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Abstract

Background

Radiologic evidence of air trapping (AT) on expiratory computed tomography (CT) scans is

associated with early pulmonary dysfunction in patients with cystic fibrosis (CF). However,

standard techniques for quantitative assessment of AT are highly variable, resulting in lim-

ited efficacy for monitoring disease progression.

Objective

To investigate the effectiveness of a convolutional neural network (CNN) model for quantify-

ing and monitoring AT, and to compare it with other quantitative AT measures obtained from

threshold-based techniques.

Materials and methods

Paired volumetric whole lung inspiratory and expiratory CT scans were obtained at four time

points (0, 3, 12 and 24 months) on 36 subjects with mild CF lung disease. A densely con-

nected CNN (DN) was trained using AT segmentation maps generated from a personalized

threshold-based method (PTM). Quantitative AT (QAT) values, presented as the relative

volume of AT over the lungs, from the DN approach were compared to QAT values from the

PTM method. Radiographic assessment, spirometric measures, and clinical scores were

correlated to the DN QAT values using a linear mixed effects model.

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0248902 March 24, 2021 1 / 17

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Ram S, Hoff BA, Bell AJ, Galban S,

Fortuna AB, Weinheimer O, et al. (2021) Improved

detection of air trapping on expiratory computed

tomography using deep learning. PLoS ONE 16(3):

e0248902. https://doi.org/10.1371/journal.

pone.0248902

Editor: Ulas Bagci, University of Central Florida

(UCF), UNITED STATES

Received: October 22, 2020

Accepted: February 26, 2021

Published: March 24, 2021

Copyright: © 2021 Ram et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting information

files.

Funding: This study was supported by the

following grants funded to the people’s initials

indicated by their side: � NHLBI/NIH R01HL139690:

CJG � NHLBI/NIH R44HL140890: CJG, CH � NHLBI/

NIH R01HL150023: CJG, MH, CH � CF Foundation

Grant LAMA20AB0: CJG, VL � Novartis Institute of

Biomedical Research: TER The funders had no role

in study design, data collection and analysis,

https://orcid.org/0000-0003-1828-9722
https://orcid.org/0000-0001-7097-5434
https://orcid.org/0000-0001-5596-7487
https://doi.org/10.1371/journal.pone.0248902
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0248902&domain=pdf&date_stamp=2021-03-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0248902&domain=pdf&date_stamp=2021-03-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0248902&domain=pdf&date_stamp=2021-03-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0248902&domain=pdf&date_stamp=2021-03-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0248902&domain=pdf&date_stamp=2021-03-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0248902&domain=pdf&date_stamp=2021-03-24
https://doi.org/10.1371/journal.pone.0248902
https://doi.org/10.1371/journal.pone.0248902
http://creativecommons.org/licenses/by/4.0/


Results

QAT values from the DN were found to increase from 8.65% ± 1.38% to 21.38% ± 1.82%,

respectively, over a two-year period. Comparison of CNN model results to intensity-based

measures demonstrated a systematic drop in the Dice coefficient over time (decreased from

0.86 ± 0.03 to 0.45 ± 0.04). The trends observed in DN QAT values were consistent with clin-

ical scores for AT, bronchiectasis, and mucus plugging. In addition, the DN approach was

found to be less susceptible to variations in expiratory deflation levels than the threshold-

based approach.

Conclusion

The CNN model effectively delineated AT on expiratory CT scans, which provides an auto-

mated and objective approach for assessing and monitoring AT in CF patients.

Introduction

High resolution CT is an integral tool for the treatment and management of patients with dif-

fuse lung disease [1]. High resolution CT lung imaging provides high tissue-air contrast and

resolution facilitating disease detection and characterization, and assessment of disease pro-

gression across a variety of obstructive and restrictive lung diseases. Mosaic attenuation on CT

images is defined as a CT pattern that “appears as patchwork of regions of differing attenuation

that may represent (i) patchy interstitial disease, (ii) obliterative small airways disease, or (iii)

occlusive vascular disease” [2]. In the context of small airways disease, mosaic attenuation rep-

resents air trapping (AT) “secondary to bronchial or bronchiolar obstruction” that produces

focal zones of decreased attenuation on expiratory CT imaging [2].

A mosaic attenuation pattern on expiratory CT scans due to AT is a common feature in

many pulmonary conditions with airway obstruction [3]. Computational techniques that are

fully automated have been developed to quantify the extent of AT on expiratory CT, which

may improve the detection of AT across a diverse range of radiologists in practice. The most

extensively used method is quantification of low attenuation areas using a Hounsfield unit

(HU) threshold-based approach, which defines areas at or below a static attenuation value as

AT. This approach was first applied to emphysema, and has been pathologically validated [4–

7]. This same strategy has been used to quantify AT in small airway disease associated with

chronic obstructive pulmonary disease (COPD), asthma, and obliterative bronchiolitis [8–13].

In many cases radiographically identified AT is not captured by threshold-based techniques.

To address this limitation in automated AT quantification, adaptive techniques that calculate

personalized thresholds [9] have been developed. Although simple to use and readily available,

these attenuation threshold-based methods are known to be sensitive to scanner noise, recon-

struction kernel, and the level of expiration at which the CT images were obtained [14]. This

can create a discordance between the algorithm output and visual findings of AT by radiolo-

gists on the same chest CT images.

Recently, the availability of large amounts of data and significant computational power

have rapidly increased the popularity of machine learning (esp. deep learning) approaches

[15]. Convolutional neural networks (CNNs) [16] have been investigated in many image anal-

ysis tasks [17–19] and radiological applications [20,21], and have outperformed the state-of-

the-art methods. In particular, their capability to learn discriminative features when trained in
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a supervised fashion, provides an automated approach for regional assessment of radiographic

features. CNN models are being explored extensively for their potential to identify features,

sometimes unrecognizable to the naked eye, that correlate to disease outcome. For instance,

Cheplygina et al. [22] reported a machine learning model using transfer learning for multicen-

ter classification of COPD; Athimopoulos et al. [23] and Shin et al. [24] proposed CNN models

to classify lung patterns for interstitial lung diseases (ILDs) and emphysema, respectively.

To improve the automated detection and quantification of AT that better matches thoracic

radiologist visual assessment of AT on expiratory CT images, and to reduce the discordance

that can occur between these methods, we trained a CNN model capable of delineating

regional AT on expiratory CT images to identify and quantify AT. We further validated this

approach through comparison to radiologist CT image assessment and correlation to PFT and

clinical scores.

Materials and methods

Ethics statement

The prospective multi-center study was carried out in 36 subjects enrolled in the Novartis CF

Natural History Study [25] from 2007–2011 and was approved by the Institutional Review

Boards of Stanford University Medical Center (IRB #6218) and Ohio State University School

of Medicine (IRB #07–00207). Informed written consent for examination and further data

processing was obtained from all patients or legal guardians prior to inclusion.

Study participants

CF subjects were school-age children accrued as part of the Novartis/CF Foundation Thera-

peutics multicenter prospective 2-year natural history study [26]. CT and clinical data were

acquired from two different sites, referred to as Site 1 (N = 24) and Site 2 (N = 12) (Table 1),

with baseline and follow-up examinations at 3, 12, and 24 months. All chest CT scans were

obtained with the same CT quality assurance (QA) protocol using spirometer controlled

acquisition of spiral chest CT scans at both institutions. CF subjects were extensively character-

ized at baseline based on age, gender, height, weight, body mass index, pulmonary function

tests (PFT), and radiologic scores. All chest CT scans were obtained when patients were clini-

cally stable without oral or intravenous antibiotics for a pulmonary exacerbation. All subjects

had a confirmed diagnosis of CF by pilocarpine iontophoresis sweat chloride testing and CF

Table 1. Subject baseline characteristics at each site.

Site 1 Site 2

Number of Cases (N) 24 12

Age (yrs) 12 (2.5) 12 (3.2)

Gender (m/f) 11/13 5/7

Height (cm) 146 (13.2) 145 (17.3)

Weight (kg) 41.2 (10.5) 40.0 (13.3)

BMI (kg/m2) 18.9 (2.1) 18.3 (2.5)

FEV1 (% predicted) 99 (10.5) 94 (10.1)

FVC (% Predicted) 102 (12.3) 101 (7.1)

FEF25-75 (% predicted) 94 (19.9) 82 (25.3)

Note: Data presented as the mean (standard deviation). BMI is the body mass index. FEV1 is the forced expiratory

volume at 1 sec. FVC is the forced vital capacity. FEF25-75 is the forced expiratory flow at midepxiratory phase.

https://doi.org/10.1371/journal.pone.0248902.t001
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gene mutation analysis. The CF data has been used earlier to demonstrate the effects that CT

registration has on quantifying air-trapping [27], and airway measurements [28] as well as

quantifying lobar segmentation [25,29] to show that clinical measures such as mucus plugging

and bronchiectasis are important in assessing childhood CF. Here, we use this data and pro-

pose a CNN model to quantify AT.

Pulmonary function tests and clinical scores

PFTs were obtained as per clinical care guidelines for each respective institution. Forced vital

capacity (FVC), forced expiratory volume at one second (FEV1), and forced expiratory flow at

25–75% (FEF25-75) were expressed as percent predicted based on Global Lung Initiative nor-

mal prediction equations (Table 1).

CT acquisition technique

Volumetric helical CT scans of the chest were obtained using spirometer controlled multide-

tector CT scanners (Siemens Sensation 64, 32 detectors; Siemens Medical Solutions, Malvern,

PA) at Site 1 and (GE VCT scanner, 64 detectors; GE Healthcare, Waukesha, WI) at Site 2

[30]. Inspiratory volumetric chest CT scans were obtained at� 95% vital capacity (VC), while

expiratory spiral volumetric CT scans were obtained near residual volume [RV] (c. 5% VC)

using the spirometer-controlled CT acquisition.

For all subjects, a low dose spiral CT scanning protocol was utilized with 100 kVp and 30–

50 mAs at Site 1 and 100 kVp and 20–40 mAs at Site 2 with slice thickness of 0.6–0.625 mm

with 50% overlap in lung and soft-tissue kernels (standard). QA protocol was implemented

on-site for adequate inflation and deflation levels, absence of significant motion artifacts, and

inclusion of all parts of the chest, by a thoracic radiologist. Technical CT QA was done using

standard CT phantoms for both the Siemens and GE CT scanners prior to chest CT scanning

for baseline, 3, 12 and 24-month testing. In addition, differences in mAs between the 2 sites

were standardized prior to the Novartis/CF Foundation Therapeutics 2-year study utilizing a

CT airway and parenchymal phantom [31]. The calculated total effective dose for the 4 serial

CT scans from Site 1 and Site 2 (baseline, 3 months, 1 year, and 2 years) was 5.4–5.6 mSv. This

corresponded to an estimated risk of developing cancer of approximately 0.056% [32,33].

Attenuation threshold-based quantitation of air trapping

Quantitative air trapping (QAT) was determined on expiratory CT data using a slight variation

of the previously reported algorithm developed by Goris et al. [9], referred to here as the Per-

sonalized Threshold Method (PTM). This approach generates subject-specific thresholds for

detecting regions of lung parenchyma with mild-to-severe AT (originally defined QATA1 in

[9]). A 3 × 3 × 3 median filter was applied to inspiratory and expiratory CT scans immediately

prior to AT classification. The lungs were then automatically segmented using an in-house

software developed using MATLAB (MathWorks, Natick, MA), and voxels with HU

values> 0 were excluded. The lungs segmentations were visually inspected to make sure there

are no errors. The 50th and 90th percentile for the inspiratory CT scan (Y and X, respectively)

and difference in the 90th percentile values in the inspiratory and expiratory CT scans (D)

were determined. These HU values were used to calculate a subject-specific threshold (T) for

AT using the following expression: T = X −(1 − D/343)� (X − Y)/3 [9]. An AT map was gener-

ated by classifying all expiratory CT voxels with HU values< T as 1, and the remaining voxels

as 0. QATPTM was calculated from the AT map by summing the binary value of all voxels and

normalized to the total number of voxels within the segmentation map (i.e. whole-lung). For

completeness, the accepted static threshold (T) of -856 HU was applied to all expiratory CT
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scans to also quantify AT (QAT-856) [13]. For reference, standard air and water attenuation

values are -1000 and 0 HU, respectively.

CNN algorithm development

We developed a feature-based method using a densely connected CNN (DN) for detection

and quantification of AT. We adopted the CNN model proposed by Huang et al. [34] as a

basis to construct our DN architecture. The motivation behind this architecture is that the

contraction and expansion paths of the architecture captures the context around the objects to

provide a better representation of areas of AT on CT images. In our implementation each

dense block layer is composed of batch normalization (BN), followed by a rectified linear unit

(ReLU) activation, and a 3 × 3 convolution. Each downsampling path consists of BN, followed

by ReLU activation, a 1 × 1 convolution, and a non-overlapping 2 × 2 max pooling. Also, each

upsampling path is composed of a 3 × 3 transposed convolution with a stride of 2 to compen-

sate for the pooling operation.

Our deep learning architecture consists of two downsampling and two upsampling paths,

with four dense block layers between each downsampling and upsampling path. After the last

upsampling path we perform an 1 × 1 convolution, followed by a softmax operation in order

to obtain the final output label for each pixel within the image. A schematic representation of

our proposed DN is shown in Fig 1.

Training. The DN was trained on a desktop workstation running a 64-bit Windows oper-

ating system (Windows 10) with an Intel Xeon W-2123 CPU at 3.6GHz with 64GB DDR4

RAM and an NVIDIA GeForce RTX 2080 graphic card with 2944 CUDA cores (Nvidia driver

411.63) and 12GB GDDR6 RAM. Our proposed DN architecture was trained to minimize the

Dice loss [35,36]. The x, y, and z-dimensions of each image in our dataset was x = 512, y = 512,

and z ~ 850. We used a randomly selected subset of 22,784 2D slices from 32 3D images

(N = 8; with four different time points) from the Site 1 cohort consisting of a total of 69,137 2D

slices from 96 3D images (N = 24; with four different time points) for training the DN model.

A separate set of 19,592 2D slices from another 32 3D images (N = 8; with four different time

points) from the Site 1 cohort were held out for validation and parameter tuning. AT segmen-

tation maps generated using the PTM was used for training the DN. We used a nested 2-fold

Fig 1. Schematic overview of the proposed dense convolutional network (DN) architecture.

https://doi.org/10.1371/journal.pone.0248902.g001
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cross-validation strategy for training the DN architecture, where the outer loop was run eight

times and the data was split into two equal random pools internally. The network was trained

on one pool and tested on the other.

The proposed DN architecture was implemented in PyTorch [37] and run under the

Python environment (version 3.7; Python Software Foundation, Wilmington, Del; https://

www.python.org/). We used the stochastic gradient descent algorithm, called Momentum

[38], to efficiently optimize the weights of the DN. The weights were normalized using a nor-

mal random initialization and updated in a mini-batch scheme of 16 candidates, with a growth

rate of 8 per iteration. The biases were initialized to zero, the momentum term was set to γ =

0.9, and the learning rate was set to α = 0.001.

Radiographic assessment of air trapping on CT

Four subjects from Site 1 and two from Site 2 were randomly selected for the visual assess-

ment of AT from expiratory CT images. Including all CT examinations, there were a total of

24 expiratory CT examinations, which were examined by three trained thoracic radiologists.

Expiratory CT examinations were loaded onto a laptop with an in-house image viewer devel-

oped using MATLAB (MathWorks, Natick, MA) capable of manually applying a threshold

to the CT data that generates an overlay indicating regions of lung parenchyma less than the

threshold on the CT scan. The threshold was adjusted manually by the radiologist. Once the

radiologist deemed the threshold sufficient to highlight AT on a specific expiratory CT scan,

the threshold was recorded and used to calculate the QAT for the CT examination. A single

preset threshold was not used for all of the four subjects. The radiologists were allowed to

vary the window level combination when reviewing the images as each of them had their

comfort window level for each image. No additional instructions were given to complete

this task. This process was performed separately by all three radiologists and repeated for all

24 expiratory CT scans. QAT values were then averaged over all radiologists for a given expi-

ratory CT scan. Individual averaged results for each of the six subjects are presented in

Table 2.

Simulation of deflation-levels on expiration CT scan

Adequate respiratory maneuvers are of importance in CT imaging of patients when assessing

air trapping over time [39]. Also, there is no consensus on how the expiratory CT data is

acquired for measurement of AT [14]. To address these concerns on AT quantification using

expiratory CT scans, we studied the effects of lung deflation on the quantification of AT deter-

mined using our CNN and PTM. Inadequate lung deflation on the expiratory CT acquisition

was simulated using paired CT data from 4 subjects, two with AT< 10% total lung volume

and two with AT> 25% total lung volume, as defined by QATPTM. The inspiratory CT acqui-

sition data was registered to the expiratory CT data for each subject at a single time point (1

registration per case). All registrations were performed using Elastix (version 4.8), an open-

source deformable image registration library [40,41]. We used the B-spline non-rigid transfor-

mation to register the inspiratory CT acquisition data to the expiratory CT data. This algo-

rithm iteratively optimizes the solution using mutual information with a bending energy

penalty as the objective function. Mass was preserved by adjusting the HU values for volume

changes by multiplying each voxel by the local determinant of the Jacobian matrix of the warp-

ing transform. Simulated expiratory CT acquisitions were generated assuming a linear trajec-

tory between the expiration and inspiration lungs. The determinant of the Jacobian matrix was
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linearly altered to reflect different deflation levels using the following expressions:

Exp� ¼ J� � Exp;

J� ¼ 1þ bðJ � 1Þ;

where J and J� are the original and simulated determinant of the Jacobian matrix, Exp and

Exp� are the original and simulated expiratory CT scan, and β is the fraction deflated, such

that J� = 1 at no deflation (β = 0) and J� = J at full deflation (β = 1). QAT measurements using

PTM and DN were determined on the original (β = 1) and simulated expiration CT data (β =

0.9, 0.8, 0.7, 0.6, and 0.5).

Statistical analysis

All data values are presented as the mean ± standard deviation. Site comparisons were deter-

mined for patient characteristics, and PFT measure using an unpaired Wilcoxon test. Wil-

coxon signed rank test was used to assess differences in the quantitative AT measurements,

PFT, and clinical scores between interval examinations. QAT measures using DN were corre-

lated to PFT and clinical scores using linear mixed effects modeling. We used a fixed effect

term at the population level (i.e., the entire cohort) and a correlated random effect grouped by

each subject within the cohort for the 4 times each subject was measured. Results were consid-

ered statistically significant at the 2-sided 5% comparison-wise significance level (p< .05). All

Table 2. Computed QAT values from multiple radiologist verified thresholds and the PTM.

Case ID Number Time Point % Quantitative Air Trapping (QAT) Values QATPTM

Radiologist 1 Radiologist 2 Radiologist 3

1 Baseline 7.4 6.8 5.9 4.1

3 months 9.9 8.7 9.1 8.1

1 year 12.9 11.7 11.7 8.2

2 year 15.9 14.9 10.2 9.3

2 Baseline 12.8 12.1 9.3 6.5

3 months 11.2 9.9 12.3 9.3

1 year 14.9 14.6 8.2 12.4

2 year 17.1 18.7 11.2 9.6

3 Baseline 6.9 8.0 5.1 4.8

3 months 9.5 8.8 5.9 10.4

1 year 12.8 12.1 7.6 10.2

2 year 13.4 12.3 10.2 9.8

4 Baseline 8.2 7.1 9.5 7.4

3 months 11.7 12.2 9.9 11.2

1 year 13.1 12.7 9.4 12.8

2 year 14.1 14.1 14.1 10.2

5 Baseline 7.5 6.6 4.5 6.1

3 months 10.1 11.4 6.3 9.6

1 year 12.4 12.4 8.1 7.2

2 year 14.9 15.6 9.7 8.4

6 Baseline 8.4 7.3 6.8 9.4

3 months 11.5 12.6 8.5 11.4

1 year 14.7 13.9 18.9 10.1

2 year 15.6 16.7 12.1 9.8

https://doi.org/10.1371/journal.pone.0248902.t002

PLOS ONE Detect air trapping in lung CT using deep learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0248902 March 24, 2021 7 / 17

https://doi.org/10.1371/journal.pone.0248902.t002
https://doi.org/10.1371/journal.pone.0248902


statistical computations were performed with a statistical software package (IBM SPSS Statis-

tics, v. 21, Armonk, NY).

Results

Study patient demographics

Negligible differences in patient characteristics and pulmonary function were observed from

the clinically confirmed mild CF patients accrued at the two sites (Table 1). Baseline QAT

measurement using a hard threshold of -856 HU (QAT-856) was 3.53% ± 1.29%. When apply-

ing the PTM approach to quantify AT, QAT values were nearly double when compared to

using the static threshold to quantify AT (QATPTM; 6.79% ± 1.83%).

Comparison of QAT measurements

Illustrated in Fig 2, is a representative axial 2D slice from a 10-year-old female diagnosed with

mild CF (FEV1% predicted value of 96%) at the 12-month examination from the Site 1 cohort.

No clear mosaic patterns were identified radiographically on the inspiratory CT images (Fig

2A). In contrast, a mosaic attenuation pattern is present on the expiratory CT images indicat-

ing AT (Fig 2B–2D). Applying a hard threshold of -856HU captured 3.8% of the total lung vol-

ume as AT, which increased to 7.8% using the PTM approach (threshold adjusted to -787

HU). QAT values determined using the DN model were in agreement with the radiologist

visual assessment, with QAT values around 10% (Fig 2D–2E). The mean radiologist threshold

determined by visual review to be sufficient to identify most of the AT for this specific CT scan

was -726 HU.

Fig 2. Presented from a single case from the Site 1 examined at 12 months are representative images from A) the inspiratory CT scan and AT

maps from B) a static threshold of -856HU, C) the personalized threshold method (PTM), D) the DN method (presented as probability map), and

E) radiographic assessment by a trained radiologist. The QAT for the whole 3D dataset is provided on the top right corner of each 2D image. The

images are windowed between [–950, 150] for display purposes so that regions of AT are visible.

https://doi.org/10.1371/journal.pone.0248902.g002
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The DN model was found to detect AT that increased in a time dependent manner. At base-

line, good agreement was observed for the QATDN to QATPTM with a difference in QAT value

of about only 1.2% (Fig 3). Evaluating the QAT values over time, the poor agreement between

QATDN values to QATPTM was attributed to the ability of the DN model to detect increasing

amounts of AT over the two-year period (Fig 3). Follow-up QATPTM were found to be signifi-

cantly higher at about 1.5 times the baseline values. Nevertheless, these values plateaued with

no significant difference between interval QATPTM measurements post-baseline examination

with a p-value of 0.25 and 0.73 between the intervals of 3 to 12 months and 12 to 24 months,

respectively. The QATDN significantly increased from baseline to year two by up to 12.7% ±
1.1%. The QATDN measurements post-baseline examination were also significantly different

with a p-value of 0.004 and 0.003 between the intervals of 3 to 12 months and 12 to 24 months,

Fig 3. Presented are Quantitative air trapping (QAT) results of the various methods from Site 1 cohort at the different examination times.

https://doi.org/10.1371/journal.pone.0248902.g003
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respectively. Radiologist visual assessment and threshold setting showed similar trends in

QAT to values obtained using the DN model, although not with the same rate of incline (Fig

3). Mean QAT-856 values at baseline, 3months, 1 year, and 2-year were found to be 4.3% ±
2.6%, 4.9% ± 3.8%, 5.3% ± 2.9%, and 4.6% ± 1.9%, respectively. None of the follow up QAT-856

values were found to be significant to the baseline value.

Multi-Site comparison

To validate the robustness and generalizability of the CNN approach, QAT values generated

from the fully-trained DN model at the Site 1 cohort were evaluated using CT examinations

from the Site 2 cohort. A representative axial CT slice from a 15-year-old male with CF

(FEV1% predicted value of 92%) at the 3-month examination showed similar QAT values for

PTM, DN, and visual threshold assessment (Fig 4A). Peripheral AT on the dependent poste-

rior regions of the lungs was undetected by PTM (threshold value of -802 HU), and was

detected by the DN model and also confirmed by radiographic assessment (RA) (threshold

value of -743 HU). As observed from the Site 1 cohort, QATPTM values plateaued after the

3-month examination, with both QATDN and QATRA significantly increasing up to 6.8% ±
0.2% and 4.9% ± 0.58%, respectively, by year two (Fig 4B). The interval QATDN measurements

post-baseline were significantly different with p-values of 0.03 and 0.04 between 3 to 12

Fig 4. A) Presented from a single case from the Site 2 cohort examined at 3 months are representative images from A) the inspiratory CT scan and the

AT maps from the personalized threshold method (PTM), the DN method, and radiographic assessment by a trained radiologist. The QAT for the

whole 3D dataset is provided on the top right corner of each 2D image. The images are windowed between [–950, 150] for display purposes so that

regions of AT are visible. B) Quantitative air trapping (QAT) at different times by the various methods on the Site 2 cohort.

https://doi.org/10.1371/journal.pone.0248902.g004
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months and 12 to 24 months, respectively. Mean QAT-856 values at baseline, 3 months, 1 year,

and 2-year were found to be 4.8% ± 1.9%, 5.8% ± 2.5%, 6.1% ± 3.7%, and 5.7% ± 2.8%, respec-

tively. None of the follow up QAT-856 values were found to be significant to the baseline value.

Radiologist visual assessment

Radiologist visual assessment and threshold setting showed similar trends in QAT values to

that observed by our DN model, although not with the same rate of incline. In general, AT by

radiographic assessment was less than as quantified by our CNN models. We did observe

lower AT values from Radiologist 3 from what was reported from Radiologists 1 and 2

(Table 2).

PFT and clinical scoring

Pulmonary function measurements and clinical scores were assessed over the entire study pop-

ulation (N = 36), to determine if trends in these clinically relevant outcomes were similar to

those observed in the QAT values measured by the DN model. Although all mean PFT mea-

sures steadily decreased, follow-up values were not significantly decreased from baseline. Nev-

ertheless, these trends suggest pulmonary dysfunction, although variable from case-to-case,

throughout the duration of the study (Table 3). In contrast, radiologic scores for AT, bronchi-

ectasis, and mucus plugging, all demonstrated a significant increase at year two. The most pro-

nounced increase was observed for the mucus plugging score, which increased by nearly 140%

and was found to significantly increase at all follow-up examination time points (Table 3).

The PFT and clinical scores were correlated with the QAT values of the DN model using

linear mixed effects modeling (Table 4). We observed a good correlation between the FVC %

predicted and the percentage of AT computed using our DN model. We also observed that the

Brody BS and Brody MPS clinical scores very strongly correlated with the QATDN values. In

contrast, the QATPTM and the QAT-856 values did not correlate well with the PFT and clinical

scores (Table 4).

Effect of deflation-level

Quantitative AT techniques are highly susceptible to the deflation-level executed during the

expiratory CT scan. To test this effect on the ability of the DN model to detect AT, HU values

from four randomly selected expiratory CT acquisitions from the 144 scans (36 cases � 4 time

points) were adjusted to simulate inadequate deflation-levels. Illustrated in Fig 5A is a repre-

sentative axial CT slice acquired at residual volume (RV) and their corresponding simulated

Table 3. Mean and (standard deviation) of pulmonary function test and clinical CT scores.

Ventilation Parameter Baseline 3 Months 1 Year 2 Year

PFT FEV1% Predicted 93.54 (7.42) 93.01 (9.01) 91.69 (9.95) 87.85 (10.03) p = 0.06

FVC % Predicted 101.44 (10.56) 99.89 (11.70) 99.67 (11.12) 95.39 (14.69) p = 0.09

FEF25-75% predicted 90.30 (21.93) 87.83 (26.71) 85.47 (22.67) 83.61 (20.80)

Clinical Scores Brody ATS 26.19 (13.52) 29.81 (16.10) 30.58 (14.66) 33.10 (14.36) �

Brody BS 5.84 (8.21) 5.46 (7.37) 5.93 (6.67) 7.29 (7.20)�

Brody MPS 2.90 (5.04) 3.63 (5.36)� 5.87 (7.28)� 7.03 (8.06)�

Note: Pairwise differences in the follow-up PFT measurements and clinical scores from the baseline were tested using the non-parametric Wilcoxon rank rum test.

Significance at the 0.05 p-value are indicated as �. P-values are stated for p<0.1 in the table. Brody ATS = Brody air trapping score, Brody BS = Brody bronchiectasis

score, and Brody MPS = Brody mucus plugging score. We used all subjects (N = 36) from both Site 1 and Site 2 in this study.

https://doi.org/10.1371/journal.pone.0248902.t003
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CT image at deflation-levels between 90% to 50% of RV. For demonstration, the CT scan was

from a 9-year-old female with CF (FEV1% predicted value of 103%) at 3-month time period.

As expected, mean HU values dropped from -288HU at RV to -331HU at 50% of RV (Fig 5A).

The QATPTM and QATDN values from the three month expiratory CT acquisition were 6.3%

and 12.1%, respectively. QAT values from QATPTM and QATDN methods increased to 63.2%

and 44.9% at a deflation-level of 50% of RV, respectively. From the four selected cases, the dif-

ferences in lung volume from TLC to RV on average were 1.95L ± 0.48L (Fig 5B). As expected,

QATPTM values, the intensity-based technique, were highly sensitive to slight deviation from

RV. At a simulated deflation-level of 80% of RV, changes in lung parenchymal density resulted

in 15% more AT as measured by PTM, increasing linearly with deflation-level (Fig 5C).

Although the DN model, a feature-based technique, measured increasing levels of AT with

Table 4. Regression coefficient and (p-values) of pulmonary function tests and clinical CT scores using linear mixed-effects model.

Ventilation Parameter DenseNet PTM LAA-856

PFT FEV1% Predicted -0.020 (0.078) -0.027 (0.114) -0.011 (0.193)

FVC % Predicted -0.060 (0.003) -0.029 (0.061) -0.020 (0.082)

FEF25-75% predicted -0.015 (0.118) -0.010 (0.202) -0.009 (0.286)

Clinical Scores Brody ATS 0.027 (0.066) 0.017 (0.091) 0.010 (0.102)

Brody BS 0.091 (0.003) 0.031 (0.110) 0.019 (0.142)

Brody MPS 0.116 (0.001) 0.040 (0.097) 0.032 (0.159)

Note: LAA-856 = low attenuation area threshold of -856HU, FEV1 = forced expiratory volume at one second, FVC = forced vital capacity, FEF25-75 = forced expiratory

flow at 25–75%, Brody ATS = Brody air trapping score, Brody BS = Brody bronchiectasis score, and Brody MPS = Brody mucus plugging score. We used all subjects

(N = 36) from both the Site 1 and Site 2 data in this study.

https://doi.org/10.1371/journal.pone.0248902.t004

Fig 5. Presented are the results of the effect of deflation level on the expiratory CT scans in quantifying AT. A) A representative image of the

expiratory CT scan from a single case (from Patient 2�) from the Site 1 cohort examined at baseline and its corresponding simulated % of residual

volume (RV) 2D images. The images are windowed between [–1000, –50] for display purposes so that regions of AT are visible. [�] represents the mean

intensity within the whole lung region in HU. B) Patient characteristics table for the four cases considered in this study. C) Plot of average quantitative

air trapping (QAT) difference VS the simulated % of RV for the PTM, and DN method.

https://doi.org/10.1371/journal.pone.0248902.g005
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decreasing deflation-level, the deviation rate was slower than what was observed for the PTM

method. At 80% RV, QATDN measured only 5% ± 2.3% more AT (Fig 5C). For completeness

we computed the increase in the QAT-856 values from the expiratory CT acquisition. The

increase in the QAT values were 7.1% ± 1.9%, 21.4% ± 6.7%, 43.7% ± 5.6%, 60.8% ± 5.1%,

74.5% ± 4.8% at deflation levels between 90% and 50% of RV. The QAT-856 values showed the

highest sensitivity with respect to increasing levels of AT with decreasing deflation-levels.

Discussion

We set out to demonstrate the utility of our DN model to more accurately quantify the extent

of AT on chest CT image acquisitions in a cohort of pediatric CF patients. These cases were

accrued as part of a prospective natural history study from two CF centers and comprised of

four chest CT examinations over a two-year period. Cystic Fibrosis is AT specific and has

unique features that relate well to modeling a CNN. The personalized threshold method

(PTM), that we used for training our CNN model was built on the CF patient data. We wanted

to focus on an airway dominant disease and thus chose to evaluate patients with CF. Unlike

attenuation threshold-based techniques, we observed a significant increase in quantitative AT

over the duration of the trial with the DN model. These findings were in concordance with

radiologist visual assessment and with mucus plugging scores. With the ability of our DN

model to detect unique features, our model was less prone to errors associated with insufficient

exhalation during expiratory CT acquisitions than a threshold-based technique, and therefore

may not require a correction factor for differing deflation maneuvers over the course of four

different testing periods as was needed by Robinson and colleagues [26].

To fully appreciate the ability of our DN model to quantify AT on expiratory CT acquisi-

tions, we elected to use a cohort of pediatric patients. Although observational trials, such as

COPDGene [13] and SPIROMICS [42] are at the forefront of advancing quantitative CT algo-

rithms, techniques developed from these older populations fall short when applied to pediatric

patients due to the physiological differences in the lungs of these age groups. In general, youn-

ger patient lungs tend to have higher attenuation values than older patient lungs, as the resid-

ual volume of lungs increases with age [43,44]. Also, techniques such as classifying lung

parenchymal regions based on a static threshold, such as -856 HU, do not always capture the

extent of AT that is visible on CT images as demonstrated in Fig 1B. In addition, we observed

interobserver variability in the radiographic assessment of AT between the three Radiologists

of this study (Table 2). With the ability to identify higher order features, our DN model pro-

vides a unique opportunity to overcome these deficiencies to accurately and objectively quan-

tify AT.

It is important to note the limitations of this study. First, our DN model was trained using a

patient specific quantitative algorithm (PTM) for segmenting AT on the expiration CT acqui-

sition, rather than the conventional approach that requires a trained radiologist to contour the

air trapped regions, a time consuming and arduous process. In an effort to accelerate this pro-

cess, AT segmentation maps from the PTM were explored as an alternative. This proved

advantageous, as we were able to fully automate the training set and using sub-optimal seg-

mentation maps (i.e., segmentation maps with noisy labels) proved to possess sufficient infor-

mation to train the DN model. A second limitation was the small number of cases in the

cohorts, which may have introduced bias in the DN model. To address this concern, we

trained and tested a separate CNN model called the scattering convolutional network (SN)

that is based on a scattering transform defined by Bruna and Mallet [45], using the same

method (see S1 Appendix). Individual cases from the Site 1 cohort were randomly selected

such that the training and testing sets varied for the two architectures (i.e. DN and SN). To
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avoid a bias in the time of examination, all four time points of the CT data were included for

each case in the training and testing sets. We found that the QAT values from the SN model

were similar to those of the DN model (S2 Fig). This strategy provides some degree of reassur-

ance that the observed time dependent increase in the QAT measurements from our DN

model is accurate.

In conclusion, we developed a deep learning algorithm that can accurately quantify the

extent of AT on chest CT images. We tested our proposed CNN model on a cohort of pediatric

CF patients that underwent CT examination four times over a two-year period. Our study

found a significant increase in the QAT in these patients over the duration of the trial. To the

best of our knowledge, this study is the first to propose a deep learning algorithm to quantify

AT in chest CT images. Quantitative AT measured using this method can be used as an imag-

ing biomarker for assessment of disease severity and can aid in the clinical management of

patients with diseases such as CF, Asthma, and COPD. Future work will further evaluate the

generalizability of this model to additional data sets such as COPDGene and SPIROMICS.

Supporting information

S1 Fig. Schematic overview of SN. Schematic overview of the scattering convolutional net-

work (SN) architecture, where the |WJ|’s represent the modulus wavelet transform at each

scale J, and AJ concatenates the averaged signals (the detailed coefficients) of the wavelet trans-

form at all scales. We used a total of J = 4 scales in our implementation.

(PNG)

S2 Fig. QAT results for the SN method. Presented are Quantitative air trapping (QAT)

results of the various methods from Site 1 cohort at the different examination times.
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