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Abstract

We have reconstructed small parts of capillary networks in the human splenic white pulp

using serial sections immunostained for CD34 alone or for CD34 and CD271. The three-

dimensional (3D) models show three types of interconnected networks: a network with very

few long capillaries inside the white pulp originating from central arteries, a denser network

surrounding follicles plus periarterial T-cell regions and a network in the red pulp. Capillaries

of the perifollicular network and the red pulp network have open ends. Perifollicular capillar-

ies form an arrangement similar to a basketball net located in the outer marginal zone. The

marginal zone is defined by MAdCAM-1+ marginal reticular stromal cells. Perifollicular

capillaries are connected to red pulp capillaries surrounded by CD271+ stromal capillary

sheath cells. The scarcity of capillaries inside the splenic white pulp is astonishing, as non-

polarised germinal centres with proliferating B-cells occur in adult human spleens. We sug-

gest that specialized stromal marginal reticular cells form a barrier inside the splenic mar-

ginal zone, which together with the scarcity of capillaries guarantees the maintenance of

gradients necessary for positioning of migratory B- and T-lymphocytes in the human splenic

white pulp.

1 Introduction

The spleen is the organ with the most enigmatic microvasculature, both in humans and in rats

or mice [1–3]. In all three species the main part of the organ, the so-termed red pulp, harbours

two types of microvessels, namely capillaries and sinuses, which form the end of the arterial

tree and, respectively, the beginning of the venous part of the circulation. The exceptional fea-

ture is that both types of microvessels are not connected to one another in humans [4]. The

capillaries have open ends delivering the blood to strands of reticular connective tissue. Blood

plasma and all blood cells finally enter venous sinuses from the outside via openings in their

walls. Thus, the spleen is the only organ exhibiting an open circulation where blood flows in
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spaces not delimited by endothelial cells, but by fibroblasts. Apart from different types of fibro-

blasts, specialised macrophages, plasma cells and potentially also mast cells form more sessile

cell populations in the splenic red pulp.

Besides this very special structure of the red pulp, the spleen also hosts dense accumulations

of more or less migratory lymphocytes, which are named the white pulp. The white pulp is

populated by T- and B-lymphocytes, which migrate in special compartments located in the

vicinity of branches of the splenic artery termed central arteries. Details of splenic white pulp

compartments were first described in rats and mice [3,5,6]. The white pulp consists of periar-

terial lymphatic sheaths (PALSs) predominantly occupied by T-lymphocytes and of hemi-

spherical follicles attached to the sheaths where B-lymphocytes predominate. Both lymphocyte

types are attracted by compartment-specific resident connective tissue cells termed fibroblastic

reticulum cells (FRCs) in case of PALSs and follicular dendritic cells (FDCs) in case of follicles.

During B-cell immune reactions secondary follicles are formed, which comprise a germinal

center with proliferating antigen-stimulated B-lymphocytes and a surrounding mantle zone

formed by naive recirculating B-lymphocytes. An additional compartment is the marginal

zone (MZ), which surrounds both PALSs and follicles in rats and mice. The MZ is separated

from these compartments by a blood-filled cleft called the marginal sinus and by marginal

metallophilic macrophages (MMMs, [7,8]). The rat MZ is difficult to classify because it belongs

to the open circulation system and harbours a minor number of red blood cells, but at the

same time it is densely populated by MZ B-lymphocytes. Thus, it may be regarded as part of

the red pulp or of the white pulp. In rats and mice B-lymphocytes in the MZ are a heteroge-

neous population comprising memory B-cells [9,10], but also B-lymphocytes of an indepen-

dent MZ developmental pathway [11].

In adult human spleens T- and B-cell areas of the white pulp and also the MZ are arranged

differently from rats and mice [12–15]. In contrast to both rodent species, the PALSs are of

limited length and spherical follicles form the major compartment of the white pulp. Human

CD27+ memory B-cells [16] are only present at the surface of follicles and are absent from the

surface of the PALSs. A marginal sinus and MMMs are also lacking in humans. The human

MZ cannot be defined by B-cells, because CD27+ memory B cells both occur among the most

superficial FDCs in the follicular mantle zone and among marginal reticular cells (MRCs,

[15]). These cells form a third stromal cell type superficial to FRCs and FDCs. They have been

first described in mouse lymph nodes [17]. It is not clear, whether the superficial follicular

stromal cells in human spleens are totally identical to mouse MRCs. MRCs are the only organ-

specific cells defining a MZ-equivalent in the human spleen.

In previous publications we have analysed the composition of an additional species-specific

trait of human spleens, the capillary sheaths [18]. The most unusual cell type in these structures

are strongly CD271 positive (CD271++) capillary sheath cells. These cells represent the most

strongly CD271+ cell type in human spleens. CD271 is also present in FDCs, FRCs and with

less intensity in ubiquitous splenic fibroblasts [14]. It is highly likely that sheath cells represent

the only sessile cells in human capillary sheaths. They are surrounded by macrophages and

recirculating B-cells [18]. Capillary sheaths are absent in mouse or rat spleens. This is excep-

tional, because capillary sheaths or equivalent structures termed ellipsoids occur in most verte-

brate species.

The microvasculature of human spleens has been investigated in 3D before [1, 4, 19]. How-

ever, up to now the exact position of splenic capillaries in the white pulp has not been localised.

To obtain a more comprehensive overview of all capillaries in a human spleen, we now recon-

structed serial sections stained for CD34 alone and for CD34 followed by visualisation of

CD271. We describe three different interconnected capillary networks. In addition, we defini-

tively prove that humans do not exhibit a marginal sinus. The 3D models developed are quality
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controlled by direct comparison to the original immunostained serial sections in virtual reality

(VR).

2. Results

2.1 Stromal cells, B lymphocytes and microvessels at the surface of splenic

follicles

The distribution of CD34, CD271, CD27 and other moleculesin human spleens has already

been described by us in 2D [12–15, 20], but in the present study some additional details were

found. CD34 is present in endothelial cells of larger splenic arterial and venous vessels and in

capillaries. In addition, different types of fibroblasts located periarterially, within trabeculae

and in the splenic capsule are stained. Perifollicular sinus endothelia are also faintly positive,

while the majority of the splenic red pulp sinuses appear to be CD34 negative (Fig 1A, 1B, 1D,

1E, 1G and 1H, Fig 2A, 2B, 2D, 2E, 2G and 2H). Single round CD34+ cells are also present in

the red pulp, which may represent haematopoietic precursor cells in the open circulation.

When single sections or overlays were inspected in the present investigation, large parts of

the white pulp did not contain any CD34+ endothelial cells except in central arteries and their

branches (Fig 1A, 1B, 1D, 1E, 1G and 1H, Fig 3). Few single faintly CD34 positive cells were

seen in PALSs, which remain to be further analysed (Fig 1H, Fig 3). As described previously

[4, 20], there was a network of capillaries in the red pulp. Careful analysis of the follicular sur-

faces for CD34 revealed that a network of strongly positive capillaries was located inside a ring

of faintly stained larger sized sinuses (Fig 1A, 1B, 1D, 1E, 1G and 1H, Fig 3, Fig 4D). The indi-

vidual perifollicular capillaries appeared more irregular and the network exhibited a different

branching pattern than that found in red pulp capillaries (Fig 3). The perifollicular capillary

network appeared to give off branches to red pulp capillaries (Fig 4A), which could not be fol-

lowed further in single sections.

We first tried to localise the perifollicular CD34+ capillary endothelial cells in relation to the

different cell types described to occur at the surface of human splenic follicles. The network

was embedded in MRCs expressing MAdCAM-1, smooth muscle alpha-actin (SMA) and

CD141 (Fig 4A–4C). In the specimen investigated most of the perifollicular CD27+ B-lympho-

cytes were located centrally to the perifollicular capillary network with scattered faintly CD27+

B-cells occurring between the capillaries (Fig 4D).

CD271, the low affinity nerve growth factor receptor p75, is most strongly expressed in cap-

illary sheath cells of isoprismatic shape in the red pulp as well as in FDCs [14,18]. FRCs includ-

ing adventitial cells around central arteries are less strongly stained. Fibroblasts at the surfaces

of splenic trabeculae, but not in their interior, are also positive. In addition, there is a faintly

positive ubiquitous stromal cell population in red pulp cords (Fig 2A, 2D and 2G).

These stromal cells appeared to express more CD271 in the vicinity of the perifollicular cap-

illary network mentioned above (Fig 2A, 2B, 2D, 2E, 2G and 2H). The CD271+ fibroblasts sur-

rounding the perifollicular capillary network were sometimes as strongly stained as capillary

sheath cells, although they were morphologically different. Interestingly, there was a conspicu-

ous CD271- area at the follicular surface between the CD271+ FDCs and the CD271+ fibro-

blasts surrounding the capillary network (Fig 2A, 2D and 2G). This area continued around the

PALSs. The CD271- area around the follicles seemed to host those CD27+ memory B-cells (Fig

4D, [15]), which expressed CD27 most strongly. In addition, few scattered IgD++ cells, many

CD4+ T-cells (Fig 4E) and—in one specimen—also a few plasmablasts positive for Ki-67 and

intracellular IgM occurred in this location (Fig 4F). The CD271- area was primarily supported

by MAdCAM-1+ fibroblasts (Fig 4B; [14]) and might represent a special migration com-

partment. The innermost strongly CD27+ B-cells, however, clearly overlapped with typical
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Fig 1. Visualisation of perifollicular, red pulp and white pulp capillaries centered on three different follicles. (a,b,c) ROI 1 (a) first section stained for CD34,

(b) overlay of all 24 registered sections, (c) first frame of video showing a 3D model with four connections among perifollicular and red pulp capillaries

highlighted in different colours. (d,e,f) ROI 2 (d) first section stained for CD34, (e) overlay of all 24 registered sections, (f) first frame of video showing a 3D

model with one connection among perifollicular and red pulp capillaries highlighted in red colour. (g,h,i) ROI 3 (g) first section stained for CD34, (h) overlay of

all 24 registered sections, (i) first frame of video showing a 3D model with five connections among perifollicular and red pulp capillaries highlighted in different

colours. (g,h,i) show two follicles (f in h) and a part of a PALS (asterisk in h) in between. Internal capillaries arise from a central artery in the PALS. Staining of

red pulp sinuses has been reduced as documented in suppl. Fig 2 in c,f,i. CD34 is present in capillary endothelia, adventitial fibroblasts of arteries, perifollicular

sinus endothelia (weak) and in fibroblasts in trabeculae. All scale bars = 100 μm.

https://doi.org/10.1371/journal.pone.0191019.g001
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CD271+ mantle zone FDCs [14]. Thus, CD27+ B-cells were found in two different stromal

compartments defined either by FDCs or by MRCs at the follicular surface. This fact excludes

that CD27+ B-cells can be used for defining a MZ equivalent in human spleens.

Detailed inspection of the perifollicular capillaries revealed that some of them had open

ends (Fig 4C).

Fig 2. Visualisation of CD271+ sheaths around red pulp capillaries connected to the perifollicular network of the three follicles. (a,b,c)

ROI 1(a) first section stained for CD34 (brown) and for CD 271 (blue), (b) overlay of all 24 registered sections, (c) first frame of video of the 3D

model(d,e,f) ROI 2(d) first section stained for CD34 (brown) and for CD 271 (blue), (e) overlay of all 24 registered sections, (f) first frame of

video of the 3D model(g,h,i) ROI 3(g) first section stained for CD34 (brown) and for CD 271 (blue), (h) overlay of all 24 registered sections, (i)

first frame of video of the 3D modelCD271 is most strongly expressed in stromal capillary sheath cells. FDCs in follicles, FRCs in a PALS and

ubiquitous interstitial fibroblasts are also positive. Staining of red pulp sinuses for CD34 and of ubiquitous fibroblasts for CD271 has been

reduced by choosing an appropriate iso-value.(g), (h) and (i) show two follicles (f in h) and a part of a PALS in between. Internal capillaries

arise from a central artery in the PALS (asterisk in h).All scale bars = 100 μm.

https://doi.org/10.1371/journal.pone.0191019.g002

Capillary networks and follicular marginal zones in human spleens. 3D models from serial sections

PLOS ONE | https://doi.org/10.1371/journal.pone.0191019 February 8, 2018 5 / 21

https://doi.org/10.1371/journal.pone.0191019.g002
https://doi.org/10.1371/journal.pone.0191019


2.2 The perifollicular capillary network in 3D models

A 3D model of the perifollicular capillary network was constructed from 24 serial sections

taken from a typical adult spleen. Four regions of interest (ROIs) were chosen for a detailed

analysis (Fig 5). The serial sections were first stained for CD34 in brown colour. After scan-

ning, they were stained for CD271 in blue and photodocumented again. Thus, ROI 1–3 were

represented by a single-coloured and by a double-coloured data set. ROI 4 was only captured

in brown. Both data sets were visualised as sequences of sections (S1a,b, S2a,b, S3a,b Videos at

[https://doi.org/10.5281/zenodo.1039241]), overlays (Fig 1B, 1E and 1H; Fig 2B, 2E and 2H)

and as 3D models (S1c,d, S2c,d, S3c,d Videos at [https://doi.org/10.5281/zenodo.1039241]).

Fig 3. Visualisation of capillary networks centered on PALS and follicles. Distribution of CD34 in an overlay of 24 registered sections of ROI

4 showing a PALS (P) with a branching central artery and two sectioned follicles (f). There is a clear difference in the localisation of the

perifollicular capillary network (double arrows) and the perifollicular sinus network (arrows). Internal capillaries of the PALS appear to run in

the adventitia of the central artery forming vasa vasorum. Scale bar = 100 μm.

https://doi.org/10.1371/journal.pone.0191019.g003
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The single-coloured sets were used to visualise the perifollicular capillary network after opti-

mal exclusion of the weakly CD34+ perifollicular sinuses. Exclusion of sinus staining was man-

datory to find connections among the perifollicular and the red pulp capillary networks. Fig

Fig 4. Localisation of the perifollicular capillary network in relation to stromal cells, B memory cells and plasmablasts. (a)

Double staining for CD34 (brown) and SMA (blue) in a paraffin section. Strongly CD34+ capillary endothelia form a shell around the

follicle. Sinus endothelia are weakly stained. A capillary (arrow) in the outer MZ forms a connection to red pulp. Same individual as

Figs 1 and 2.(b) Double staining for CD271 (brown) and MAdCAM-1 (blue) in a cryosection. All FDCs are CD271+. MAdCAM-1+

perifollicular MRCs define the MZ and harbour capillaries surrounded by light brown fibroblasts. CD271+ capillary sheaths occur

superficially in the MZ. Same individual as Figs 1 and 2.(c) Double staining for CD34 (blue) and CD141 (red) in a paraffin section.

CD141 demonstrates venous sinuses in the red pulp and MRCs. Arrow indicates the open end of a perifollicular capillary. Same

individual as Figs 1 and 2.(d) Double staining for CD34 (black) and CD27 (brown) in a paraffin section. The CD34+ capillary network

is located in a superficial area of the follicle with scattered CD27+ B-cells. Double arrow shows perifollicular capillaries, arrow indicates

sinus. Same individual as Figs 1 and 2.(e) Double staining for CD4+ T-cells (brown) and CD271+ FDCs and fibroblasts (blue) in a

paraffin section. CD4+ T-cells originating from a PALS (upper part of image) occupy the CD271- area underlying the perifollicular

capillary network accompanied by CD271+ fibroblasts. Same individual as Figs 1 and 2.(f) Double staining for Ki-67 (blue) and

intracellular IgM (brown) in a paraffin section. A germinal centre is located in the lower right part of the image. IgM+ plasmablasts

with blue Ki-67+ nuclei (arrow) are located at the surface of the unstained follicle.Scale bar for all figures = 100 μm.

https://doi.org/10.1371/journal.pone.0191019.g004
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1C, 1F and 1I and Videos S1c-S3c at [https://doi.org/10.5281/zenodo.1039241] demonstrate

that the perifollicular capillary network is connected to the network of red pulp capillaries. The

connections highlighted represent an underestimation of their real number, because of the rig-

orous filtering methods to exclude sinuses. It is highly likely that this procedure interrupted a

large number of connections between perifollicular and red pulp capillaries.

Overlays of all sections (Fig 1B, 1E and 1H), sequences (S1a-S3a Videos at [https://doi.org/

10.5281/zenodo.1039241]) and 3D models (Fig 1C, 1F and 1I; S1c-S3c Videos at [https://doi.

org/10.5281/zenodo.1039241]) revealed astonishingly few capillaries inside the white pulp.

Thus, the perifollicular capillary network appears to be primarily fed by red pulp microvessels.

The follicles were located within their perifollicular capillaries similar to balls within basketball

nets. The capillaries were clearly distinguishable from perifollicular sinuses (Fig 3). They

appeared to continue at the surface of the PALSs, but this could not be investigated in detail

because of the limited number of serial sections.

2.3 Perifollicular capillary sheaths in 3D models

Staining for CD34 in brown with subsequent visualisation of CD271 in blue revealed the

arrangement of capillaries and capillary sheath cells in the surroundings of follicles. For 3D

Fig 5. Overview of the section stained for CD34 showing localisation of ROI 1–4. The length of the cut edges is about 1 cm.

https://doi.org/10.1371/journal.pone.0191019.g005
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reconstruction, the iso-values for mesh construction were chosen to eliminate the ubiquitous

light blue CD271+ fibroblasts in the red pulp, which would have obscured the model. Thus, we

accepted losing the majority of the CD271+ FDCs and all FRCs to improve visualisation of cap-

illary sheaths.

The frequency of capillary sheaths around follicles did not seem to differ from that in the

red pulp. Interestingly, some of the perifollicular capillaries that had been demonstrated to be

connected to the capillary network of the red pulp by single-staining for CD34 were shown to

be connected to capillaries bearing sheaths (Fig 1C versus Fig 2C). Capillary sheaths were elon-

gated and often branched structures of variable length. The CD271+ stromal sheath cells were

isoprismatic and resembled epithelia. Their unstained nuclei often left gaps inside the cells,

which sometimes provoked dissociation of sheaths during 3D reconstruction. The perifollicu-

lar capillary net was accompanied by branched CD271+ fibroblasts, which occasionally were so

strongly stained that they could not be eliminated from the 3D model shown in Fig 2C, 2F and

2I and in S1d-S3d Videos at [https://doi.org/10.5281/zenodo.1039241]. These cells were, how-

ever, morphologically different from typical sheath cells.

2.4 Internal capillaries in the white pulp in 3D models

In two single follicles investigated (Fig 1A–1F; Fig 2A–2F; S1a-c at [https://doi.org/10.5281/

zenodo.1039241], S2a-c Videos at [https://doi.org/10.5281/zenodo.1039241]) internal capillar-

ies were not observed in 24 serial sections. To further analyse this phenomenon, we chose two

additional regions, both containing two follicles and an associated PALS at low (Fig 1G–1I; Fig

2G–2I, S3a,c Videos at [https://doi.org/10.5281/zenodo.1039241]) and high magnification (Fig

3). In these regions it was evident that a few capillaries were present in the white pulp, which

arose from side branches of the central arteries. The capillaries ran alone and had an extremely

long and often rather straight course without branching. Some of these vessels appeared to

form vasa vasorum for the central artery. Other capillaries, however, randomly traversed the

white pulp without association with any histologically defined regions (Fig 1H and 1I; S3a,c

Videos at [https://doi.org/10.5281/zenodo.1039241]). Interestingly, several of the internal

white pulp capillaries seemed to end in the perifollicular capillary network (Fig 3).

3. Discussion

Our results show that three different but interconnected capillary networks occur in human

spleens, a red pulp network, a perifollicular network and an internal network in the white

pulp. It is likely that the perifollicular network is also present around the PALSs, but this was

not investigated in detail. The red pulp network contains sheathed capillaries some of which

are directly connected to perifollicular capillaries. We show that perifollicular capillaries form

part of the open splenic circulation, because unequivocal open ends are observed in single

sections.

We have chosen a sample of a representative adult spleen for investigation. Samples of

this spleen have been immunostained with a large number of antibodies directed against dif-

ferent T- and B-lymphocyte populations, macrophages and stromal cells in the past [12–14].

We consider the organ as representative, because the findings obtained with these antibodies

correspond to those seen in the majority of adult spleens with secondary follicles we have

investigated during the last two decades. Up to now about 80 spleens have been studied

altogether.

3D reconstruction is a tedious, time and data volume consuming process, which presently

precludes investigating a larger number of individuals. A single scanned section (of 24)

amounts to 2.4 GB in the original quality. Each single-stained ROI consisted of 4.1 x 108 voxels
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after inter-slice interpolation, a double-stained ROI amounted to 8.5 x 108 voxels. ROI 4 had

2.57 x 109 voxels. The size of the initial meshes after the marching cubes procedure ranged

from 345 to 1626 MB for brown staining. The total data of the 3D reconstruction project

reached 517 GB. Because of the sheer data volume, the specimen and the ROIs for 3D recon-

struction need to be very carefully selected.

Our investigation tries to solve the question whether there is an equivalent of the rodent

MZ and the marginal sinus in human spleens. The answer is complicated by the fact that the

MZ was first described in rats based on routine histology, which does not reveal all relevant

cell types. In rats, it was first detected that the MZ is populated by memory B-lymphocytes

[10]. In humans, the antigen most often used to detect memory B-lymphocytes is CD27,

although this antigen is not present in all memory B-cells [16]. CD27+ B-cells can only be visu-

alised after first staining T-cells, which also express this antigen [12,13]. Human CD27+ mem-

ory B-lymphocytes behave differently from rodent MZ B-cells. Most rat and mouse MZ B-cells

are located superficial to all parts of the white pulp, i.e. to follicles, PALSs and the marginal

sinus. The majority of human splenic CD27+ B-cells is, however, only found around follicles

and is situated below the perifollicular capillary network, i.e. located towards the interior of the

follicles. In apparent contrast to rodent MZ B-cells, human CD27+ B-cells appear in two differ-

ent stromal compartments, characterised by CD271+ FDCs and by MAdCAM-1+ MRCs.

Thus, the localisation of MZ B-cells appears to be species-specific. In rats and mice the MZ has

long been regarded as a "static" compartment [9]. In contrast, it has also been reported, that rat

and mouse MZ B-cells enter follicles in case of activation by LPS and other substances and per-

haps even in the steady state [21–26]. Interestingly, mAbs detecting rat MZ B-cells also react

with B-cells in follicles [27]. A final solution to this conundrum is still lacking.

3D reconstructions of serial sections have been attempted before [1,4,19,28,29]. Our regis-

tration method [30] is novel in the way it uses computer vision methods to better align the sec-

tions. In contrast, most other methods, such as Elastix [31], are image-based. Track-EM2 [32]

from Fiji [33] also targets serial sections. The inter-slice interpolation we use [34] is a dense

method. It utilises dense optical flow [35]. A sparse interpolation for electron microscopy has

been suggested before [36]. Recently, a VR visualisation tool was published for medical appli-

cations [37], but we used our own custom-written VR visualisation software.

The monoclonal antibodies (mAbs) used are not totally specific to single cell types. This

problem needed to be circumvented for 3D reconstruction. Thus, data processing of sections

single-stained for CD34 was optimised to visualise only capillary and large vessel endothelial

cells. We tried to eliminate the light brown staining of perifollicular sinuses by choosing an

appropriate iso-value (S2a-d Figure at [https://doi.org/10.5281/zenodo.1039241]). This

method inevitably led to the loss of connections among capillaries. The connections among

the perifollicular and the red pulp capillary networks shown in Fig 1C, 1F and 1I and Videos

S1c-3c at [https://doi.org/10.5281/zenodo.1039241] thus only represent examples of all con-

nections which were present. The reconstructions visualise qualitative, but not quantitative

facts. A similar condition also applies to the reconstructions of double-stained sections (Fig

2C, 2F and 2I; S1d-S3d Videos at [https://doi.org/10.5281/zenodo.1039241]), where the weakly

CD271+ ubiquitous fibroblasts of the red pulp were eliminated to permit better recognition of

capillary stromal sheath cells. This procedure was associated with the loss of a variably large

number of CD271+ FDCs in follicles (Fig 2C, 2F and 2I; S1d-S3d Videos at [https://doi.org/10.

5281/zenodo.1039241]).

Stringent quality control thus played a decisive role for interpretation of the 3D models. We

achieved this by using a VR headset to walk through the reconstruction and inspect it from the

interior and from all directions. VR permitted positioning each single registered section into

the model so that all 3D structures could be directly compared with the staining results by
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viewing either the model (or parts of it) or the section or both (S4 Video at [https://doi.org/10.

5281/zenodo.1039241]).

Up to now there is only one comparable investigation on the 3D structure of human spleen

microvessels [1]. These authors used 50 to 100 serial sections to reveal CD34 and thus they

were able to follow larger arterial vessels and their branches, which was not possible in our

study. Somewhat similar to our results, Kusumi et al. did not detect capillaries in the human

splenic white pulp and postulated that blood only comes from a superficial capillary plexus

supplied by arterioles from the red pulp. Our results indicate that central arteries may have

side branches supplying PALSs and follicles, but these vessels are astonishingly rare. We do

not agree with Kusumi et al. [1] with respect to the location of the perifollicular capillary net-

work as visualised in their schematic drawings. The authors postulate the existence of a MZ in

human spleens without defining this region and they suppose that the capillary plexus exists at

the inner border of the MZ. The analysis of cell phenotypes in our present and previous studies

does, however, indicate that the CD34+ perifollicular capillaries are located within the area of

MRCs located superficial to the majority of strongly CD27+ B-cells, i.e. they exist in the most

superficial part of the MZ.

The scarcity of capillaries in the human splenic white pulp and especially in the follicles,

may be related to the fact that adult human spleens are immunologically quiescent. Full-blown

germinal centres seldom occur in healthy adults. If germinal centres are detected, they are

rather small and non-polarised, although B-cell proliferation is still present (Fig 4F). Thus,

spleens should also be investigated in immune reactions to see whether new white pulp

capillaries appear on demand. However, the lack of internal capillaries may also be related to

the necessity of maintaining a gradient of blood-borne mediators across follicles and PALSs to

permit proper B-cell and T-cell recirculation. This may also be true for the access of antigen to

follicles. In addition, the fact that most of the capillaries at the surface of follicles are supplied

with blood from the red pulp might secure that the blood has previously passed sheathed

capillaries. The function of capillary sheaths in humans is unknown. Many human sheaths—

perhaps even all—are located in an immediate post-arteriolar position [15]. There are indica-

tions that immune complexes and carbon particles are retained in capillary sheaths termed

ellipsoids in birds and other animals [38–40]. Our previous results have shown that human

splenic capillary sheaths are composed of endothelia and pericytes, CXCL13+ stromal sheath

cells, macrophages and recirculating B-lymphocytes [15,18]. Thus, sheaths may hypothetically

extract large size antigens from the blood and participate in initial activation and guidance of

naive B-cells immigrating into the spleen.

In mice and rats the marginal sinus does not only form the inner border of the MZ to pro-

vide direct access of blood to the MZ, but cells in its inner wall also establish a size barrier for

substances approaching the white pulp from the open red pulp circulation [41]. Humans nei-

ther possess a marginal sinus nor marginal metallophilic macrophages. It is impossible to func-

tionally investigate whether a barrier restricting size, charge or other properties of blood-

borne substances also occurs in human spleens and which cell type is involved. The present

investigation suggests that the innermost SMA++ MRCs (Fig 4A) might cooperate with MRCs

of additional phenotypes to form a barrier between the open circulation of the red pulp and

the white pulp. These fibroblasts and the thick fibres they produce are sometimes visible in

conventional paraffin sections or in sections stained for CD27 (Fig 6A and 6B). They form the

only barrier-like structure that exists at the follicular surface. SMA+ fibroblasts also occur in

the inner wall of the marginal sinus in rats [42] and may also be responsible for establishing a

barrier around the white pulp in this species. In humans, CD27+ memory B-cells and other

lymphocytes may be easily able to cross such a barrier. Free erythrocytes are, however, only

present outside the innermost SMA++ fibroblasts. Erythrocytes stay in an area, which may be
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termed the "outer MZ", which also harbours the perifollicular capillary network with sur-

rounding weakly CD271+ fibroblasts. Switched IgM-IgD-CD27+ B-cells appear to also sojourn

in the outer MZ [14]. This distribution may correspond to the distinct recirculation behaviour

Fig 6. Localisation of a potential barrier towards the open splenic circulation at the follicular surface. (a)

Hemalum-Eosin-stained paraffin section of a typical secondary follicle in an adult human spleen. Arrow indicates a

layer of thick fibres and fibroblasts potentially forming a barrier against the open circulation. Same individual as Figs 1

and 2. (b) Double staining for CD3+ T-cells (blue-black) and CD27+ B-cells (brown) in a paraffin section. Arrow

indicates fibres and fibroblasts outside the most strongly CD27+ B-cells potentially forming a barrier against the open

circulation. Scale bars = 100 μm.

https://doi.org/10.1371/journal.pone.0191019.g006
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of non-switched and switched human memory B-cell populations noted by others [16]. Inter-

estingly, the region immediately inside the putative barrier is a CD271- region with strongly

CD27+ B-cells. It may be termed the "inner MZ". The characteristic feature of both MZ com-

partments is the presence of MAdCAM-1+ stromal cells.

3D visualisation of capillaries combined with immunohistological staining for different cell

types in 2D allows the following speculation: CD27+ B-cells in healthy adult humans enter the

follicular surface from the red pulp in close association with MAdCAM-1+ perifollicular stro-

mal cells by immigration from open-ended perifollicular capillaries or from the splenic cords.

CD27+ B-cells then probe the CD271+ FDCs in the follicular mantle zone and leave again in

direction to the red pulp if cognate antigen is not encountered. Probing may be especially

important for non-switched CD27+ B-cells. This scenario is derived from the findings that—in

contrast to IgD++ recirculating naive B-cells—CD27+ B-cells do not accumulate at any other

place in human spleens. Only CD27++ plasmablasts and plasma cells, but not CD27+ B-cells,

form groups of cells in the red pulp. CD27+ B-cells are also absent from capillary sheaths. Emi-

gration back to the circulation most probably leads recirculating cells into the perifollicular

sinuses. If the expression of CD34 in perifollicular sinuses is not a mere epiphenomenon,

it may somehow help CD27+ B-cells and other lymphocytes to re-locate into the venous

vasculature.

The most strongly stained CD27+ B-cells at the follicular surface are located in a ring-like

(2D) or shell-like (3D) region containing MAdCAM-1+ fibroblasts, but totally lacking any

expression of CD271 in paraffin and cryosections [14,15], (Fig 7). This region also harbours

CD4+ T-cells. In some spleens it is populated by a small number of Ki-67+cells containing

intracellular IgM and coexpressing Ki-67, i.e. by plasmablasts, which continue at the surface of

the PALS. These cells are supposed to be strongly CD27+ and may be partially responsible for

the variable expression strength of CD27 in the inner MZ. It is likely that the CD271- region

represents a migration compartment, which is passed by cells moving either in parallel (plas-

mablasts and CD4+ T-cells) or at a rectangular direction (CD27+ B-cells) to the surface of the

follicle. With exception of the innermost follicular CD27+ B-cells, MAdCAM-1+ fibroblasts

and CD27+ B-cells are always closely associated at the follicular surface. It cannot be entirely

excluded, that the expression of CD27 is upregulated in memory B-cells in the vicinity of folli-

cles. This might explain the reduced staining intensity in the most superficial CD27+ B-cells.

On the other hand, the cells may somehow be sorted for strength of CD27 expression by

MRCs and FDCs.

Our present and past investigations [14,15] clearly show, that the human splenic marginal

zone can only be defined by resident stromal cells, the MRCs. The most comprehensive pheno-

typical trait of human MRCs is the expression of MAdCAM-1, while SMA reveals a somewhat

smaller MRC population [14]. Unfortunately, up to now human MAdCAM-1 cannot be reli-

ably detected in paraffin sections, if cryostaining is used as a standard. Perifollicular MAd-

CAM-1+ fibroblasts have been found in each human spleen investigated so far, but these cells

were lacking in tonsils (S1 Figure at [https://doi.org/10.5281/zenodo.1039241]). This is aston-

ishing, because MAdCAM-1 is regarded as a typical adhesion molecule of mucosa-associated

lymphatic tissues. Theoretically, it should be abundant in tonsils and absent from spleens, but

in reality the reverse is true. Further antigens of MRCs, such as Notch ligands [43], remain to

be reliably detected by immunohistology in humans.

In comparison to rats and mice, the surface of splenic follicles has a more complicated

structure in humans, because an easily detectable barrier to the open splenic circulation is lack-

ing. Blood is primarily transported to the follicles by a superficial network of fine capillaries

located inside a network of large perifollicular/red pulp venous sinuses. This capillary network

is part of the open splenic circulation and is primarily connected to red pulp capillaries. It may
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form an equivalent of the rodent marginal sinus, but its microanatomical location is different.

If a size barrier for entry of blood-borne molecules into the white pulp exists in humans, it is

most probably located internal to the capillary network and associated with MAdCAM-1+

and/or SMA++ MRCs. CD27+ memory B-lymphocytes occur in two different stromal com-

partments at the surface of follicles, defined by MRCs or by FDCs. Thus, only the perifollicular

Fig 7. Schematic drawing visualising stromal cells, capillaries and the location of CD27+ B-lymphocytes at the surface of a secondary follicle in a human spleen.

SMA+MAdCAM-1+ MRCs are depicted in red colour, SMA-MAdCAM-1+ MRCs in violet and CD271+ FDCs in blue. The innermost FDCs (thick blue lines) belong to

the germinal centre. Perifollicular capillaries are black and the putative size barrier (formed by the red cells) is light brown. Gray background colour represents the area

with CD27+ memory B-cells and blue background shows the follicular mantle zone. Note that the gray area overlaps the outermost blue FDCs and thus the mantle zone.

There is no border between the mantle zone and the area of CD27+ B-cells. The follicle-associated T-cell area is not depicted.

https://doi.org/10.1371/journal.pone.0191019.g007
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spleen-specific stromal cells, but not B-lymphocytes, define the human splenic MZ. A refined

analysis of microvessels and stromal cells at the surface of mouse and rat splenic follicles is still

lacking. Such a study is likely to reveal more similarities to humans than so far recognized.

4. Materials and methods

4.1 Specimens

The spleen specimen used for 3D reconstructions came from a 22-year-old male patient. It was

fixed in 3,7% formaldehyde/tap water for 24 h, washed in tap water for 12h and processed to

paraffin via graded solutions of isopropanol and xylol. Double staining in single sections

involved this specimen and additionally a specimen of a 17-year-old male patient (Figs 4F and

6B). Both specimens were representative of a large number of adult spleens with small second-

ary follicles investigated during recent years. Human specimens were obtained before the year

2000. Acquisition conformed to the regulations of Marburg University Hospital at that time,

when a formal ethics vote was not required. Verbal informed consent that a sample of the

organ was to be used for basic anatomical research and was to be handed over to the first

author was obtained from the patient by the attending surgeon in the Department of General

Surgery of Marburg University Hospital. A hospital repository did and does not exist. The first

author did not know the patients nor any data except age, sex and the fact that the patients had

been healthy before splenectomy became necessary. Thus, the cause for splenectomy was

unknown.

4.2 Single staining for CD34 in serial sections

The sections were de-paraffinised and stained for CD34 applying mAb QBend10 (Dianova,

Hamburg, Germany No. DLN-09135) diluted 1: 1500 in PBS/1% BSA/0.1% NaN3 overnight

after treating the sections with glucose oxidase (GO, Sigma-Aldrich Chemie Gmbh, Munich,

Germany, No. G-6641) at 100 U/ml in PBS, pH 7.2, containing 20 mM beta-D-glucose and 2

mM NaN3) for 1 hr at 37˚ to remove endogenous peroxidase. Antigen retrieval was not per-

formed. Binding of the mAb was visualised using the Vectastain Elite Kit for peroxidase (VEP,

Vector Labs, Burlingame, USA, No. PK-6100) for mouse IgG (Vector Labs No. BA-9200) and

diaminobenzidine (DAB) as chromogen. The sections were coverslipped in Eukitt.

4.3 Double-staining for CD34 and CD271 in serial sections

After scanning, the coverslips were removed in xylol, the sections were autoclaved in citrate

buffer pH 6.0 and incubated with mAb EP1039Y (GeneTex No. GTX61425, via Biozol, Eching,

Germany) overnight to reveal CD271. EP1039Y was diluted 1:150 and revealed with VEP for

rabbit Ig G (Vector Labs, No. BA-1000). Bound antibody was revealed in blue using High Def

Blue Peroxidase (HDBP, Enzo Life Sciences, Lörrach, Germany). The sections were cover-

slipped in polyvinyl alcohol (Mowiol).

4.4 Double staining for additional antigens in single sections

Unless indicated otherwise, immunohistology was performed in paraffin sections fixed in

3,7% formaldehyde for 24 h. With exception of double staining for CD34/SMA, where anti-

gens were retrieved after visualisation of CD34, antigen retrieval was accomplished by

autoclaving the deparaffinised sections in citrate buffer at pH 6.0 before the first antibody

incubation. Endogenous peroxidase was always inactivated with glucose oxidase. Double stain-

ing for CD3 and CD27 was performed as described in [12]. Briefly, CD3 was revealed first

using an alkaline phosphatase (AP) system and NBT/BCIP as blue/black chromogen, followed
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by staining for CD27 in brown using DAB. Double staining for CD271 and MAdCAM-1 had

to be done in cryosections and has been described in [14]. Staining was first performed for

CD271 in brown using DAB as chromogen followed by revealing MAdCAM-1 by an AP sys-

tem and the Fast Blue chromogen. Double staining for CD34 and CD141 was performed

according to [4] by first detecting CD34 in blue and subsequently CD141 in red using an AP

system.

CD4 was detected by mAb 4B12 (DAKO, Hamburg, Germany, No. M7310) diluted 1:200

using VEP and DAB, followed by CD271 using mAb EP1039Y at 1:100 and the UltraVision

System (LabVision, Fremont, USA via Thermo Fisher Scientific, Schwerte, Germany, No. TL-

060-AL) for AP. AP was revealed by High Def Blue for AP (Enzo Life Sciences, Lörrach, Ger-

many). For visualisation of CD34 and SMA, mAb QBend10 (Dianova, Hamburg, Germany,

No. DLN-09135) was diluted 1:1500 and revealed with VEP (mouse) and DAB, followed by

mAb asm-1 (Progen, Heidelberg, Germany, No. 61001) at 1:200 and the same detection system

using HDBP as chromogen. For CD34 and CD27 mAb QBend10 was used at 1:1500 with VEP

(mouse) and HDBP followed by mAb 137B4 (Quartett, Berlin, Germany, No. 030410901) at 1:

20, VEP (mouse), tyramide amplification and DAB. Ki-67 was shown using mAb MIB-5

(kindly donated by J Gerdes, Borstel, Germany) at 1:100 with VEP (mouse) and HDBP, com-

bined with anti-IgM (DAKO, Hamburg, Germany, No. A425) diluted 1: 2000 for intracellular

staining of plasma cells and DAB. All double-stained sections were mounted in Mowiol.

4.5 Image acquisition and processing for 3D reconstruction

4.5.1 Image acquisition. The single-stained serial sections were acquired by VMscope

GmbH (Berlin, Germany) with a Zeiss Mirax scanning microscope and a x20 lens. Double-

stained ROIs of serial sections were acquired using a Canon 60D camera on a Zeiss Axiophot

microscope with a x10 lens. The same camera was also used for documentation of all double-

stained single sections.

4.5.2 General outline of processing. The acquired data were normalised [44,45] and reg-

istered [30]. We defined ROIs that were processed and visualised. We show the resized regis-

tered sections as sequences (S1a,b-S3a,b Videos at [https://doi.org/10.5281/zenodo.1039241])

and as overlays, i.e. frontal volume renderings (Fig 1B, 1E and 1H; Fig 2B, 2E and 2H). We

used inter-section interpolation [34] to reduce anisotropy. Colour processing reduced the data

to a single channel. In case of double staining, the colours were separated and processed indi-

vidually. We converted the volume data to a surface representation (a mesh) using the march-

ing cubes algorithm [46]. The version we used included a simultaneous simplification [47].

The mesh was corrected for minor inconsistencies [48] and smoothed [49]. We also removed

small unconnected components, typically those that were smaller than 2% of the main

diagonal.

Our registration [30] uses a sparse approach. This approach matches and transforms

detected image features instead of pixels and allows for processing of the whole sections [50].

Our registration features a non-rigid undistortion module to cope with individual distortions

of the sections during cutting. This undistortion does not rely on a reference section. The

module moves individual areas of the sections to minimise their distortion while maximising

the number of features matched across the whole series.

In detail, we overlay a control point grid over the image. The control points are then moved

driven by feature correspondence. The position of control points defines a spline-based undis-

tortion applied to the image. We at once compute all undistortions in the series. Our registra-

tion is a multi-resolution method. After the first undistortion, the number of control points is

doubled in each direction and the control points are moved again towards finer features,
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which results in a more refined correction of distortion. We typically use four iterations of our

non-linear undistortion process during registration.

The inter-section interpolation [34] uses optical flow [35] to reduce anisotropy. Basically,

further intermediate images are inserted between two sections. This provides for much

smoother reconstructions. Using this interpolation the z resolution was improved from 7 μm

to 1 μm.

We developed a special software for registration as well as for interpolation. Mesh genera-

tion was done with our own software for single staining data and with 3D Slicer (version 4.6.0,

[51]) for double staining. Volume filtering for double staining was performed with 3D Slicer.

We used Fiji (version 1.51n, [33]) for data conversion and for colour deconvolution. Mesh fil-

tering was performed with MeshLab (version 1.33, [52]). Rendering was done with Cinema

4D (version R14.0429, MAXON Computer GmbH, Friedrichsdorf, Germany). The results are

shown in Fig 1C, 1F and 1I and Fig 2C, 2F and 2I and in S1c,d-S3c,d Videos at [https://doi.

org/10.5281/zenodo.1039241]. The models were quality-controlled in VR with our own spe-

cially designed software (S4 Video at [https://doi.org/10.5281/zenodo.1039241]). Videos were

encoded with FFmpeg (version 3.2.2, https://ffmpeg.org).

4.5.3 Single staining. For single-stained sections, we converted the registered stack to

grayscale using Open CV [53]. The volume data were directly converted to a mesh without fur-

ther mesh processing. This eliminated theoretically possible artefacts. Thus, some connections

in the vasculature might have been lost, but artificial connections could be avoided during pro-

cessing. For ROI 1–3 the data had 1600x1600x24 voxels at 0.6 μm/pixel in the x/y plane and

7 μm/section in direction of the z axis. ROI 4 had 4000x4000x24 voxels at 0.3 μm/pixel in the

x/y plane and the same z resolution. The z resolution of all ROIs was increased afterwards to

1 μm/pixel by interpolation. Interpolation and mesh construction operated on grayscale

images. The iso-value for ROI 1 and 2 was 119. An iso-value of 110 was used for ROI 3. The

iso-value of 119 was initially optimised for best removal of weakly CD34-positive perifollicular

sinuses (S2 Figure at [https://doi.org/10.5281/zenodo.1039241]). However, this value led to a

lot of artefacts in ROI 3.

This problem may be due to slightly variable staining intensities of capillaries in different

follicles caused by subtle variations in the qualitiy of fixation. Fixation may be better at the sur-

face of the specimen and slightly reduced deeper inside the tissue.

4.5.4 Double staining. 3D reconstruction of double-stained sections required the separa-

tion of both staining colours and hence further processing. The brown staining of CD34 was

separated as the black (K) channel of the image stack in the CMYK colour space. In our experi-

ence, this yielded best and most straightforward results compared to colour deconvolution.

However, we had to use colour deconvolution [54,55] for the blue staining of CD271. It was not

possible to obtain a reliable separation of the blue chromogen with simple colour space conver-

sions, as was the case with the brown chromogen. Optical flow interpolation was performed

after colour deconvolution. Before colour deconvolution, we removed background in Fiji [33].

Each channel had 2300x2300x24 voxels at 0.416 μm/pixel in the x/y plane and 7 μm/section

in the z plane before interpolation. We interpolated to 1 μm/pixel in direction of the z axis,

similar to other data sets.

The interpolated volume data were further processed before mesh construction. For the

brown stain, we applied a grayscale closing filter with radius 7–7–3 and Gaussian blur with

sigma = 1. This ensured smoother surfaces. For the blue stain, we changed the radius of the

closing filter to 11–11–4. Otherwise, the processing was the same as for the brown stain.

After mesh construction for both brown and blue stains, we applied the same mesh process-

ing steps as outlined above. An exception was the size of removed components for the blue

stain, which was 10% of the main diagonal of the mesh. This action radically removed small
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unconnected structures in the reconstructions, while allowing us to maintain the sensitivity of

a relatively low iso-value. The removal of small components was justified, as our objects of

interest, the capillary sheaths, are rather large objects. Apart from capillary sheaths the most

striking features of double staining for CD271 were FDCs in the follicles. The capillary sheath

cells formed large connected structures in the reconstructions, which—in contrast to FDCs—

were unaffected by the removal of small components. We also removed unconnected compo-

nents smaller than 5% of the main diagonal for brown staining of ROI 1.

We typically used an iso-value of 80 for the construction of meshes from the volume data of

both blue and brown stains. For the brown stain in ROI 1 we used a value of 130. The range of

values in both cases is 0–255, as we used 8 bit per channel.

4.5.5 Visualisation and quality control. The final meshes were rendered using Cinema

4D software. Minor processing improved the rendering of cut surfaces. We highlighted micro-

vessels connecting the perifollicular capillary network with red pulp capillaries.Quality control

of our reconstructions was performed using a custom-written VR tool. Hardware used for

quality control included a HTC Vive headset and a PC with NVidia GTX 1070 graphics pro-

cessing unit. Our tool allowed an intuitive inspection of the reconstructed meshes. It was also

possible to visualise the image of the original registered section at the correct position in the

reconstruction. This allowed us to inspect suspicious and/or interesting areas of the meshes

with immediate reference to the original immunohistological staining (S4 Video at [https://

doi.org/10.5281/zenodo.1039241]).
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