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The expression of YWHAZ and NDRG1 predicts
aggressive outcome in human prostate cancer
Sofia Lage-Vickers1,2,6, Juan Bizzotto 1,2,6, Maria Pia Valacco1,2, Pablo Sanchis1,2, Sergio Nemirovsky 1,2,

Estefania Labanca 3, Carlos Scorticati4, Osvaldo Mazza4, Antonina Mitrofanova5, Nora Navone3,

Elba Vazquez 1,2, Javier Cotignola1,2,7✉ & Geraldine Gueron 1,2,7✉

Some prostate cancers (PCas) are histo-pathologically grouped within the same Gleason

Grade (GG), but can differ significantly in outcome. Herein, we aimed at identifying molecular

biomarkers that could improve risk prediction in PCa. LC ESI–MS/MS was performed on

human PCa and benign prostatic hyperplasia (BPH) tissues and peptide data was integrated

with omic analyses. We identified high YWHAZ and NDRG1 expression to be associated with

poor PCa prognosis considering all Gleason scores (GS). YWHAZ and NDRG1 defined two

subpopulations of PCa patients with high and intermediate risk of death. Multivariable ana-

lyses confirmed their independence from GS. ROC analysis unveiled that YWHAZ out-

performed GS beyond 60 months post-diagnosis. The genomic analysis of PCa patients with

YWHAZ amplification, or increased mRNA or protein levels, revealed significant alterations in

key DNA repair genes. We hereby state the relevance of YWHAZ in PCa, showcasing its role

as an independent strong predictor of aggressiveness.

https://doi.org/10.1038/s42003-020-01645-2 OPEN

1 Laboratorio de Inflamación y Cáncer, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos
Aires C1428EGA, Argentina. 2 Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos
Aires, Buenos Aires C1428EGA, Argentina. 3 Department of Genitourinary Medical Oncology and The David H. Koch Center for Applied Research of
Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA. 4 Cátedra de Urología, Hospital de Clínicas, Buenos
Aires C1120AAR, Argentina. 5 Department of Biomedical and Health Informatics, Rutgers School of Health Professions, Rutgers Cancer Institute of New
Jersey, New Jersey, NJ 07101, USA. 6These authors contributed equally: Sofia Lage-Vickers, Juan Bizzotto. 7These authors jointly supervised this work: Javier
Cotignola, Geraldine Gueron. ✉email: jcotignola@qb.fcen.uba.ar; ggueron@gmail.com

COMMUNICATIONS BIOLOGY |           (2021) 4:103 | https://doi.org/10.1038/s42003-020-01645-2 |www.nature.com/commsbio 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-020-01645-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-020-01645-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-020-01645-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-020-01645-2&domain=pdf
http://orcid.org/0000-0002-7844-2162
http://orcid.org/0000-0002-7844-2162
http://orcid.org/0000-0002-7844-2162
http://orcid.org/0000-0002-7844-2162
http://orcid.org/0000-0002-7844-2162
http://orcid.org/0000-0003-4501-7052
http://orcid.org/0000-0003-4501-7052
http://orcid.org/0000-0003-4501-7052
http://orcid.org/0000-0003-4501-7052
http://orcid.org/0000-0003-4501-7052
http://orcid.org/0000-0003-3201-7790
http://orcid.org/0000-0003-3201-7790
http://orcid.org/0000-0003-3201-7790
http://orcid.org/0000-0003-3201-7790
http://orcid.org/0000-0003-3201-7790
http://orcid.org/0000-0002-0460-0236
http://orcid.org/0000-0002-0460-0236
http://orcid.org/0000-0002-0460-0236
http://orcid.org/0000-0002-0460-0236
http://orcid.org/0000-0002-0460-0236
http://orcid.org/0000-0002-9283-7451
http://orcid.org/0000-0002-9283-7451
http://orcid.org/0000-0002-9283-7451
http://orcid.org/0000-0002-9283-7451
http://orcid.org/0000-0002-9283-7451
mailto:jcotignola@qb.fcen.uba.ar
mailto:ggueron@gmail.com
www.nature.com/commsbio
www.nature.com/commsbio


When prostate cancer (PCa) is diagnosed at a local or
regional stage, the 5-year survival rate approaches
100%. But PCa is often symptomless in its early stages

and once it has metastasized, survival rates decrease to 30%1.
Hence, screening for aggressive cancer at early stages may be
crucial to improve survival.

Widespread use of prostate-specific antigen (PSA) levels for
screening has led to a large increase in the incidence of diagnosed
PCa and a reduction in both, advanced disease and PCa mortality
rates2. However, the overtreatment of PCa is widely recognized3.
The difficulty in preventing overtreatment is the current inability
to distinguish men who will have an indolent disease from those
who will have aggressive disease. For men with newly diagnosed
PCa, the strongest predictor is the Gleason Grade (GG). GG
histologically groups PCa and presupposes an outcome for each
grade within certain margins. However, in many cases, the out-
come does not conform to these expectations and is usually more
compromised4. Because of tumor heterogeneity that is inade-
quately captured by the biopsies, between 25 and 50% of biopsies
with certain GG come from men with higher-grade PCa4–6. This
is known as “upgrading” between biopsy and prostatectomy,
indicating that patients diagnosed with indolent PCa might have
higher-grade and subsequently higher-risk cancers.

Hence, efficient PCa management should encompass not only
early accurate diagnosis but also the identification of prognostic
factors which help in foreseeing the outcome for all individual
cases. Clinical, genomic, and/or radiological biomarkers are the
key to appropriate risk stratification. Genomic biomarkers are
being developed for screening for lethal disease subtypes, mon-
itoring of PCa recurrence after initial treatments, prognosis, and
prediction of drug efficacy7. The application of translational
molecular profiling in PCa may, in the near future, have the
potential to enhance clinical management. In this regard, the
literature reflects some interesting avenues such as the prostate
cancer antigen 3 (PCA3) score8, the Prostate Health Index (phi)9,
and the Oncotype Dx10. While PCA3 has a better diagnostic
performance than PSA11–13, it does not add predictive value for
GG or tumor stage14,15. In direct comparisons, the phi is a better
predictor of PCa at initial biopsy, and therefore more suitable for
screening16–18. Oncotype Dx for Prostate is used to further
stratify low to low-intermediate risk PCa by calculating a Geno-
mic Prostate Score. However, to prove clinical utility, potentially
novel prognostic molecular markers will need to provide added,
independent value, in multivariable analysis, beyond PSA,
pathologic stage, and GG.

In this work, we undertook an in-depth mass spectrometry
approach to profile proteomes from formalin-fixed paraffin-
embedded (FFPE) specimens of prostate adenocarcinomas and
benign prostate hyperplasias (BPHs), with available disease stage,
Gleason score (GS), and patient age. The objective of our study
was to identify novel biomarkers for risk stratification of PCa with
an eye toward those that could behave independently from GS
and further recognize intermediate GSs that may be more likely
to progress. These molecular biomarkers might improve the
prediction of lethal disease and provide insight into the biological
mechanisms underlying the strong relation of GS and disease
progression.

Results
Proteomic analysis of FFPE PCa and BPH. To identify potential
PCa biomarkers for risk stratification, we performed LC ESI–MS/
MS in human PCa (n= 10) and BPH (n= 10) archival tissues.
The proteomics yield averaged 540 and 536 proteins per sample
in PCa and BPH tissues, respectively. To analyze these proteins,
we proceeded as described in the data analysis pipeline

(Supplementary Fig. 1a). We then selected proteins enriched in
PCa samples compared with BPH samples (PCa enriched protein
data set, n= 109) (Fig. 1a). We subjected the candidate proteins
to clinical validation in extended cohorts of PCa patients (32 data
sets; 5974 samples) (Supplementary Fig. 1b).

An integrated proteomics and transcriptomic atlas of PCa. To
assess the clinical significance of the PCa enriched protein data
set, we first generated a tag cloud network of the 109 proteins
(Fig. 1b). These data are summarized in Fig. 1c, and complete lists
of enriched proteins identified within each data set are presented
in Supplementary Data 1 and 2.

Gene ontology (GO) classifications for the top biological
processes (BP) categories of the PCa enriched protein list
included RAS protein signal transduction, regulation of biological
processes, and homeostasis (Fig. 1d). We then examined
simultaneously the PCa proteome within the enriched GO
categories, layering it with transcriptomic data from the TCGA-
PRAD data set (n= 499)19. The patterns in the proteograms
highlighted some accordance between proteins from the PCa
enriched protein data set compared with the corresponding gene
expression analysis from the TCGA-PRAD data set (Fig. 1e).

Analysis of the PCa proteome through multiple microarray
data sets and selection of candidate biomarkers. In order to
prioritize candidate biomarkers for PCa, we selected proteins
within the PCa proteomes identified with more than 2 Peptide
Spectral Matches (PSMs) (Fig. 1c). This filter resulted in the
selection of 20 proteins (Fig. 2a). We next subjected our candidate
list to bioinformatics analysis using Oncomine20. We selected 16
data sets (n= 1128) that analyze gene expression between PCa
and normal prostate gland samples (Supplementary Table 1). The
expression profile for most of these genes in the PCa enriched list
identified with more than 2 PSMs showed significant dysregula-
tion in PCa compared with normal gland (Fig. 2a). However, only
SLC12A2 (P= 4.81e−4), DDAH1 (P= 4.99e−4), NDRG1 (P=
0.005), APOE (P= 0.011), YWHAZ (P= 0.002), and GDF15
(P= 0.014) displayed significant upregulated gene expression
levels when comparing PCa vs. normal prostate gland (Fig. 2a,
black boxes). The meta-analysis combining data from the inde-
pendent data sets showed that the above-mentioned dysregulated
genes lie within the 25% of the most consistently highly expressed
genes across this comparison. Of note, DDAH1, APOE, and
YWHAZ lie within the top 13% (Fig. 2a).

Further, in-depth analysis of TCGA-PRAD data revealed
significantly higher gene expression profiles for SLC12A2 (P=
0.025), DDAH1 (P < 0.0001), NDRG1 (P= 0.0013), APOE (P <
0.0001), YWHAZ (P= 0.0385), and GDF15 (P < 0.0001), in PCa
tumor tissue compared with non-tumoral adjacent tissue (Fig. 2b).
Hence, the pattern evident in the proteogram, highlights a
concordance between proteins enriched in PCa and the
corresponding gene expression levels from the TCGA-PRAD data
set (Fig. 2c).

Identification of risk predictors of PCa. We next evaluated the
overall survival (OS) in PCa patients that had undergone TURP
or adenoma enucleation with a high or low expression for each
gene. The Sboner data set21 demonstrated that higher expression
of YWHAZ, NDRG1, and APOE is significantly associated with
poor OS in PCa (P < 0.001 for all genes) (Fig. 3a). Interestingly,
YWHAZ is an androgen-responsive gene that activates pro-
liferation, cell survival, and androgen receptor transcriptional
activity22, NDRG1 is a downstream target of c-MYC proto-
oncogene23, and APOE is associated with fat metabolism and
cancer24. DDAH1 was not available in this data set (Fig. 3a).
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To validate the potential of these biological markers to improve
risk stratification in PCa, multivariable analyses were performed
in the presence of clinico-pathological parameters previously
associated with increased death risk. These parameters included
GS, age group, and TMPRSS2-ERG fusion (Fig. 3b). High
YWHAZ and NDRG1 expression significantly correlated with
poor prognosis. Both genes behaved independently from the
patient’s GS, age, or TMPRSS2-ERG fusion (Fig. 3b). When we
further adjusted the model to include simultaneously all variables,
the associations remained significant for both genes (P < 0.001
and P= 0.011, respectively) (Fig. 3b). Although high APOE

expression was associated with poor OS and the multivariable
analyses including either age or TMPRSS2-ERG fusion were
significant, no independence from the clinico-pathological
parameters was observed when considering all variables simulta-
neously (Fig. 3b). These results may suggest that dysregulation of
APOE may be either accompanying GS or maybe just a
molecular/metabolic consequence of it.

Further, we considered a multivariable Cox proportional
hazard model including YWHAZ, NDRG1, APOE, GS, age, and
TMPRSS2-ERG fusion in treatment-naive PCa. Results showed
that only YWHAZ, NDRG1, GS, and age could be independent
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predictors of death risk (P < 0.001, P= 0.02, P < 0.001, and P <
0.001, respectively) (Fig. 4a). Hence, we dropped APOE and
categorized PCa patients based on YWHAZ and NDRG1 gene
expression levels. The heatmap depicts patient subgroups with (1)
low YWHAZ and NDRG1 expression (n= 118); (2) high NDRG1
and low YWHAZ expression (n= 131); (3) high NDRG1 and
YWHAZ expression (n= 24), and (4) low NDRG1 and high
YWHAZ expression (n= 8) (Fig. 4b). Next, we performed OS
analyses of these patient subgroups. Patients in groups 2, 3, and 4
had significantly decreased OS compared with patients in group 1
(P < 0.001 for all comparisons) (Fig. 4c). No significance was
observed when comparing OS between patients in groups 3 and 4
(Fig. 4c). These results evidenced three clear and distinct
subpopulations of PCa patients with low (group 1), intermediate
(group 2), and high (groups 3 and 4) risk of death. Since groups 3
and 4 presented a similar OS, we inferred that NDRG1 has no
significant effect on patients’ OS with high YWHAZ expression.
Hence, YWHAZ seemed to be the main driver for the increased
risk of death in patients with both high NDRG1 and YWHAZ. In
light of these results, we merged these two subgroups of patients
for further analysis and named it group 3. Next, when
categorizing patients based on GS, we were able to see once
more how these subgroups separated into low, intermediate, and
high-risk patients (Fig. 4d, e). In particular, for GS 7, we could
observe high statistical significance for all comparisons (2 vs. 1 P
= 0.004; 3 vs. 1 P < 0.001; 3 vs. 2 P= 0.007), reinforcing the
power of these two biomarkers to define three subgroups of PCa
risk (Fig. 4d). We further split the GS 7 patients into GS 7 (3+ 4)
and GS 7 (4+ 3). KM curves evidenced the power of YWHAZ to
predict a worse outcome for both GS: 7 (3+ 4) (3 vs. 1 P < 0.001)
(Fig. 4f) and 7 (4+ 3) (3 vs. 1 P < 0.001) (Fig. 4g). NDRG1 only
defined an intermediate risk group for 7 (4+ 3) (2 vs. 1 P=
0.016) (Fig. 4g).

When performing the same analysis stratifying patients based
on age, high YWHAZ expression was also associated with
significantly poorer outcomes (3 vs. 1 P < 0.001 for both age
groups) (Supplementary Fig. 2).

Since two independent PCa prognostic factors were delineated
using the Sboner data set as our training data set, we sought to
predict survival based on YWHAZ and NDRG1 in three other
independent non-overlapping validation data sets: TCGA-PRAD
(n= 499), Ross-Adams (n= 206)25, and Jenkins (n= 596)26. The
heatmaps depict patient subgroups with (1) low YWHAZ and
NDRG1 expression; (2) high NDRG1 and low YWHAZ expres-
sion; (3) high YWHAZ expression regardless of NDRG1
expression (Fig. 5a (TCGA-PRAD), c (Ross-Adams), f (Jenkins)).
Similar results were obtained in which NDRG1 defined a PCa
subgroup with intermediate-risk and YWHAZ defined a PCa
subgroup with high risk, regarding disease-specific survival (DSS)
(TCGA-PRAD and Jenkins) and relapse-free survival (RFS) (Ross-

Adams) for all PCa patients (Fig. 5b, d, g). When subcategorizing
by GS 7, only patients with high YWHAZ were associated with
decreased RFS (Ross-Adams) (3 vs. 1 P= 0.009) and DSS
(Jenkins) (3 vs. 1 P < 0.001) (Fig. 5e, h).

Further, we used the time-dependent univariable AUC metric to
evaluate YWHAZ and NDRG1 performance as predictors of death
in PCa patients, using the Jenkins data set which contains DSS.
Time-dependent AUC curves showed that, although NDRG1 alone
did not outperform GS, the model including both, NDRG1 and GS,
improved the prediction of DSS compared with GS alone beyond
120 months post-diagnosis (AUC= 0.614 for NDRG1+GS and
AUC= 0.545 for GS at 120 months; P= 0.0043) (Fig. 5i). In the
case of YWHAZ, the univariable AUC model comparing this factor
with the univariable AUC for GS revealed that YWHAZ out-
performed GS prognosis beyond 60 months (AUC= 0.718 for
YWHAZ and AUC= 0.551 for GS at 60 months; P= 0.037)
(Fig. 5j). The model including both, GS and YWHAZ, did not
present significant differences compared with the predictive value of
YWHAZ alone (Fig. 5j). Thus, YWHAZ rises as a potential
predictor of aggressiveness in PCa.

Genomic landscape of PCa patients with YWHAZ alterations.
We extended the bioinformatics analysis of YWHAZ using cBio-
Portal for Cancer Genomics27. 11 PCa data sets were selected that
met our eligibility criteria (n= 2820) (Supplementary Table 2). The
most frequent genetic alteration found was gene amplification
(Supplementary Fig. 3a). Results showed significantly reduced
disease-free survival in patients with YWHAZ gene alteration (P=
8.141e−3) (Supplementary Fig. 3b). The only data set available for
direct correlation of exome data with RNAseq data was TCGA-
PRAD (n= 499). There was a significant direct correlation between
amplification for YWHAZ and mRNA levels (P < 0.001) (Supple-
mentary Fig. 3c) and a positive correlation between 14-3-3ζ/δ levels
and YWHAZ expression (Spearman coefficient= 0.29, P= 2.84e
−8) (Supplementary Fig. 3d). Interestingly, the Reverse Phase
Protein Array (RPPA) from TCGA-PRAD showed that patients
with high 14-3-3ζ/δ levels had poorer disease-specific survival (DSS)
(P= 0.021) (Supplementary Fig. 3e).

Our results prompted the question as to whether PCa patients
with YWHAZ genetic alterations, high YWHAZ expression or
high 14-3-3ζ/δ levels, harbored a differential genomic landscape.
We focused our work on key DNA repair genes that were
previously described to have a high prevalence of mutations and
copy number alterations in studies on localized and metastatic
PCa28,29. When analyzing the genetic alterations of patients with
localized PCa from the TCGA-PRAD data set with gene
amplification for YWHAZ, there was a significantly higher
number of altered genes per patient with YWHAZ amplification
compared with those with unaltered YWHAZ (P < 0.001) (Fig. 6a

Fig. 1 Identification of PCa enriched proteins. a Data analysis was based on label-free spectral counting, obtaining an average of 540 and 536 proteins per
sample in PCa and BPH tissue proteomes, respectively. Two proteomic data sets were generated (PCa and BPH), taking into account the proteins that were
found in at least 50% of the samples of each type of tissue, and that were also not shared between both groups. 109 proteins were enriched in PCa
samples, while 140 proteins were enriched in BPH samples. b Tag cloud network of the 109 PCa enriched proteins identified consistently across the
proteomics analyses performed in PCa compared to BPH FFPE human tissue samples. The font size increases proportionally to the average PSMs of these
proteins across all the PCa samples. The color reflects the same information. c Semi-quantitative analysis of proteins identified by LC ESI–MS/MS classified
by the number of PSMs obtained from PCa tissue samples. Results represent the average PSMs for each group. d GO analysis of PCa enriched proteins
using the DAVID software which includes only significant categories (−log P≥ 1.5) from cellular components, biological process, and molecular functions.
e Protein levels (PSMs) and gene differential expression (PCa vs. normal adjacent tissue, TCGA-PRAD) of PCa enriched proteins were grouped by GO terms
from the biological process category using DAVID software and visualized in proteogram plots. These graphs are circular heat-plots depicting both protein
PSMs on the left semicircle and gene expression fold change (as log2 (fold change)) on the right semicircle, with the center indicating the averages. For the
gene expression, a half outer semicircle was added to include each gene’s transcript’s expression level. PSM data were locally generated while gene
expression data was gathered from TCGA-PRAD.
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and Supplementary Fig. 4). From these genes, nine (MYC,
FANCA, BRCA2, RB1, PALB2, ATM, TP53, CXCL12, and MLH1)
had significantly more genetic alterations when YWHAZ was
amplified (Fig. 6b, red bars, c). Further, when analyzing patients
with high vs. low YWHAZ mRNA and protein expression, four of
those nine genes (MYC, PALB2, TP53, and CXCL2) also
had increased significant genomic alterations (Fig. 6b, blue and
green bars, respectively, c). Accordingly, similar results were
obtained when performing the same comparison at the genomic
level for YWHAZ in patients with metastatic PCa using the SU2C/
PCF 2019 data set (n= 444)30 (Supplementary Fig. 5). These

results suggest a link between YWHAZ alterations and genomic
instability and raises the question as to whether YWHAZ may
also be a driver of progression.

Discussion
In this work, we are reporting the relevance of YWHAZ/14-3-3ζ/δ
as an independent strong predictor of death in PCa. Furthermore,
we have discovered that this factor outperforms GS prediction of
DSS beyond 5 years after initial diagnosis.

Briefly, in this study, we have: (1) applied high throughput
proteomics methods to discover signature protein biomarkers
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that may be useful when analyzing PCa, and (2) identified and
validated risk stratification markers within PCa patient data sets.
We resumed our results in 20-candidate signature proteins
enriched in PCa compared with BPH. Of those, 55% (11/20)
correspond to a subset of proteins directly associated with PCa,
and ~85% (17/20) are known cancer markers or have been pre-
viously associated with cancer in general31–35. These results
clearly highlight the robustness of our working strategy and
methodology. When analyzing these 20 candidates, the following
gene transcripts appeared to be increased in PCa compared with
the normal prostate gland: SLC12A2, DDAH1, GDF15, APOE,
NDRG1, and YWHAZ. Although we did not validate the MS
results on the protein level, there are previous reports that show
increased protein expression of DDAH1, GDF15, APOE,
NDRG1, and 14-3-3ζ/δ in PCa tissues compared with benign
prostate tissues22,36–39.

In this work, we further merged our FFPE human PCa tissue
proteomes data with large PCa transcriptome data sets, OS, RFS,
and DSS data, and refined markers that could predict PCa sur-
vival. The univariable analyses performed on a well-characterized
cohort (the Swedish Watchful Waiting Cohort after TURP or
adenoma enucleation), revealed a positive association of increased
expression of APOE, YWHAZ, and NDRG1 with poor OS. When
performing multivariable analyses, only YWHAZ and NDRG1
showed independence from GS, age at diagnosis, and TMPRSS2-
ERG fusion in PCa patients. These two genes were able to cate-
gorize PCa patients in low, intermediate, and high risk of death.
Moreover, this pattern was also observed with statistical sig-
nificance for GS 7. Further, we split the GS 7 patients in GS 7 (3
+ 4) and GS 7 (4+ 3) in line with the current classification GG 2
and GG 3, and once more, the KM curves still evidenced the
power of YWHAZ to predict a worse outcome for both groups.

Since TURP might trigger tumor cell dissemination40–43, we
might speculate that this could be one of the reasons for the short
OS in this cohort. For this reason, we furthered the analysis using
the Jenkins data set that contains DSS. The ROC analysis showed
that, although NDRG1 did not outperform GS, the model
including GS+NDRG1 improved the predictive value of
aggressive disease compared with GS alone beyond 120 months
post-diagnosis. High NDRG1 expression relates to increased cell
differentiation signals in various cancer cell lines and the sup-
pression of tumor metastasis23. In particular, its role in PCa is
controversial since there are both, reports suggesting NDRG1 as a
tumor suppressor44, and as an oncogene39,45.

In the case of YWHAZ, this factor outperformed GS beyond
60 months post-diagnosis. Interestingly, the ROC curves did not
showcase improved predictive value when adding GS to the
YWHAZ model, further ascertaining this factor as a potential
prognostic tool in the clinic. 14-3-3ζ/δ is an adapter protein

implicated in the regulation of a large spectrum of both general
and specialized signaling pathways. 14-3-3ζ/δ belongs to the 14-3-
3 family of proteins that mediate signal transduction by binding
to phosphoserine-containing proteins and is encoded by the
YWHAZ gene. Increased expression of YWHAZ relates to tumor
cell proliferation and malignant outcome of gastric carcinoma46.
In localized PCa, Ruenauver et al. associate YWHAZ with PCa47,
however, these authors fail to demonstrate its relevance as a
prognostic factor independent from the common PCa clinico-
pathological parameters.

We hereby state the relevance of YWHAZ/14-3-3ζ/δ in PCa
showcasing its role as an independent strong predictor of death
that outperforms GS. With the identification of the mutational
landscape of organ-confined and advanced-stage disease, a major
contribution has been made to the development of molecular
biomarker profiling in addition to serum PSA. It is convenient
that clinico-pathological parameters, imaging, and molecular
markers are integrated together to better predict tumor behavior.
YWHAZ/14-3-3ζ/δ could be a promising tool when taking into
consideration the difficulties that PCa presents at the time of
decision making.

It is worth mentioning that when evaluating the association of
YWHAZ with survival, its genetic alteration was significantly
related to poor prognosis. These observations made us speculate
as to whether patients with YWHAZ genetic alterations, high
YWHAZ gene expression, or high 14-3-3ζ/δ protein levels, har-
bored a differential genomic profile compared with PCa patients
with no YWHAZ alterations. We centered our attention on key
DNA repair genes associated with localized and metastatic
PCa28,29. Interestingly, PCa patients with YWHAZ amplification
harbored significantly more genetic alterations. Of note, MYC,
PALB2, TP53, and CXCL2, also had increased genetic alterations
when comparing patients with high vs. low YWHAZ mRNA and
protein expression. In the case of MYC, almost 92% of PCa
patients with amplified YWHAZ presented MYC alterations as
opposed to only 1.8% of patients with no YWHAZ alteration in
TCGA-PRAD. Although co-occurrence of MYC and YWHAZ
alterations could be explained by previously reported 8q gains
associated with tumor progression and poor prognosis in PCa29,
it is worth noticing that YWHAZ amplification, or increased
YWHAZ mRNA and protein levels, significantly correlated with
genetic alterations in other genes that are located at different
chromosomes. These results reflect that a subpopulation of PCa
patients with high YWHAZ/14-3-3ζ/δ shows greater number of
genetic alterations in key DNA repair genes. Future work should
address whether YWHAZ may also be a driver of progression.

We acknowledge the limitation of validating the initial pro-
teomics screening in PCa and BPH samples with transcriptomics
data. However, since we were processing archival FFPE samples,

Fig. 2 Correlation between proteomics and trancriptomics data for the PCa selected enriched proteins. a Summary table showing the gene symbol &
name, median gene rank and corresponding P-value obtained with Oncomine (n= 1128) for the PCa enriched proteins identified with a higher number of
PSMs. The median rank for a gene is the rank for the gene across each of the analyses for the 16 data sets assessed. The P-value for a gene is the P-value
for the median ranked analysis. The heatmap on the right indicates the level of expression for each gene in each study selected (blue: least expressed, red:
most expressed). Each square represents each Oncomine study that met our eligibility criteria and thresholds (see “Methods” section). Colors are z-score
normalized to depict relative values within a row. Proteins found in PCa samples and upregulated in prostate carcinoma vs. normal prostate gland
(Oncomine) are boxed in black. N/A a: not applicable. b Tukey box plots showing median gene expression of SLC12A2, DDAH1, NDRG1, APOE, YWHAZ, and
GDF15 comparing tumor vs. Normal adjacent tissues using the TCGA-PRAD data set (n= 499). The top and bottom of each rectangular box represent the
75th and 25th percentiles, respectively, with the median indicated with a solid line inside the box. Horizontal bars extending from each box represent more
extreme values defined as 1.5-times the interquartile range (25th percentile subtracted from the 75th percentile) above the 75th percentile or below 25th
percentile. Circles represent outliers. Student’s t-test was used to ascertain statistical significance. Statistical significance was set at P≤ 0.05. c Protein
levels (PSMs) and gene differential expression (PCa vs. normal adjacent tissue, TCGA-PRAD) of PCa selected enriched proteins were put together in a
proteogram plot.
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Fig. 3 Overall survival (OS) of PCa patients naive of treatment based on YWHAZ, NDRG1, APOE, GDF15, and SLAC12A2 expression (Sboner data set,
GSE16560, n= 281). a Kaplan–Meier curves for OS for PCa patients segregated based on the gene expression levels for YWHAZ, NDRG1, APOE, GDF15 and
SLAC12A2. OS of patients with high (red dotted-lines) vs. low (blue full-lines) expression for each gene. b Multivariable analyses presented by forest plots
including each gene with GS, age or TMPRSS2-ERG fusion or all the variables together. Statistical significant associations are bolded. Multivariable analysis
w/Gleason (light blue)= adjusted for GS (6; 7 (3+ 4); 7 (4+ 3); 8–10). Multivariable analysis w/age (purple)= adjusted for age at diagnosis (age groups:
50–70; 70–80; 90–100). Multivariable analysis w/TMPRSS2-ERG fusion (green) = adjusted for TMPRSS2-ERG fusion. Multivariable analysis (red) =
adjusted for GS, age at diagnosis and TMPRSS2-ERG fusion. GS=Gleason score. HR= hazard ratios [95% confidence interval] for the univariable analysis.
All comparisons consider low expression patients as the reference group. P= Cox proportional hazard model P-value. Statistical significance was set at P≤
0.05.
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we had to prioritize tissue for LC ESI–MS/MS. Of note, the
Sboner data set (GSE16560) included TURP and adenoma enu-
cleation specimens, which might introduce short overall
survival bias.

Methods
Experimental design. The study aimed to identify potential biomarkers for PCa
risk stratification. An in-depth proteomics analysis (LC ESI–MS/MS) was done on
human PCa and BPH tissues (previously confirmed by histological analyses per-
formed by pathologists at the Hospital de Clinicas), since normal prostate gland

Fig. 4 YWHAZ and NDRG1 as risk stratification genes in PCa patients naive of treatment (Sboner data set, GSE16560, n= 281). a Multivariable
analyses based on gene expression of YWHAZ, NDRG1, APOE, GS, age and TMPRSS2-ERG fusion for patients with PCa. P= Cox proportional hazard model
P-value. b Heatmap depicting low (blue) or high (red) NDRG1 and YWHAZ gene expression for patients with PCa. Patient subgroups are presented in black
boxes. c–g OS of patients with low YWHAZ and NDRG1 gene expression (1), high NDRG1 gene expression (2), high YWHAZ gene expression (4), and high
YWHAZ and NDRG1 gene expression (3). Kaplan–Meier curves for OS for PCa patients segregated based on gene expression levels for YWHAZ and NDRG1
(c), gene expression levels for YWHAZ and NDRG1 for GS 7 (d) and GS 8–10 (e), and gene expression levels for YWHAZ and NDRG1 for GS 7 (3+ 4) (f)
and GS 7 (4+ 3) (g). GS=Gleason score. All comparisons consider low expression patients as the reference group. P= pairwise log-rank P-values.
Statistical significance was set at P≤ 0.05.
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Fig. 5 Validation of YWHAZ and NDRG1 as risk stratification genes in PCa patients (TCGA-PRAD, n= 499; Ross-Adams, GSE70770, n= 206; and
Jenkins, GSE10645, n= 596). a, c, f Heatmaps depicting low (blue) or high (red) NDRG1 and YWHAZ gene expression for patients with PCa according to
the TCGA-PRAD (a), Ross-Adams (c), and Jenkins (f) data sets. Patient subgroups are presented in black boxes: low YWHAZ and NDRG1 expression (1), high
NDRG1 expression (2), and high YWHAZ expression (3). b, d, g Kaplan–Meier curves for DSS (TCGA-PRAD) (b), RFS (Ross-Adams) (d), and DSS (Jenkins)
(g), for PCa patients segregated based on gene expression levels for YWHAZ and NDRG1. e, h Kaplan–Meier curves for RFS (Ross-Adams) (e) and DSS
(Jenkins) (h), for PCa patients segregated based on gene expression levels for YWHAZ and NDRG1 in GS 7. P= pairwise log-rank P-values. i, j Time-
dependent AUC curves measured from 36 to 180 months reflecting the performance of GS (blue), NDRG1 (i) or YWHAZ (j) (red), and NDRG1+GS (i) or
YWHAZ+GS (j) (green) in PCa patients. AUC= area under the ROC curve. P= P-value for DeLong’s test for two ROC curves. GS=Gleason score. All
comparisons consider low expression patients as the reference group. Statistical significance was set at P≤ 0.05.
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samples were not available. Formalin-fixed and paraffin-embedded (FFPE) section
tissues from 20 patients (ten radical prostatectomy specimens of treatment-naive
PCa patients and ten BPH patients) were analyzed. Three FFPE sections per patient
were used for protein extraction. Disease- and patient-associated data including
pathologic and clinical stage and patient age were also obtained (Supplementary
Table 3). Samples with less than 250 peptides were excluded from the subsequent
analysis. Enriched PCa and BPH protein lists were formulated considering peptides
that were found at least in ≥50% of tissue samples and were not common to both

groups (PCa and BPH enriched protein data sets, respectively). Subsequently,
extended cohorts of PCa patients (32 data sets; 5974 samples) were used for
validation of proteins of interest.

FFPE processing. PCa and BPH FFPE tissue sections mounted on microscope
slides were processed as previously described in Wakabayashi et al.48. PCa and
BPH FFPE tissue sections were deparaffinized and rehydrated by successive washes

Fig. 6 Genetic alterations (amplification, gain, shallow deletion, deep deletion, and point mutations) in DNA repair genes in PCa patients with YWHAZ
amplifications and high YWHAZ mRNA and protein levels (TCGA-PRAD data set, n= 499). a Mutational landscape analysis (amplification, gain,
shallow deletion, deep deletion, and point mutations) of DNA repair genes in patients with no alterations in YWHAZ (n= 331) and with amplifications in
YWHAZ (n= 35). Each vertical line is a patient and the different colors represent alterations in a different gene, as specified in the references. The graph
includes box plots showing the median number of altered DNA repair genes. The top and bottom of each rectangular box represent the 75th and 25th
percentiles respectively, with the median indicated with a solid line inside the box. Horizontal bars extending from each box represent more extreme values
defined as 1.5-times the interquartile range (25th percentile subtracted from the 75th percentile) above the 75th percentile or below 25th percentile.
Student’s t-test was used to ascertain statistical significance. b Bar plots representing the percentage of PCa patients that present genetic alterations in
each DNA repair gene based on whether they have amplifications in YWHAZ (red bars), high or low YWHAZ mRNA levels (blue bars), and high or low 14-
3-3ζ/δ protein levels (green bars). c Comparative table of the percentage of patients that present genetic alterations in each DNA repair gene based on
whether they have amplifications in YWHAZ, high or low YWHAZ mRNA levels, and high or low 14-3-3ζ/δ protein levels. Fisher’s exact test was used to
test the statistical significance of contingency tables of genetic alterations. Statistical significance was set at P≤ 0.05. *P≤ 0.05, **P≤ 0.01, ***P < 0.001.
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in 100% n-octane (1 × 1 h), 100% (2 × 6min), 96% (2 × 6 min), 70% (2 × 6min),
50% ethanol (2 × 6 min), and water (3 × 6 min). After air-drying, the tissue sections
were percolated with CelLytic MT Mammalian Tissue Lysis/Extraction Reagent
(Sigma) for 90 min and harvested with a scalpel blade. The collected tissues were
incubated on a heating block at 99 °C for 60 min and then sonicated for five cycles
of 30 s ON, 30 s OFF. The debris was pelleted by spinning at 1500 × g at 4 °C for
20 min. The recovered proteins in the supernatant were quantified with a Pierce
BCA Protein Assay kit.

LC ESI–MS/MS analysis. The digests were analyzed by nanoLC-MS/MS in a
ThermoScientific Q-Exactive Mass Spectrometer coupled to a nanoHPLC EASY-
nLC 1000 (ThermoScientific). For the LC ESI–MS/MS analysis, ~1 μg of peptides
was loaded onto the column and eluted for 120 min using a reverse-phase column
(C18, 2 μm, 100 A, 50 μm × 150 mm), Easy-Spray Column PepMap RSLC (P/N
ES801)) suitable for separating protein complexes with a high degree of resolution.
The flow rate used for the nano column was 300 nl min-1 and the solvent gradient
range was 7% B (for 5 min) to 35% B in 120 min. Solvent A was 0.1% formic acid in
water whereas B was 0.1% formic acid in acetonitrile. The injection volume was
2 μl. The MS equipment has a high collision dissociation cell (HCD) for frag-
mentation and an Orbitrap analyzer (Q-Exactive-ThermoScientific Germany).
A voltage of 3.5 kV was used for Electro Spray Ionization (ThermoScientific,
EASY-SPRAY).

XCalibur 3.0.63 (ThermoScientific) software was used for data acquisition with
a configuration that allows peptide identification at the same time as their
chromatographic separation. A Data dependant method was used: Full-scan mass
spectra were acquired in the Orbitrap analyzer. The scanned mass range was
400–1800m/z, at a resolution of 70000 at 400m/z and the twelve most intense ions
in each cycle were sequentially isolated, fragmented by HCD, and measured in the
Orbitrap analyzer. Peptides with a charge of +1 or with an unassigned charge state
were excluded from fragmentation for MS2.

Analysis of LC ESI–MS/MS data. Raw data generated with Xcalibur software was
processed and analyzed with Proteome discoverer 2.1.1.21 with SEQUEST Search
engine. Spectrum Selector node with default parameter settings was used to gen-
erate peak lists. Minimum and maximum precursor masses were set at 350 and
5000 with an S/N of 1.5. Data were searched against Uniprot Homo sapiens
UP000005640 database, October 2017, with trypsin specificity (full cleavage) and a
maximum of two missed cleavages per peptide. Carbamidomethylation of cysteine
residues was set as a fixed modification and oxidation of methionine was set as
variable modification. Proteome Discoverer searches were performed with a pre-
cursor mass tolerance of 10 ppm and product ion tolerance to 0.05 Da. Proteome
Discoverer default settings were used: Target FDR= 0.01; Z= 1 High confidence
XCorr 1.5; Z= 2 High confidence XCorr 2; Z= 3 High confidence XCorr 2.5; z ≥ 4
High confidence XCorr 3. Protein hits were filtered for high confidence peptide
matches with a maximum protein and peptide false discovery rate of 1% calculated
by employing a reverse database strategy.

Proteograms. Proteograms were constructed as an adaptation from the web-based
analytic tool Metabologram49. Protein levels (Peptide Spectrum Matches, PSMs)
and differential gene expression (PCa vs. normal adjacent tissue, TCGA-PRAD)19

of PCa enriched proteins were grouped by GO Terms from the biological process
category and visualized in proteogram plots. These are circular heat-plots depicting
both protein PSMs on the left semicircle and gene expression fold change (as log2
(fold change)) on the right semicircle, with the center indicating the averages. For
the gene expression, a half outer semicircle was added to include the expression
level for each gene transcript. PSM data was locally generated while gene expres-
sion data was gathered from the publicly available TCGA-PRAD data set.

Gene ontology (GO) analysis. GO analysis was performed using the Database for
Annotation, Visualization, and Integrated Discovery (DAVID) v6.7. (Leidos Bio-
medical Research, Inc., Bethesda, MD, USA)50.

Bioinformatics analysis
Information source and eligibility criteria (The Cancer Genome Atlas (TCGA)). We
used the data set from the Prostate Adenocarcinoma Project of The Cancer
Genome Atlas (TCGA-PRAD)19 that has gene expression data from 499 prostate
tumor and normal adjacent tissue samples (last access: December 2019), measured
by massively parallel sequencing (lluminaHiSeq). A descriptive table regarding
patient characteristics at baseline (start of the follow-up for analyses) is depicted in
Supplementary Table 4.

Information source and eligibility criteria (Oncomine) (n= 1128). We searched the
public cancer microarray database Oncomine20 (715 data sets and 68 tumor types;
last access: December 2019) to identify expression microarray data sets that
compared the expression of prostate adenocarcinoma vs. normal prostate gland. To
be included in our study, a data set was required to (1) be generated from human
prostate tumors, and (2) compare prostate adenocarcinoma vs. normal prostate
gland. Differential genes were considered when: (1) they presented a P-value < 0.05

and (2) had an increase or decrease in expression ≥1.5 times and/or had a gene
rank within the top 10%. Although the P-value criteria was strict for the data set
selection, some genes were considered even if the fold change or the gene rank was
<1.5% or >10%, respectively, when the gene showed a significant over or under
expression. Genes were ranked by their P-value for every analysis scoring a gene
rank. Median rank is the median P-value rank across data sets, for each gene
assessed.

Search criteria: We performed a search for each gene using its HGNC gene
symbol as the search term. The resulting studies were analyzed on the basis of
healthy prostate gland vs. prostate adenocarcinoma. Cited literature was reviewed
to confirm that the analysis was as documented in the Oncomine database.

Information source and eligibility criteria (GEO: Gene Expression Omnibus). Gene
expression data sets for primary PCa samples: To study the impact of the
expression of the selected genes on the survival of patients, three data sets were
selected according to the following criteria: (1) the study includes metadata for each
patient, with ≥5 years of follow-up survival, (2) the study consists of ≥200 samples,
and (3) the study is published and available on GEO (Gene Expression Omnibus).

Search/study selection:

a. Sboner 2010 (GSE16560)21: a PCa patient’s cohort that had undergone
transurethral resection of prostate (TURP) or adenoma enucleation taken at
the time of the initial diagnosis. It is comprised of 281 tumor tissue samples
from men with PCa from the Swedish Watchful Waiting Cohort, with up to
30 years of clinical follow-up, with complete Illumina GPL5474 Human 6k
Transcriptionally Informative Gene Panel data. A descriptive table regarding
patient characteristics at baseline (start of the follow-up for survival
analyses) is depicted in Supplementary Table 5.

b. Ross-Adams 2015 (GSE70770) GPL10558 series25: a PCa patient’s cohort
with 206 tumor tissue samples from men with PCa who had undergone
radical prostatectomy and clinical follow-up of 9 years, including relapse
information (biochemical relapse). Biochemical relapse was defined
according to European Guidelines as a persistent rise of PSA above 0.2
ng/ml. Tumor sample expression of 31,000 transcripts was measured by
47,000 probes using the Illumina HumanHT-12 V4.0 platform. A
descriptive table regarding patient characteristics at baseline (start of the
follow-up for survival analyses) is depicted in Supplementary Table 6.

c. Jenkins (GSE10645) GPL5873 DASL Custom Prostate Panel26: a PCa
patient’s cohort with 596 tumor tissue samples from men with PCa
undergoing radical prostatectomy, with PCa specific death information and
a mean follow-up of 20 years. A descriptive table regarding patient
characteristics at baseline (start of the follow-up for survival analyses) is
depicted in Supplementary Table 7.

Information source and eligibility criteria (cBioPortal). We searched the cBio
Cancer Genomics Portal27, an open-source cancer genomics data platform created
by Memorial Sloan-Kettering Cancer Center (MSKCC), to analyze the selected
genes’ most common mutations, copy number alterations, and gene expression in
PCa (11 data sets, n= 2820 samples, last access: December 2019). The criteria for
inclusion of the data sets in our analysis were as follows: (1) type of cancer: prostate
adenocarcinoma or metastasis, (2) the study must be published, and (3) the study
must consist of a sample number >50.

Information source and eligibility criteria (SU2C/PCF Dream Team 2019 data set
(SU2C)) 30. We used the data set from the SU2C-PCF Dream Team: Precision
Therapy for Advanced Prostate Cancer that has whole-exome sequencing of 444
castrate-resistant prostate cancer tumor/normal pairs. A descriptive table regarding
patient characteristics at baseline (start of the follow-up for analyses) is depicted in
Supplementary Table 8.

Time-dependent ROC curves. TimeROC51 package was used for the estimation of
time-dependent receiver operating characteristic (ROC) curve and area under
time-dependent ROC curve (AUC) in the presence of censored data. Confidence
intervals (CI) were computed using the iid-representation tool within the package.
The confidence level was set to 0.95.

Statistics and reproducibility. We used the web-based bioinformatic tool Nexus52

for the analysis of differentially expressed genes based on the comparison of
prostate tumor and normal adjacent tissue samples (TCGA-PRAD) (expressed as
log2 fold change).

GraphPad Prism software (La Jolla, CA, USA) was used to calculate student’s t-
test for testing differences in gene expression across tissue samples, and percentage
of the genome altered in patients with high or low YWHAZ or 14-3-3ζ/δ
expression. Statistical significance was set at P ≤ 0.05.

Stata software (StataCorp LLC, Texas, USA) was used to explore the patients’
survival and to generate Kaplan–Meier curves. To find the cutoff value to stratify
patients into two groups based on the expression levels of each gene, we used the
Cutoff Finder tool53. For univariable and multivariable analyses of prognostic
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factors, log-rank test and Cox proportional hazard model regression were
employed.

Fisher’s exact test was used to test the statistical significance of contingency
tables of genetic alterations. Statistical significance was set at P ≤ 0.05.

One way ANOVA followed by a Tukey’s test was performed to assess significant
differences when comparing gene expression, and percentage of the genome altered
across samples with copy number alterations.

Ethics statement. Written informed consent and institutional review board
approval from the teaching hospital “Hospital de Clínicas José de San Martín” in
Buenos Aires, Argentina, were acquired.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data sets generated during the current study are available in the ProteomeXchange
(http://www.proteomexchange.org) repository, via the identifier PXD014291. Source data
underlying plots shown in figures are provided in Supplementary Data 3. All other
relevant data are available from the authors upon request.
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