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Promising Advances for Imaging Lung Macrophage Recruitment

Pulmonary hypertension (PH) contributes significantly to
morbidity and mortality and has no curative therapies. Patients
with World Health Organization group I pulmonary arterial
hypertension (PAH) have improved survival as a result of targeted

treatments, but 5-year survival remains low at 57% to 61%
(1, 2), with a significant proportion ultimately requiring lung
transplantation (3–5). Inflammation is being increasingly
recognized as an important contributor to PAH development
and progression (6). Therapies that reduce lung macrophage
recruitment also reduce PH in animal models, further
demonstrating the relevance of macrophages in PAH pathogenesis
(7). Therefore, noninvasive biomarkers of lung macrophage
recruitment and activity could help demonstrate the efficacy of
macrophage-targeted therapies as well as enable investigations to
understand how macrophages contribute to PAH development.
Such biomarkers would also be applicable more broadly in multiple
different lung diseases, including chronic obstructive pulmonary
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disease, idiopathic pulmonary fibrosis, and lung transplant
rejection, among others.

Imaging is an attractive platform for developing macrophage
biomarkers. Positron emission tomography (PET) is particularly
attractive because it is inherently quantitative. Nearly any
biological product or chemical entity can be transformed into a
PET tracer by radiolabeling with a positron emitter, providing
great flexibility in interrogating molecular targets. Administered
in very small amounts (nanogram mass amounts or less), PET
tracers in general have a large safety margin. Recent advances in
PET scanner hardware, including digital PET scanners and total
body scanners that are long enough to image the entire body from
head to toe within minutes, will provide improved sensitivity and
spatial resolution that can enable improved characterization of
novel PET tracers in the lungs in humans (8, 9). Together, these
features and advancements make PET ideally suited for
interrogating any number of molecular targets, including
tracking macrophages. As such, a number of PET tracers have
been developed for imaging targets enriched in or specific for
monocytes and macrophages in the lungs, including the
translocator protein (10), cysteine cathepsins (11), and
chemokine receptor 2 (12).

In this issue of the Journal, Park and colleagues (pp. 95–106)
describe a tracer, 68Ga-NOTA-mannosylated serum albumin
(68Ga-NOTA-MSA), for PET imaging of a marker of M2
polarized macrophages, the mannose receptor (13). The authors
demonstrated the potential utility of this imaging approach in a
preclinical model of PH and in a small proof-of-concept study in
humans. For this evaluation, the authors first verified increased
transcription of macrophage activation factors in the established
monocrotaline rat model of PH at the same time points evaluated
by imaging. They then demonstrated that 68Ga-NOTA-MSA lung
uptake in this model correlated highly with the degree of
macrophage infiltration. This uptake was partially blockable with
mannan, suggesting that the lung uptake was due to specific
binding.

The authors further demonstrated in a small proof-of-concept
study that 68Ga-NOTA-MSA lung uptake was increased in five
patients with group I PAH but not in healthy control subjects or
in an additional five patients with World Health Organization
Group II left heart disease–related PH. These exciting preliminary
results suggest the potential utility of 68Ga-NOTA-MSA to
detect macrophages associated with PAH. Although macrophage
recruitment is less well studied in group II PH, macrophages
have been demonstrated to drive PH development in the context of
heart disease (7). Therefore, these results suggest the possibility
of differences in macrophage phenotypes in these two PH
populations that warrants further investigation.

Common factors that can confound the interpretation of lung
PET tracer uptake as specific include the high relative fractional
blood volume in the lungs and alterations in blood flow. The
large blood volume in the lungs can result in a large contribution to
lung activity from tracer in the blood, making it difficult to
measure changes in uptake due to the targeted process. Changes in
blood flow can also affect the amount of tracer delivered or cleared
over time. In PAH, however, these variables are less likely to
confound the interpretation of increased lung tracer uptake as
specific. In this study, 68Ga-NOTA-MSA uptake correlated
highly with macrophage recruitment and increasing arterial

hypertrophy, the latter of which would lead to lower blood volumes
and thus a lower contribution from blood to the total measured
lung activity. Inflammation tends to increase blood flow, at least
initially, in many models. However, again because of the
progressive arterial hypertrophy in this model, increased
pulmonary blood flow is not the most likely explanation for the
increased lung uptake of 68Ga-NOTA-MSA at these time points.
Decreases in blood flow due to progressive vascular proliferation
could also lead to nonspecific retention of the tracer as a result of
delayed tracer clearance, which may explain the residual uptake
seen after administering mannan. Independently measuring the
effects of blood flow and blood volume on delivery and retention
of 68Ga-NOTA-MSA in the lungs would provide additional
supportive data demonstrating the specificity of this tracer for
imaging mannose receptor–expressing macrophages in this model.
Similarly, in the patient study, the 68Ga-NOTA-MSA lung uptake
seen in the patients with group I PAH was less likely to be
confounded by blood activity, as Vcs are reduced in these
patients (14).

In conclusion, this study presents promising initial data
demonstrating that 68Ga-NOTA-MSA may be a useful marker of M2
polarized macrophages in PAH. Further investigations to validate the
lung uptake of this tracer as a marker of M2 macrophages in patients
with PAH and other relevant diseases are warranted. n
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