States observations from 1992 to 2012, from June 1 to July 15. ‘‘Final’’ represents points that have had 1) spatial filtering
applied to reduce points in heavily sampled areas, and 2) removal of points with long travel distances (traveling count) or large search areas (search area count).
doi:10.1371/journal.pone.0112251.t001
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To minimize multicollinearity effects and to simplify data analysis,

only the 30-year climate averages of annual temperature and

annual precipitation, averaged across the six GCMs, were used as

climate covariates in this assessment.

Bradley et al. [41] noted that the use of LULC data in

conjunction with climate variables often does little to improve

SDM results, due to collinearity of LULC and climate data at

regional scales. There was little evidence of highly correlated

LULC and climate variables in this assessment. Pearson correla-

tion coefficients were computed for all LULC and climate

covariate pairs. The highest correlation was between precipitation

and the shrubland count (|r| = 0.39), while no other LULC and

climate variable pair had |r| values higher than 0.29.

Topographic Data. The few studies that have used projected

LULC data in conjunction with projected climate data to look at

future species distributions have often restricted themselves to

those two categories of data [7,8,16]. However, when developing

SDMs for current conditions, modelers tend to use a wider array

of input variables, with topography often playing a key role

[1,42,43,44]. Because the objective of this study was to assess the

relative impacts of climate and LULC in ‘‘real-world’’ modeling

applications, topography variables were included as covariates in

Table 2. Relative socioeconomic characteristics of the three IPCC SRES scenarios used in this assessment.

A1B A2 B1

Primary focus Economic growth Economic growth Environmental sustainability

Globalization or

Regionalization

Global Convergence Regional Development Global Convergence

Global Population Increase to 8.7 billion by
2050, then slow decline

Continuous increase to
15.1 billion by 2100

Increase to 8.7 billion by 2050, then slow decline

Gross Domestic
Product Growth

Very High Medium High

Energy Use Very High High Low

Energy Strategy Balanced, fossil fuel
and alternative fuels

Regionally variable,
based on local resources

Push to alternative and post-fossil fuel energy

Pace of technology
change

Rapid Slow Medium

Technology diffusion Rapid Slow, regional variability Rapid

Economic equity Homogenization, higher
incomes

Fragmented, uneven,
continued income gaps

Homogenization, but lower incomes than A1B

Environmental
Protection

Focus on ‘‘management’’
of resources rather than
‘‘conservation’’

Uneven environmental
management, protection
higher in affluent areas

Broad support for environmental conservation,
efficiency gains for resource use

See Nakicenovic et al. (2000) for additional information on SRES characteristics and Sohl et al. (2014) for how these characteristics were interpreted to create the LULC
projections used in this assessment.

doi:10.1371/journal.pone.0112251.t002

Table 3. Covariates used as predictor variables within Maxent.

Variable Category Variable Name Description

Land Cover Cropland Count 565 neighborhood count of ‘‘cropland’’ pixels

Land Cover Forest Count 565 neighborhood count of ‘‘forest’’ pixels (all forest)

Land Cover Grass Count 565 neighborhood count of ‘‘grassland’’ pixels

Land Cover Hay Count 565 neighborhood count of ‘‘hay/pasture’’ pixels

Land Cover Shrub Count 565 neighborhood count of ‘‘shrubland’’ pixels

Land Cover Urban Count 565 neighborhood count of ‘‘urban’’ pixels

Land Cover Water Count 565 neighborhood count of ‘‘water’’ pixels

Land Cover Wetland Count 565 neighborhood count of ‘‘wetland’’ pixels (all wetland)

Land Cover LULC Diversity 565 neighborhood count of the number of different LULC classes

Climate Average Temp Average annual temperature

Climate Average Precip Average annual (total) precipitation

Topography Elevation Elevation data from National Elevation Database

Topography Slope Slope data derived from National Elevation Database

Topography Compound Topographic Index Compound Topographic Index data derived from National Elevation Database

All data were mapped to a common geographic extent at 250-m resolution.
doi:10.1371/journal.pone.0112251.t003

Relative Impact of Climate and Land Use on United States Bird Species

PLOS ONE | www.plosone.org 5 November 2014 | Volume 9 | Issue 11 | e112251



this assessment in recognition that SDMs often do not focus solely

on LULC and climate. Three topographic variables were used,

based on the USGS National Elevation Dataset for the

conterminous United States [45]; 1) elevation, 2) slope, and 3)

compound topographic index (a measure of ‘‘wetness’’ and high

flow accumulation). Each variable was resampled to match the

geographic extent and 250 m spatial resolution of the LULC and

climate covariates.

Methods
Maximum Entropy Modeling Framework. MaxEnt mod-

el [46] (Version 3.3.1) running on a Windows desktop was used to

model bird species distributions. Maxent was designed to model

species distributions based on presence-only species data [26].

Maxent statistically minimizes entropy between the probability

density of ‘‘presence’’ data, and probability density from

‘‘background’’ data, as defined in covariate space [26]. Maxent

has been shown to be one of the most effective methodologies for

modeling species distributions when presence-only data are used

[2,26].

Maxent estimates suitability for a given species by fitting feature

classes based on environmental covariates. The filtered eBird data

for each of the 50 species served as presence points. Environmental

covariates were the LULC, climate, and topographic variables

described above and shown in Table 3. Modeled feature classes

in Maxent potentially included linear, quadratic, product, hinge,

threshold, and categorical [46]. Linear features model linear

response to a covariate, while quadratic features model response to

the variable squared. Product features model interactions between

paired variables. Hinge features model piecewise constant

responses, while threshold features model abrupt boundary

relationships between covariates and response. Category features

are binary indicators used to indicate positive or null response to

each class within a categorical covariate (e.g., thematic land cover

map). All variables in this assessment were presented as continuous

variables, including nominally thematic LULC data that were

represented as counts within a 565 neighborhood around each

point. Categorical features were thus not used in this assessment,

but the other five Maxent features were used in modeling species

response to the covariates.

The most widespread method for testing model results is a

random hold-out of sample data [47]; 75% of the filtered eBird

samples were used for training the model while 25% were reserved

for testing. Maxent uses ‘‘background’’ points as locations where

presence was not recorded, with background points either selected

at random from the geographic extent of the study area, or

specifically provided by the model user. The relationship between

presence and background points in Maxent can strongly influence

model results. Spatial bias in the presence points can result in a

selection of background points with a fundamentally different

spatial distribution [27], resulting in a model that represents the

sampling effort as much as species presence [48]. A number of

options were available to correct for spatial bias issues [25,46,49].

Several studies have discussed the use of spatially filtering or

discarding records in over-sampled efforts [27,48,50], the

approach used here and described above, with Kramer-Schadt

et al. [26] finding it better reduced both errors of commission and

of omission compared to other methodologies. Because the eBird

data were spatially filtered, no attempts were made to account for

bias through other measures.

Choice of the study area extent also can influence Maxent

results [51,52]. VanDerWal et al. [53] found that model

performance suffered when background points were selected from

either too restricted or too broad a geographic extent, in

relationship to the presence points. Specifically, if background

points are selected from too broad a geographic area, predictive

models were dominated by coarse-scale determinants of distribu-

tion (such as climate) [53], while those that use too limited a

geographic area underestimate the importance of these variables

[52] To reduce the influence of a mismatch between background

area and ‘‘presence’’ points, a consistent buffer was applied around

2001 (contemporary) input presence points to construct a unique

geographic extent for each species. The buffer zone was used to

definitively set the study area for each species, both for defining

where background points could be selected by Maxent, and to set

the complete geographic range for modeling both current and

future distributions. Ideally a unique geographic region would be

optimized for each species according to characteristics of the

observation data [51], but to facilitate comparison across the 50

species, a consistent buffered extent was used for all species.

VanDerWal et al. [53] used a 200-km buffer, but initial

experimentation for this assessment found that to be too restrictive

for changes in conterminous United States bird species range from

2001 to 2075, with some species’ ranges shifting by more than

200 km. A 500-km buffer around input eBird points was used,

restricting both the range from which background points could be

selected, and restricting the prediction space for each species’

range.

Remaining parameterization of Maxent largely followed model

defaults. Anderson and Gonzalez [54] and Warren and Seifert

[55] recommended species-specific tuning of Maxent settings,

noting that the regularization value (used to restrict model ‘‘over-

fitting’’ to input data) had a large effect on results. However,

Phillips and Dudik [46] tested regularization values and found that

‘‘regularization parameters which are the defaults in MaxEnt

software…are well suited for a wide range of presence-only

datasets.’’ The six feature types are also selectable, yet Syfert et al.

[56] found little influence on model results by varying the feature

types that are used. Phillips and Dudik [46] found that using the

default 10,000 background points achieved similar model results as

if all possible background sites were used; the default setting was

thus used. Default settings were also used that enabled ‘‘clamping’’

of covariate and feature values for the 2075 model simulations.

With the model trained on the 2001 covariate data, the potential

existed for ‘‘novel’’ covariate values when the model was applied in

2075, using projected climate and LULC data. For the 2075

model simulations, the enabled clamping resulted in a rescaling of

both covariate and feature values if their values were higher or

lower than those found in the training data. Values higher than

those encountered in the training data were rescaled to the

training data maximum, while values lower than those encoun-

tered in the training data were rescaled to the training data

minimum. The implications of the use of clamping are provided in

the discussion section.

Parameterizing Maxent as described above, initial model

simulations for each species were conducted using the filtered

eBird data for presence points, and the 2001 LULC, 2001 climate,

and topographic variables as covariates. Twelve model simulations

were made in total for each species (Table 4). A base model

simulation was done for 2001 using all variables (simulation 1),

while additional simulations were done for 2001 with climate and

topography (excluding LULC) (simulation 2) or land cover and

topography (excluding climate) (simulation 3). The model devel-

oped for simulation 1 was applied for 2075 to examine potential

future impacts of climate change, LULC change, or both

(topographic variables are static in all simulations). For each of

the three IPCC scenarios, simulations were done with all 2075

variables, with projected climate but static LULC, and with
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projected LULC but static climate. Keeping either climate or

LULC static from 2001 to 2075 allowed for the examination of the

relative effects of projected climate versus projected land use

change on future bird species distributions. Three 2001 simula-

tions and nine 2075 simulations were thus conducted for each of

the 50 species, resulting in 600 individual model simulations.

Assessing Model Results. Several different metrics were

used to assess the relative impacts of climate and LULC change on

bird species distributions. The three 2001 model simulations were

assessed for model fit through a comparison of Area Under the

Curve (AUC) of the Receiver Operating Characteristic (ROC).

AUC values represent the probability that a randomly selected

‘‘presence’’ site will have a higher AUC value than a randomly

chosen ‘‘background’’ site. Comparison of AUC scores was used to

examine relative impacts on model fit when LULC or climate data

were excluded from the analysis. A second criterion was the

relative contributions of the covariates to model results, measured

by relative changes in regularized training gain between variables.

This information was provided as a ‘‘percent contribution’’ from

Maxent. A third criterion was a comparison of modeled ‘‘suitable’’

range for each species. Elith et al. [26] cautions against cross-

species comparisons using logistic output from Maxent, as

probability of presence is relative to the sampling effort for a

given species. However, changes in relative range for each

individual species can be identified by applying a threshold value

to Maxent’s logistic output, to differentiate between likely presence

and absence locations. The ‘‘maximum sensitivity plus specificity’’

threshold was used [15,38], a thresholding technique that limits

both errors of commission and errors of omission and has been

found to outperform other techniques [57,58].

The 2075 simulations were evaluated by assessing changes in

‘‘suitable’’ breeding range as compared to 2001. Net change in

range area was determined for each species by first applying the

‘‘maximum sensitivity plus specificity’’ threshold to modeled

output and then differencing the threshold results, with compar-

isons of net effects of climate change alone, LULC change alone,

and both climate and LULC change from 2001 to 2075 (for each

scenario).

Finally, results were examined in terms of species range and

relationship to the conterminous United States study area. While

data sources and analyses often stop at political boundaries, species

ranges obviously do not, and the use of conterminous United

States borders for this work resulted in the modeling of truncated

ranges for many species. Both 2001 and 2075 model results could

be impacted dependent upon whether the entire range was

modeled or if one or more maximum extent boundaries were

artificially truncated [51,52,53]. Many SDM applications model

truncated species distributions (see discussion below); assessing

results on species range characteristics allowed for an examination

of LULC and climate impacts across a variety of ‘‘real-world’’

modeling situations. For each of the assessment criteria discussed

above, mean values were provided (Table 5) for species within

the following ‘‘range classes’’: 1) ‘‘Single Truncated’’ (species with

either the northern or southern extent artificially truncated by

United States borders, 2) ‘‘Double Truncated’’ (species with ranges

truncated at both the northern and southern United States border,

and 3) ‘‘Whole Ranges’’ (species with .95% of current breeding

ranges found within the conterminous United States, measured

with NatureServe species distributions [24].

Results

2001 Models (‘‘current’’ species’ distributions)
The 2001 models were assessed for model fit using AUC scores.

Values of 0.5 indicate model fit was no better than random, while

increasing values above 0.5 indicated an improved model fit.

Figure 1 provides AUC scores for the three 2001 model

simulations for each of the 50 species. AUC scores ranged from

a low of 0.716 to a high of 0.987, with considerable variation

among species, as well as among the three model simulations for a

given species. Model simulations with all variables included

(simuilation 1) had the highest mean AUC score, at 0.891, and

the highest AUC score for each of the 50 species. AUC scores were

significantly lower (p,0.001; paired t-test) for both simulation 2

(climate, no LULC) and simulation 3 (LULC, no climate), with

mean AUC scores of 0.863 and 0.874, respectively. Results

indicate significantly poorer model fit when LULC data were

excluded than if climate data were excluded (p,0.01; paired t-

test). By range class AUC scores were significantly lower when

either LULC or climate data was omitted, for all range classes (p,

0.01, paired t-test) (Table 5A). AUC scores overall were similar

for the Single Truncated and Whole Range classes, but were much

Table 4. Twelve model simulations were conducted for each species, three for 2001 and nine for 2075.

Simulation Description Climate (Scenario) LULC (Scenario) Topo Data Scenario

1 2001 All 2001 2001 Yes -

2 2001 Climate 2001 - Yes -

3 2001 LULC - 2001 Yes -

4* 2075 A1B All 2075 A1B 2075 A1B Yes A1B

5* 2075 A1B Climate Change 2075 A1B 2001 Yes A1B

6* 2075 A1B LULC Change 2001 2075 A1B Yes A1B

7* 2075 A2 All 2075 A2 2075 A2 Yes A2

8* 2075 A2 Climate Change 2075 A2 2001 Yes A2

9* 2075 A2 LULC Change 2001 2075 A2 Yes A2

10* 2075 B1 All 2075 B1 2075 B1 Yes B1

11* 2075 B1 Climate Change 2075 B1 2001 Yes B1

12* 2075 B1 LULC Change 2001 2075 B1 Yes B1

Model simulations variously include or exclude climate and LULC covariates in order to assess the individual effects of each.
*Simulations for 2075 used the model developed for run 1 (2001 ‘‘All’’), applying 2075 climate and/or LULC data from the appropriate scenario.
doi:10.1371/journal.pone.0112251.t004
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lower on average for the Double-Truncated class. Omission of

LULC resulted in the lowest overall AUC score for every species

in this class. The relative impact of LULC or climate data

omission was more balanced for the other two range classes and

varied by species.

Figure 2 depicts Maxent-provided proportional contributions

of each covariate to the regularized training gain, aggregated

across all 50 species for simulation 1 (all variables modeled). The

climate covariates played an important role in shaping 2001

simulations, with annual temperature and precipitation providing

51.0% of the contribution to model results. Temperature was one

Table 5. Impacts on assessment variables by range class.

Single Truncated Double Truncated Whole Range

5(A) –2001 MODEL FIT (AUC Score – Mean Value)

All Variables 0.916 0.839 0.906

LULC, No Climate 0.891 0.834 0.892

Climate, No LULC 0.891 0.799 0.888

5(B) –2001 VARIABLE CONTRIBUTION (in percent)

Climate Variables 49.5% 52.8% 52.7%

Topography Variables 12.8% 6.0% 13.9%

Land Cover Variables 37.7% 41.2% 33.4%

5(C) –2001 Range (Mean Values – Percent of conterminous United States area)

All Variables 23.0% 42.2% 26.6%

LULC, No Climate 28.4% 43.7% 30.1%

Climate, No LULC 31.1% 57.0% 32.8%

5(D) –2075 Breeding Range (Mean Values – Percent change from 2001)

All Variables 29.9% +2.6% +12.0%

LULC, No Climate +3.8% +3.5% +1.5%

Climate, No LULC 213.0% +1.2% +10.2%

Values represent mean values across all species in a class. ‘‘Single Truncated’’ (27 species) represents species with ranges artificially truncated at either the north or south
by the United States border. ‘‘Double Truncated’’ (15 species) represents species with truncated ranges that extend to or past the United States/Canada border in the
north and the United States/Mexico border in the south. ‘‘Whole Range’’ (8 species) represents species where .95% of the current range is found within the
conterminous United States.
doi:10.1371/journal.pone.0112251.t005

Figure 1. AUC scores for each species, for run 1 (all variables modeled), run 2 (Climate, no Land Cover), and run 3 (Land Cover no
Climate). AUC scores are also parsed by range class.
doi:10.1371/journal.pone.0112251.g001
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of the top four contributing covariates for 41 species, while

precipitation was one of the top three covariates for 42 species.

LULC variables in aggregate contributed 38.1% to model results,

while topographic variables contributed 10.9%. Results vary

among individual species, but overall, it is clear that both climate

and LULC were important contributors to model output when

both were included as covariates. Results were similar when

categorizing species by range class (Table 5B).

Figure 3 provides a comparison of modeled ‘‘suitable’’ area for

each species, among model simulations 1, 2, and 3, using the

unique maximum sensitivity plus specificity threshold criteria for

each species and simulation. Values are presented as a percentage

of the total land surface for the conterminous United States with

Maxent logistic output values above the threshold criterion. While

the predicted suitable range for a given species was sometimes

similar across each of the three 2001 model simulations for a

species, in many cases, the area deemed to be suitable varied

dramatically depending upon what variables were used as

covariates. For 36 of the 50 species, the area deemed suitable

was highest in simulation 2, when only climate and topographic

variables were used as covariates (LULC excluded). The area

deemed suitable was nearly double in some cases (e.g., Great

Horned Owl (Bubo virginianus), Yellow-headed Blackbird

(Xanthocephalus xanthocephalus)) for simulation 2, as opposed to

simulation1 when LULC data were also incorporated. For the

other 14 species, the area deemed suitable was highest for

simulation 3, when only LULC and topographic variables were

used as covariates (climate excluded). Adding covariates to the

model, be they LULC or climate, clearly acted to further define

(and restrict) the area deemed to be suitable for species’ habitation.

Using climate data alone resulted in broad, overly generalized

suitability ranges if LULC data were not used to help further

define suitable landscapes. Results were similar when evaluating

the three different range classes (Table 5C), with the smallest

range consistently modeled when all variables were used as

covariates. However, for the Double Truncated range class, the

omission of LULC data from the model resulted in a much larger

increase in range as compared to the other two range classes, while

omitting climate data had little impact.

Figure 2. Proportional contributions of each covariate to the regularized training gain, aggregated across all 50 species.
doi:10.1371/journal.pone.0112251.g002
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2075 Models (‘‘projected’’ species’ distributions)
Figure 4 depicts projected changes in range for each of the 50

species, measured as change relative to the range modeled in 2001

(simulation 1), using the maximum sensitivity plus specificity

threshold to differentiate between presence and absence. Range

differences are provided for each of the 3 model simulations, for

each of the 3 scenarios, with bar height providing the mean

change in range across all three scenarios, and deviation bars

providing the variation between scenarios. Depending upon

species, modeled changes in range varied according to which

covariates were used and between different IPCC scenarios.

Changes in range varied from a near complete loss of all

conterminous United States suitable range (Baird’s Sparrow(Am-
modramus bairdii)) to range expansions that nearly double the

current range (Cactus Wren (Campylorhynchus brunneicapillus),
Gambel’s Quail (Callipepla gambelii), Gray Vireo (Vireo vicinior)).

Figure 4 indicates that the magnitude of projected changes in

range was much more strongly impacted by projected climate

change than by projected LULC change, when using a threshold

to define suitability. When only LULC changed (climate static)

from 2001 to 2075, changes in projected ranges from 2001 were

highly significant (p,0.001; paired t-test) but were never more

than 20% (either positive or negative). When only climate changed

(LULC static) from 2001 to 2075, range changes were often quite

dramatic, with 20 species showing range changes of 25% or more

for a given scenario. Climate and LULC could either both

influence species’ distributions in the same direction, or a positive

species response to one category of covariates could be offset by a

negative species response to the other category.

Table 5(D) and Figure 4 show substantial differences in the

relative effects of LULC and climate on 2075 model results,

depending upon range class. The most dramatic overall changes in

range were in the Single Truncated class, where climate change

obviously had a strong effect on model results. Climate change had

a much more muted impact on the Double Truncated class, with

low overall changes in range. Climate had moderate to strong

impacts for the Whole Range class. The impacts of LULC change

were much more consistent across range classes than were the

impacts of climate change.

Species Focus - Hooded Warbler (Wilsonia citrina)
While it is impractical to individually discuss each of the 50

modeled species, the relative impacts of climate and LULC change

on one species, the Hooded Warbler (Wilsonia citrina), are

highlighted here to demonstrate specific impacts of climate and

LULC. The Hooded Warbler is a forest-dependent species that

primarily breeds in the eastern United States. Figure 5 provides

1) a map of Maxent logistic output for 2001, using simulation 1 (all

covariates modeled), and 2) changes in output for each 2075

scenario, and for each 2075 model simulation. The AUC score for

simulation 1 (2001) indicated a high-level of model fit

(AUC = 0.927), with precipitation, temperature, and forest count

(in relative order) measured as the three covariates contributing

the most to model results. For simulation 1, 23.1% of the

conterminous United States was deemed ‘‘suitable’’ (threshold)

range for the Hooded Warbler. The predicted range sharply

increased to 27.9% in simulation 3 (climate excluded) and 33.9%

for simulation 2 (LULC excluded), a pattern seen for many species

(Figure 3).

Changes in predicted range by 2075 indicate a strong influence

of both climate and LULC change (Figure 5). The economically

focused A1B and A2 scenarios are similar, as a changing climate

Figure 3. Area (percent of conterminous U.S. land mass) classified as suitable to support a given species, for model run 1 (all
variables modeled), run 2 (Climate, no Land Cover), and run 3 (Land Cover no Climate). Suitability was determined by applying the
maximum sensitivity plus specificity threshold to Maxent logistic output. Results are also parsed by range class.
doi:10.1371/journal.pone.0112251.g003
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Figure 4. Changes (2001 to 2075) in area classified as suitable to support a given species. Change is presented as area change, relative to
the contemporary (2001) modeled range. Bar height represents mean change across the 3 IPCC scenarios, while error bars represent scenario
variability. Suitability was determined by applying the maximum sensitivity plus specificity threshold to Maxent logistic output. Results are also
parsed by range class.
doi:10.1371/journal.pone.0112251.g004
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resulted in strong shifts in overall species range, with large

contiguous bands of losses of range in the south and gains in the

north. The effects of LULC change are more fragmented, but

substantial forest loss results in local areas of decline throughout

much of the eastern United States. The effects of climate change

are more muted for the environmentally focused B1 scenario, with

less severe shifts to the north. While local areas of forest loss do

result in range declines in the B1 scenario, afforestation and forest

regeneration result in higher presence scores in many locations.

Figure 6 displays modeling results for the Hooded Warbler for

both 2001 and 2075 (A2 scenario) for a smaller area within their

current breeding range. At this scale the relative impacts of both

LULC and climate are evident for both current (2001) modeling,

and for future projections. Figure 6(a) and 6(e) show LULC

change from 2001 to 2075, characterized by substantial expansion

of urban and agricultural lands, at the expense of forest land.

Figures 6(b), 6(c), and 6(d) show model results with LULC and

topography as covariates, all variables as covariates (LULC,

climate, and topography), and climate and topography as

covariates, respectively. Without the use of climate data, suitability

was highly heterogeneous, but higher elevation areas that

currently do not support Hooded Warbler populations (e.g., parts

of the upper-left quadrant) often had high suitability values even

with the use of topographic information (Figure 6(b)). Without

the use of LULC data, suitability was less heterogeneous and the

cooler high-elevation areas were characterized by lower values, yet

areas of dense anthropogenic land-use that are unsuitable for

Hooded Warbler breeding were often characterized as highly

suitable (Figure 6(d)). The use of both LULC and climate data,

in conjunction with topographic data, resulted in a heterogeneous

distribution of suitability values, capturing both the influence of

cooler high-elevation areas as well as areas of dense anthropogenic

land-use (Figure 6(c)).

For 2075 model simulations, Figure 6(g) shows the impacts on

Hooded Warbler range when both projected climate and

projected LULC are used in the model. Range expansion

occurred towards higher elevations as a warming climate results

in more suitable breeding conditions. LULC change, primarily

urbanization and agricultural expansion, resulted in large but

heterogeneous losses of breeding range, counter-balancing range

gains due to climate change. Figure 6(f) shows a model

simulation with projected 2075 LULC but a static 2001 climate.

Without the use of projected climate data, the range expansion

due to warming was not captured (Figure 6(i)). Figure 6(h)

Figure 5. Maxent 2001 logistic output for the Hooded Warbler, and projected changes under each 2075 scenario and model run.
Climate change results in broad northward shifts in species range across all scenarios. LULC change alters the local pattern of habitat suitability, with
losses under the A1B and A2 scenarios, and general increases in the B1 scenario.
doi:10.1371/journal.pone.0112251.g005
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shows a model simulation with projected 2075 climate but a static

2001 LULC, where many climatically suitable areas were still

noted as suitable for breeding despite the substantial loss of forest

habitat (Figure 6(j)).

Specific results for all 50 species, including range maps as

provided in Figure 6, are accessible through a companion website

(http://landcover-modeling.cr.usgs.gov/sdm.php).

Discussion

Research Questions
What are the relative influences of LULC and climate

in modeling contemporary (2001) breeding bird distri-
butions? Clearly both climate and LULC change impact current

bird species distributions, with relative impacts that are species

specific. 2001 model fit was generally better with LULC

simulations (climate excluded) than for climate simulations (LULC

excluded), yet climate data covariates contributed more to model

results than LULC data. One story that arises from these

seemingly conflicting results is one of scale. Results suggest that

climate data alone, without constraints afforded by the use of

habitat (LULC) data, provide a ‘‘broad-brush’’ picture of

suitability for a given species. LULC data alone excel at providing

local-level insight to site-level habitat suitability. Given the

inherent heterogeneity of the moderate-scale LULC data used

here compared to variations in climate across geographic space, it

is not surprising that climate alone offers only a general

characterization of species range. For the 2001 species models,

the modeled area deemed to be suitable to support a species was

generally much higher when climate data were used without

LULC data (Figure 3). The addition of LULC data to climate-

based model simulations greatly restricted modeled species ranges

Figure 6. LULC and model results for a portion of the Hooded Warbler’s range. Panels on the left (6 a–d) depict 2001 LULC, and the three
model runs for 2001. Panels in the middle (6 e–h) depict 2075 LULC for the A2 scenario, and the three model runs for 2075 for that scenario. The two
panels on the right depict differences in model results (compared to 6 g, when all variables were modeled) if 1) climate was held static for 2075 (6i),
and 2) LULC was held static for 2075 (6j).
doi:10.1371/journal.pone.0112251.g006
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in most cases. Prince et al. [59] similarly described climate as

determining overall potential carrying capacity for a species, but

noted the impact of climate change itself may be overestimated, as

other factors that determine local suitability must be assessed.

These results suggest that the use of climate data, without

supporting LULC data, likely results in errors of commission,

where climatically suitable regions are labeled as appropriate for

supporting a given species, despite underlying LULC conditions

that make actual presence unlikely. Araujo and Peterson [9]

discussed such commission errors in bioclimatic envelope model-

ing, attributing overzealous predictions of range to an incomplete

model; in this case, climate-only models for 2001 are ‘‘incomplete’’

without supporting LULC data.

Actual species range in relationship to the modeled study area

influenced 2001 model results. Model fit was negatively impacted

if the study area was largely contained within the actual species

range. This was the case for the Double Truncated species, where

ranges spanned all latitudes in the conterminous United States and

were truncated at both the northern and southern borders.

Climate data, in particular temperature data, thus did little to

improve model fit, as species occurrences already spanned most

potential climate regimes within the conterminous United States.

With the resultant small impact of climate data, overall model fit

suffered (Figure 1; Table 5a) and the addition of climate data

did little to improve model results over the LULC and topography

model (Figure 1). Modeled species range was also influenced by

the relationship between actual range and study area. As noted

above, the use of climate data without LULC data often resulted in

errors of commission, but these errors were magnified for the

Double Truncated species, with an over-prediction in suitable

range as compared to the complete model with both climate and

LULC data (Figure 3).

What are the relative impacts of projected climate and
projected LULC change on breeding bird distributions?
For modeled species ranges, projected changes in climate provided

more dramatic shifts in future species’ ranges than did projected

LULC change. LULC change alone altered suitable range by no

more than 20% for any species, yet climate change resulted in

shifts of 50% or more for several species. Differences between the

three different scenarios were often substantial, with some

scenarios projecting double the range shift compared to other

scenarios. However, the overall storyline was climate change

impacting net changes in species range more than projected

LULC change.

The relationship of the actual species range to the study area

obviously affected 2075 results, with climate impacts often over- or

under-estimated in relationship to LULC impacts, depending

upon species. The Single Truncated class contained species where

either the northern or southern extent of their actual range was

artificially truncated by the borders of the study area. With a

warming climate, for species with ranges truncated along their

southern extent but not the north, the models thus predicted

overall range expansion to the north, without capturing the

(presumed) range contraction due to climate change at the species’

southern range extent. Conversely, for species with ranges

truncated along their northern extent but not the south, the

models predicted overall range contraction, capturing contraction

in the south but failing to capture (presumed) expansion in the

north. By only capturing ‘‘half of the story’’ (i.e., either capturing

range expansion in the north or range contraction in the south),

these results provided an unrealistically high impacts of climate on

net range, either positive or negative. While the impacts of climate

on net change were thus likely overestimated for these species,

gross change was likely underestimated, as half of the story was

‘‘missing’’. For the Double-Truncated class, the relative impacts of

climate change to LULC change were likely underestimated. For

these species, the impact of climate on species range was artificially

dampened by the truncation of northern and southern range

boundaries, areas where range could potentially expand or

contract, respectively, due to a warming climate. For the Whole

Range species, the relative impacts of climate change versus land

use change vary, with net change values only providing part of the

story as evidenced when assessing results for the focus species, the

Hooded Warbler.

What are the specific impacts of climate and LULC on
one focus species, the Hooded Warbler? The presented

results for the Hooded Warbler mirrored those for many of the 50

modeled species. Net change in breeding range area showed

relatively little change, while geographic patterns change dramat-

ically. Climate change resulted in a broad overall shift in range to

the north and to higher elevations, while LULC change resulted in

heterogeneous, local-scale changes in habitat suitability. The

breeding distributions of the Hooded Warbler have been found to

be highly correlated with climate variables [60]. The species was

unknown as a breeder in Canada until 1949, but with a warming

climate they have started to breed in increasing numbers in

extreme southern Ontario [60]. Melles et al. [60] modeled the

relationship between climate and habitat covariates and the

Hooded Warbler range, and found strong relationships between

range expansion to the north and changes in climate over the last

few decades, with habitat availability acting as a constraint on

expansion. Naujokaitis-Lewis et al. [61] examined the potential

impacts of climate change out to 2080 on Hooded Warblers and

projected breeding range shifts to the north with characteristics

dependent upon which GCM was assessed. However, they also

found that land-use pressures around the Great Lakes were

limiting factors to range expansion, and recommended future

work that focused on ‘‘the development of more realistic (habitat)

loss scenarios’’. The newly available LULC projections used in this

work allowed for such an analysis.

As discussed, most future projections use projected climate data

but ignore future LULC change. Figure 6 clearly indicates that

for a species such as the Hooded Warbler where climate change

drives a broad overall shift in range to the north and to higher

elevations, the modeled extent of suitable range at a local level can

potentially be misrepresented without the use of projected LULC

data. In this case, habitat loss due to urbanization and agricultural

expansion would be missed without the use of LULC data,

resulting in an over-prediction of suitable range (Figure 6j).
Alternatively, without the use of projected LULC data, suitable

range may be under-predicted if beneficial LULC change occurs

(e.g., Grasshopper Sparrow (Ammodramus savannarum) results

within the Eastern United States, where projected clearing of

forest land in most scenarios resulted in more suitable habitat

conditions by 2075). Exclusion of climate data can also result in a

misrepresentation of modeled range. For the Hooded Warbler,

range expansion to higher elevations was missed for the 2075

model excluding climate data (Figure 6i).

What are the implications for the use of climate and
LULC data in SDMs? For contemporary species modeling or

for projected changes in species range, both climate and LULC

data should ideally be used. In general, model fit consistently

increases with the use of both climate and LULC data, while

predicted suitable range decreases. The implication is that

information is missing from SDMs if both climate and LULC

are not used as covariates. For modeling of current species range,

areal summaries of modeled range (Figure 3) as well as spatially

explicit maps of modeled range (Figure 6b, c, and d) show that
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SDMs relying on climate data without LULC data provide only a

broad-brush, generalized species range, while LULC data alone

provide site-level information on habitat suitability while omitting

climatic thresholds of unsuitability. Dependent on application, a

broad-brush generalization of a species range may be adequate.

However, it should be recognized that the results likely over-

represent the area of suitable range and fine-scale detail is unlikely

to be obtained.

Exclusion of LULC data is primarily an issue for projections of

future species’ range. As shown here, bioclimatic modeling where

LULC information is not included or is considered static likely

results in a misrepresentation of future species’ range. For

example, Hooded Warbler results provided here and in past

studies indicate that while climate drives broad-scale shifts in

range, SDMs likely misrepresent the extent of future range shifts if

LULC change is not taken into account. Given how little projected

LULC data is used in modeling future species distributions,

quantitative estimates of range shifts are likely overestimated if

habitat loss dominates projections of LULC change, or underes-

timated if habitat gain dominates projections of LULC change.

Bioclimatic models that do not use any form of LULC

information, even static LULC information for the future, likely

overestimate suitable ranges (Figure 3).

The relationship between the study area and the actual species

range also needs to be strongly considered, both in the project

design and assessment phases. The methodology used here mimics

that of many modeling applications. Of all the citations included in

this paper where species distribution and/or probability-of-

occurrence modeling was done, over two-thirds (21 of 31) of

model applications assessed only partial/truncated species ranges.

Many of the recommendations referenced in this paper with

regard to model parameterization and handling scale issues

[35,38,46,53], spatial bias and other issues with presence data

[23,48,50], and relative influences of climate and LULC

[1,8,12,16,59,60] were derived from studies where only partial

ranges were assessed. Despite the prevalence of modeling of partial

ranges, the results here indicate that caution is needed in project

design, both for accurate modeling of species range, and for the

interpretation of modeling results. Modeling of an entire species’

range may improve model fit and enable a more direct

interpretation of results, yet is often not practical due to data or

processing limitations. While modeling a partial range is thus

unavoidable in many cases, model results should be interpreted

within the context of the overall project design and the relationship

between species range and the study area. Modeling results may

still be ‘‘valid’’ when using truncated ranges, but if the intent is to

study the impacts of climate change on species distribution, for

example, then the use of a ‘‘double-truncated’’ study area

boundary would obviously be a poor choice, as the effects of

climate would likely be artificially muted. If the intent is to

quantify specific impacts of LULC and climate, disentangling the

relative effects of LULC, climate, and other covariates would be

complicated by the modeling of truncated ranges.

Comparison to Existing Research
The conceptual approach behind Barbet-Massin et al. [7]

modeling of bird species in Europe and Matthews et al. [1]

modeling of eastern U.S. bird species are likely the most similar

work to this assessment. Each assessed a large number of species

across broad geographic regions, and both incorporated projected

climate and projected LULC data. Similar to Barbet-Massin et al.

[7], this assessment found that LULC-based models alone

predicted smaller overall shifts in future range size than did

climate-based models. However, these results differ from multiple

studies that discussed the relative influence of climate versus

LULC, including components of Barbet-Massin et al. [7]. Barbet-

Massin et al. [7] found that modeling accuracy was higher with

climate-only variables than with habitat-only variables; in this

study, the opposite was true in the majority of species that were

assessed. Thuiller et al. [12] found that the inclusion of LULC

covariates improved explanatory power of bioclimatic models, but

that the ‘‘addition of land cover variables to pure bioclimatic

models does not improve their predictive accuracy’’. In this

assessment, on average, AUC scores declined more in the absence

of LULC data than in the absence of climate data, while for all 50

species, 2001 model fit was improved when LULC data were

included as a covariate as opposed to models with only climate and

topographic data.

The differences in results may potentially be explained by 1) the

difference in scale between the different assessments, 2) variations

in the number of climate covariates, and 3) the use of topographic

data within this assessment. Barbet-Massin et al. [7] used much

coarser, 0.5-degree resolution LULC data, and noted that ‘‘such a

resolution was probably too rough to precisely account for habitat

factors.’’ Thuiller et al. [12] also used a very coarse spatial

resolution (50-km grid cells) and noted results may differ at finer

resolutions. Bucklin et al. [13] similarly found that LULC variables

provided little benefit in SDMs, but noted that both thematic and

spatial resolution improvements over their LULC data source may

have provided different results. Barbet-Massin et al. [7] and

Thuiller et al. [12] also noted the lack of a measure of

fragmentation or landscape heterogeneity in their assessments; in

this study a LULC diversity measure was used to represent

heterogeneity. This assessment also used only two climate

covariates, while Barbet-Massin et al. [7], Thuiller et al. [12],

and Bucklin et al. [13] each used eight climate covariates.

Additional research is needed to assess the optimum combination

of covariates and how covariate choice impacts results, particularly

for heavily correlated climate covariates. The use of topographic

data in this assessment also may have impacted the relative

impacts of LULC and climate data. The information content

provided by topographic data alone, or topographic data in

combination with LULC data (e.g., ‘‘product features’’ within

Maxent that assess 2-way interactions between covariate pairs)

may partially mimic or replace the information content that is

provided by climate variables [42].

Matthews et al. [1] also modeled U.S. bird species, and also

used projected climate data, projected LULC data, and topo-

graphic data to assess future changes in distributions. They

modeled the eastern portion of the United States at a very coarse

spatial resolution (20-km grid cells), with changes in tree species

representing the only modeled form of LULC change. Similar to

their results, the predictive power (indicated by goodness-of-fit

measures) of the models described here decreased when only

climate and elevation data were used as predictor variables (i.e.,

LULC excluded). Even with the differences in spatial resolution,

both studies found that modeling with only climate and

topographic variables leads to generalized species distribution

maps that lack fine-scale detail. Matthews et al. [1] noted that

modeling with climate and topographic data alone makes the

resultant models much more susceptible to over-prediction of

future impacts of climate change on species range. It should also

be noted that their use of the eastern United States as the study

area resulted in artificial truncation of nearly all modeled species

ranges.
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Caveats and Future Research
In assessing potential future changes in species ranges, caution

has been recommended when attempting to apply a contemporary

model to future climate conditions [26,46]. Transferability of

model results is confounded when novel conditions (i.e., specific

combinations of covariates not found in the original model’s

training data) are found for future dates or for other geographic

regions. In this assessment novel conditions were most likely to

occur with higher temperatures due to climate change. However,

the use of the 500-km buffer to establish the study area for each

species, as well as the use of the clamping feature in Maxent,

resulted in a muted influence of novel conditions on model results.

Selecting background points within a 500-km buffer of a species’

current range enabled the collection of background points with

higher (points selected south of the breeding range) or lower

(points selected north of the breeding range) average temperatures

than those found in the breeding range. Thus temperature was

often used as a threshold feature in species’ models, with

conditions modeled as unsuitable if temperature in a given

location was above or below a modeled tolerance level for the

species. For example, the breeding range for the Bobolink

(Dolichonyx oryzivorus) covers much of the northern United

States, but they are absent in southern areas. An examination of

the 2001 model developed for the Bobolink shows average

temperature used as a threshold feature. For a species such as

this, with the southern end of its breeding range currently within

the conterminous United States, novel conditions potentially

introduced by a warming climate were unimportant, as the model

already ensured exclusion of the species as a breeder in areas with

temperatures above threshold values found in the training data.

Novel conditions could potentially be a problem for species with

current breeding ranges extending to the United States and

Mexico border. No background data south of the border were

used to train the model. With a warming climate, for some species,

it is likely that local temperatures in the projected climate data

exceeded any temperatures found in the training data. The

clamping feature in Maxent was used to control novel conditions

in situations such as this, effectively rescaling novel covariate

values to maximum values found in the training data. Clamping

thus eliminated statistical issues with applying models into a novel

prediction space, but by rescaling extreme values in the projection

space, the model may effectively be dampening the impact of

future change on future species distributions for 2075. Clamping of

novel temperatures, for example, could result in the model

incorrectly representing far southern portions of a species range as

‘‘suitable’’ for breeding, when in fact a temperature tolerance limit

has been reached and has pushed the southern limit of the

breeding range north of the United States and Mexico border.

There are additional potential caveats in interpreting results of

this assessment. These results are based on one modeling

methodology (Maxent), with one defined method for parameter-

ization. Many papers have focused on the effects of different

parameterization settings when using the Maxent model

[27,48,56], and it was not the intention of this paper to revisit

how different parameterizations affect Maxent results. The results

presented here were also conducted at one specific spatial scale,

with one specific suite of covariates and bird presence data. It was

impractical to perform comprehensive analyses across all possible

permutations of modeling frameworks, parameterization settings,

spatial scales, thematic scales, temporal resolution, and data

sources; results may differ for assessments where these components

are altered. There was no attempt to rigorously address all

potential sources of modeling uncertainty in this assessment.

Conlisk et al. [38] attempted to disentangle all sources of

uncertainty in SDMs, concluding that the modeling framework

itself is the most important source of uncertainty. Ideally multiple

models would be used to also disentangle effects of the modeling

frameworks themselves, but resources were unavailable for a

multi-model assessment given the large number of species, and

multiple combinations of dates, covariates, and scenarios. Other

potential drawbacks to the approach used here is an oversimplified

representation of the driving forces behind species distributions.

One final area that needs further exploration is the correction of

bias for eBird data. Spatial bias was mitigated by spatially filtering

the data. However, given the number and diversity of species

modeled, a consistent filtering threshold of 20 km was used for all

species; no attempts were made to tailor the filtering protocol to

the spatial data characteristics for each species, nor were attempts

made to quantify the reduction in spatial bias in this assessment.

Additional potential sources of error and bias in eBird data that

were not accounted for include accuracy of geographic data entry

and highly variable observation and identification skills among

eBird participants [62,63].

Conclusion

This work represents the first assessment of the effects of climate

and LULC for bird species in the conterminous United States

using both 1) newly available LULC projections of high-spatial

and thematic resolution and 2) climate and LULC projections that

are both consistent with IPCC SRES scenario frameworks. While

modeling results clearly indicate a species-dependent determina-

tion of the relative impacts of climate and LULC change on both

current and future range, it is clear that SDMs benefit by including

both climate and LULC covariates. The use of climate data alone

likely results in errors of commission and an over-prediction of

current range. For future modeling of species range, the use of

climate change information without corresponding LULC change

may result in the misrepresentation of future range either

positively or negatively, dependent upon whether projected LULC

change was harmful or beneficial to a species. The inclusion of

LULC data in SDMs 1) significantly increased measures of model

fit, and 2) ‘‘tempered’’ predicted ranges from climate-only

modeling frameworks by providing fine-scale information on local

habitat suitability. When modeling future shifts in range, climate

had the dominant impact on range shifts, yet LULC change was

dominant for many species. Relationship of the species’ range to

the geographic bounds of the study area also clearly impacts

whether climate or LULC has the dominant effect on modeled

species range, and needs to be considered at both the design and

assessment stages of a study.

All LULC projections used for this assessment are available at

http://landcover-modeling.cr.usgs.gov. The computed predictor

variables (covariates) used in this assessment, all range maps for

2001 and 2075 for each of the fifty modeled species, and a

spreadsheet of all quantitative data reported in this paper are

accessible at http://landcover-modeling.cr.usgs.gov/sdm.php.

While this paper has focused on generalized results across the 50

modeled species, detailed model results for each of the 50 modeled

species also are included herin. eBird data used as presence

locations for this work may be obtained by through http://ebird.

org.
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