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Abstract

Introduction: Masking level differences (MLDs) are differences in the hearing threshold for the detection of a signal
presented in a noise background, where either the phase of the signal or noise is reversed between ears. We use N0/Np to
denote noise presented in-phase/out-of-phase between ears and S0/Sp to denote a 500 Hz sine wave signal as in/out-of-
phase. Signal detection level for the noise/signal combinations N0Sp and NpS0 is typically 10–20 dB better than for N0S0. All
combinations have the same spectrum, level, and duration of both the signal and the noise.

Methods: Ten participants (5 female), age: 22–43, with N0Sp-N0S0 MLDs greater than 10 dB, were imaged using a sparse
BOLD fMRI sequence, with a 9 second gap (1 second quiet preceding stimuli). Band-pass (400–600 Hz) noise and an
enveloped signal (.25 second tone burst, 50% duty-cycle) were used to create the stimuli. Brain maps of statistically
significant regions were formed from a second-level analysis using SPM5.

Results: The contrast NpS0- N0Sp had significant regions of activation in the right pulvinar, corpus callosum, and insula
bilaterally. The left inferior frontal gyrus had significant activation for contrasts N0Sp-N0S0 and NpS0-N0S0. The contrast
N0S0-N0Sp revealed a region in the right insula, and the contrast N0S0-NpS0 had a region of significance in the left insula.

Conclusion: Our results extend the view that the thalamus acts as a gating mechanism to enable dichotic listening, and
suggest that MLD processing is accomplished through thalamic communication with the insula, which communicate across
the corpus callosum to either enhance or diminish the binaural signal (depending on the MLD condition). The audibility
improvement of the signal with both MLD conditions is likely reflected by activation in the left inferior frontal gyrus, a late
stage in the what/where model of auditory processing.
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Introduction

The brain takes advantage of phase differences of binaural

auditory stimuli to improve listening ability. An example is that a

signal presented within a noise background can have greater than

a 10 dB lower (better) detection threshold if it is presented out-of-

phase rather than in-phase between ears, when the noise is

interaurally in phase. The difference between these signal

detection thresholds is known as a masking level difference

(MLD). The contrasted stimuli used to determine MLDs can be

identical in terms of intensity level, spectrum, and duration, yet the

audibility of the signal is very different. The full neural network

specific to the processing of binaural MLD stimuli is not well

understood, nor has it been extensively investigated using

functional imaging. We therefore utilize functional magnetic

resonance imaging (fMRI), to localize neural regions involved in

MLD processing.

Licklider (1948) [1], by altering the phase of speech presented in

a noise background, found intelligibility highest with noise in-

phase between ears, and the speech 180u (p radians) out-of-phase

between ears. Hirsh (1948) [2] showed a detection advantage for a

tone presented binaurally in background noise if the tone source

was 180u out-of-phase between the two ears, compared to when

both channels of the tone were in-phase. Following Hirsh’s work,

psychoacoustic studies were performed to characterize the

influence of the frequency of the signal, the bandwidth of the

noise, and the phase and level differences between ears in affecting

the magnitude of the MLD [2–14]. In an experiment that

increased the masker from 5 to 65 dB SPL (sound pressure level),

the MLD increased from 3.5 to roughly 15 dB [15]. The

magnitude of the MLD has been found to decrease as the center

frequency of the masker (signal frequency) increased [14], and

increase with a decrease in the bandwidth of the masker. There is
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an increase in the magnitude of the MLD with an increase in the

duration of the signal up to approximately 500 ms [3,4,16].

Interaural phase and time delay differences of the noise and signal

have also been investigated. The best detection (lowest signal

threshold level) occurred when either the signal or noise was 180u
out-of-phase [5,17].

We denote stimuli presented in-phase between ears with a 0,

and p (radians) if presented out-of-phase. Both N0Sp (noise in-

phase, signal out-of-phase) and NpS0 (noise out-of-phase, signal

in-phase) have a signal detection advantage compared to N0S0

(noise in-phase, signal in-phase). The MLD is the difference in

the participant’s signal intensity threshold between MLD

conditions, N0Sp or NpS0, and the control condition N0S0.

The MLD found with the N0Sp-N0S0 comparison is typically

larger (on the order of 2 dB) than NpS0-N0S0 comparison.

Both are typically over 10 dB, and in individual cases can be

greater than 20 dB [18,19].

It is reasonable to expect auditory regions such as the inferior

colliculus (IC) and auditory cortex (AC) to play an important role

in the neural processing of MLD stimuli, and these regions have

been investigated in animals. A series of studies by Jiang et al.

[20,21] and Palmer et al. [22] showed differences in neuron firing

rates in the IC of the guinea pig related to S0 and Sp, whereas the

condition Np created little if any response, likely due to the de-

synchronization of the stimuli. A study by Guo and Burkard [23]

showed an increased near-field response in the auditory cortex

(AC) of the chinchilla for MLD conditions compared to the control

condition.

Human studies using electroencephalogram (EEG) recordings

have indicated a cortical rather than brainstem MLD response.

For example, Fowler and Mikami [24] showed that the slow vertex

component P2 thresholds for signal detection in both N0Sp and

N0S0 conditions increased linearly with increasing noise level.

N0Sp increased with a smaller (better detection) slope than N0S0,

consistent with the findings that the MLD increases for higher

overall intensity levels. In a follow up study [25], Fowler and

Mikami were unable to show an MLD in the middle latency

response (MLR); the MLR is thought to arise from midbrain,

thalamic and cortical regions of the auditory nervous system [26].

Wong and Stapells [27] used an amplitude-modulated signal

component to evoke an auditory steady state response (ASSR), and

found an MLD for the 7 and 13 Hz modulations rates for N0Sp-

N0S0, but not for NpS0-N0S0. Neither showed a difference at

80 Hz rates. Ishida and Stapells [28] were unable to find an MLD

for the 40-Hz ASSR. These ASSR findings parallel the previous

studies, if one accepts the view that ASSR modulation frequencies

(.70–80) Hz result from superimposed brainstem response, those

near 40 Hz reflect superimposed midbrain, thalamic and early

cortical responses, and those of very low frequencies (,20 Hz)

represent superimposed cortical responses.

Animal-based studies have investigated specific sites such as the

IC and AC, whereas human-based psychoacoustic or evoked

potential studies are less localizing. Dichotic listening studies,

which use language-based tokens and require a participant to

attend to a target in either ear, suggest a high level involvement

(that includes the thalamus) may be required for processing the

MLD. These studies often find a right ear advantage (REA) in

attending to stimuli in the right ear, when competing tokens are

presented in the left ear, as opposed to vice versa. Kimura

proposed a model explaining REA, which included a right to left

hemisphere crossing of auditory (speech) information [29].

Perceptually, differences in MLD conditions can be quite large,

although acoustically the different MLD conditions are very close

to each other, and typically only differ in the phase between ears of

the noise or signal. Using these stimuli in an imaging study would

allow the isolation and focus on the small differences between

conditions.

Positron Emission Tomography (PET) and functional Mag-

netic Resonance Imaging (fMRI) imaging have been used to

locate neural regions associated with auditory tasks, by

comparing sequential image intensity values in relationship with

changes in an auditory condition. In the case of H2015 PET the

changes in image intensity values are related to regional

cerebral blood flow, in the case of BOLD fMRI the changes

are due to changes in the oxygenation of the hemoglobin.

Herein, we use the term ‘‘activation’’ to refer to a neural region

which has statistically significant differences in image values for

one condition versus another. Dichotic listening using conso-

nant-vowel and musical-instrument stimuli together with the

effect of attention was investigated by Hugdahl et al. [30–31]

using 15O PET, which measured changes in oxygen utilization.

This was followed by fMRI work which typically used dichotic

word or syllable stimuli [32–38]. Budd et al. [39] used dichotic

noise stimuli with varying levels of interaural correlation. Chait

et al. [40] used MEG to study Huggins pitch (a dichotic pitch

paradigm) and iterated ripple noise (a diotic pitch paradigm).

Hall and Plack [41,42] and Barker et al. [43] used fMRI to

study these same stimuli and found activations in the auditory

cortex. Puschmann et al. [44] used tones in noise (NpS0),

Huggins pitch, binaural band pitch and Np noise, and also

found pitch related activations in the auditory cortex. Ernst et

al. [45] found regions that were mainly sensitive to the signal to

noise ratio within and adjacent to lateral Heschl’s gryrus. A

follow up study found regions in the auditory cortex related to

co-modulation masking release [46].

In the present exploratory investigation, we postulate that

listeners will have a regionally different neural activation in

response to the MLD-dichotic conditions (e.g., N0Sp) than to the

MLD-reference (e.g., N0S0) conditions. Specifically, we will

compare a listener’s BOLD level response to each of the MLD

dichotic conditions: NpS0, N0Sp, N0SL (noise in-phase, signal left

ear only), and N0SR (noise in-phase, signal right ear only), to the

BOLD level response while listening to the MLD reference

condition N0S0 (i.e. NpS0 vs. N0S0, N0Sp vs. N0S0, etc.).

Because the present study is intended to be exploratory, we

hypothesize, for the purposes of our analysis, that any brain voxel

could show activation differences between MLD conditions.

However, based on related MLD animal studies, we expect

differences to be in more rostral regions of the central auditory

nervous system, including the IC and AC. Furthermore, we

conjecture there will be cortical differences in a listener’s BOLD

response between the MLD dichotic conditions NpS0 and N0Sp
based on the commonly observed behavioral and EEG differences

observed [27] between these MLD conditions.

Methods

Participants
The study protocol was approved by the University at Buffalo,

Health Science IRB; all participants gave their informed written

consent prior to auditory screening. Participants had to meet the

following criteria: be between the ages of 18 and 45 years; be right-

handed; have pure tone hearing thresholds of 25 dB HL or better

for frequencies 250 Hz - 8000 Hz for each ear; and have a N0Sp -

N0S0 MLD of 10 dB or greater. Participants underwent screening

and MLD threshold testing in a sound booth within a week prior

to MRI testing.

Functional Anatomy of the Masking Level Difference
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Auditory Testing
Signal threshold testing was performed in a sound booth for

conditions: N0S0, N0Sp, NpS0, N0SL, and N0SR. Threshold

determination used a forced-choice design with three one-second

length noise segments which were separated by.5 seconds and

presented at 75 dB SPL. Participants had to determine which

segment also included an enveloped 500 Hz tone as the signal.

Testing started with a signal level of 85 dB SPL. This signal level

stayed the same until the participant was able to correctly identify

the signal two times in a row, or was unable to correctly identify

the signal once. If the participant was unable to detect the signal,

the signal level increased; if the participant was able to detect the

signal in two successive trials at the same signal level, the signal

level decreased. Seven direction changes were used. Step sizes

between level changes were 8, 4, 4, 4, 2, 2, 2 dB. The average of

the last two reversals was used as the threshold. MLDs were

calculated by subtracting N0S0 threshold from the thresholds

found for: N0Sp, NpS0, N0SL, and N0SR. Participants addition-

ally underwent a forced choice signal lateralization test, and

identified randomly presented 1 second segments of N0SL, N0S0,

or N0SR, as "Signal Left", " Signal Both", or "Signal Right" for 30

presentations. The tone signal was presented 3 dB above the

participant’s N0S0 signal threshold.

Stimuli Construction
Conditions were created by summing together noise and signal

segments using MATLAB (Natick, MA). The signal was a 500 Hz

sine signal, presented in bursts lasting 250 ms with a 25 ms rise and

fall time, presented every 500 ms. The noise for the presentations

was created by sampling a very long duration of noise (approx. 10

minutes) created and filtered using a 400–600 Hz band-pass, equi-

ripple finite impulse response (FIR) filter, with order 1064, having

50 dB attenuation +2 100 Hz, designed with the Filter Design and

Analysis Tool in Matlab. The program used calibration values of

noise and signal intensity as a program parameter. Calibration

measurements were made using a Larson Davis System 824, with

acoustic coupler AEC101 IEC 318 (LD-SLM) of individual noise

and signal segments. The signal and noise were summed together

by randomly choosing a point in the band-passed noise segment,

and searching forward for 2 ms (one cycle of the signal) to

determine the starting point that would give the highest correlation

between the noise and signal. After selecting a starting point, one

second each of noise and signal were summed together for the

sound booth stimuli, and eight-second segments were summed

together for the scanner stimuli. The noise used a.1 second ramp

filter at the start and end of each stimulus.

Acoustic Calibration
MRI-compatible headphones from Resonance Technologies,

Inc. (Northridge, CA) were tested and levels calibrated using the

LD-SLM. Signal phase between ears was checked using a single

cycle sine wave as input to the headphones and was measured

through the LD-SLM with an oscilloscope (Tektronix

TDS3012). Based on our findings, the stimuli were corrected

in software to compensate for reversal of phase (180u) by the

headphones. The scanner headphone acoustic output was

evaluated with a Stanford Research System Model SR785,

Dynamic Signal Analyzer (DSA), to determine the frequency

response to the noise and signal. In response to the 400–600 Hz

band-pass noise, resonances in the acoustic system showed a

maximum peak in the 600–700 Hz range. For this reason, a

shortened version of the MLD testing was also performed with

the scanner headphones to ensure that subjects had an MLD

response with scanner headphones. The pure tone signal

response of the headphones was also measured with the DSA,

and didn’t reveal any problems. Prior to each scanning session,

presentation levels were verified using a Radio Shack model 33–

2055 sound level meter, which was mounted to a fabricated

coupler. Sennheiser 280 Pro headphones were used for the

screening, and underwent similar testing and calibration.

Correct phase of signal was observed between ears, as was a

steep drop off below 400 Hz and above 600 Hz for the noise.

Scanner Room MLD Testing
MLD threshold testing in the scanner room using scanner

headphones followed the same procedure used in the screening

(described above), but used only five direction changes, and only

two conditions: N0S0 and N0Sp. This testing was used only for

assessment of MLD effect size in the scanner environment. Signal

level for fMRI presentation was determined separately using

longer length segments such that participants could barely identify

that the signal was present for the N0S0 condition, but could not

identify if the signal was present 2 dB lower. This signal level was

fixed for all stimulus conditions.

Scanner Conditions
Scanner conditions were "NoStim" (No Stimuli), N0, Np, S0,

Sp, N0S0, N0Sp, NpS0, N0SL, and N0SR. Each presentation

lasted for eight seconds. Presentations followed one second of

quiet, which was inserted to prevent an adaptation effect between

scanner coil noise and stimuli. The scanner TA (acquisition time)

was 3 seconds, resulting in 12 seconds between the start of

consecutive conditions. Four sessions were collected for each

subject. Each session presented each of the 10 conditions six times.

The conditions were presented in randomly-chosen permutations

with the provision that neighboring permutation end and start

conditions could not be the same. Prior to each session,

participants were instructed to "listen for the signal". After each

session, participants were asked whether they were still comfort-

able. Each session included three frames prior to the stimuli

presentation, which were discarded.

Scanning Parameters
MR Imaging was performed using a GE 3T Signa Excite HD

12.0 Twin Speed 8-channel scanner (General Electric, GE,

Milwaukee, WI) with a maximum slew rate of 150 mT/m/ms

and maximum gradient amplitude in each orthogonal plane of

50 mT/m (zoom mode). An 8-channel head coil (In Vivo

Corporation, Orlando, FL) was used for all acquisitions. A high-

resolution 3D fast spoiled gradient echo (FSPGR) scan was

collected at a voxel size of 16161 mm (acquisition matrix of

2566256, FOV 25.6 cm). 174 locations per slab were acquired,

1 mm thick, ensuring whole brain coverage. Echo/repetition time

for the 3D FSPGR scan were TE/TR = 4.1/9.1 ms, flip

angle = 20, 1 average, and bandwidth 19.23 kHz (150 Hz/px).

2D sparse functional imaging was performed with a TE = 35 ms.

and group delay = 9 seconds, which provided nine seconds of

‘‘quiet’’, during which the stimuli was presented, followed by

TA = 3 seconds during which the fMRI planes were actively

acquired [47,48]. 27 slices 4 mm thick were acquired with no gap,

using a 1286128 acquisition matrix, and FOV = 24.0 cm, for an

in-plane resolution of 1.9 mm61.9 mm.

Processing
Dicom image files were converted to NIfTI format using

dcm2nii (MRIcron; http://www.sph.sc.edu/comd/rorden/

mricron/). Realignment and co-registration of functional images

Functional Anatomy of the Masking Level Difference
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to the participants T1 weighted image was performed using SPM5

(http://www.fil.ion.ucl.ac.uk/spm). Segmentation was performed

on the participant’s T1 image, which provided spatial normaliza-

tion parameters for transforming the co-registered functional

images into the coordinate system of the provided SPM templates.

Scans were smoothed using an 86868 mm Gaussian kernel. After

using SPM5 to create the general linear model including all

conditions for each session, SPMd [49] was used to identify

outlying scans. Next, a first -level SPM analysis was then

performed for each subject which included all four sessions, but

excluded scans identified by SPMd as having greater than 30 times

the median number of outlier voxels, or which had more than

1 mm total motion from the previous scan. The first-level analysis

provides separate images showing activation for each individual

for each contrast. A second-level analysis was then performed

using the contrast images produced for each individual in order to

make statistical parametric maps.

Results

Five female and five male participants were recruited. All met

the inclusion criteria described above for the study. Male and

female participants matched in age within 2 years and ranged in

age from 23 to 43 years; the mean female and males ages were

29.2 and 29.8 years, respectively. After each scan session, all

participants were alert when spoken with, and reported being

comfortable. Each participant completed the full scanning session.

Auditory Testing Results
Mean threshold values for N0S0, N0Sp, NpS0, N0SL, and

N0SR measured during the auditory testing performed in the

sound booth were 68.6, 54.2, 56.4 59.0, and 59.0 dB SPL,

respectively. Hence, the mean MLD for N0Sp –N0S0 and NpS0–

N0S0 were 14.4 and 12.2 dB, respectively. Mean MLDs for N0SL

and N0SR were both 9.6 dB, but participants had up to an 8 dB

imbalance between these two conditions. The N0SR-N0S0 MLD

for participant 4 was zero. The mean N0Sp - N0S0 MLD

measured using scanner headphones was 11.4 dB, with minimum

and maximum values of 4 and 16 dB. Individual MLD thresholds

are given in Table 1, a comparison of the MLD thresholds

measured in the soundbooth and scanner room is given in Table 2.

For the lateralization testing, four participants had a 90%

success rate or better, and three participants had a 30% success

rate or worse (i.e. less than expected by chance). However, in less

than 4% of responses did participants mistake the signal presented

to the left as right, or vice versa. Since the signal was presented at 3

dB above the N0S0 threshold, it was on average ,13 dB above the

thresholds for N0SL and N0SR. Individual lateralization results

are provided in Table 3.

MRI Results
In Table 4 we describe all second-level analyses that meet the

strict criterion of significance p,.05 correcting for family-wise

error (FWE), and regions that meet a weaker "trending" criterion

of p,.1, FWE, which for comparison was roughly equivalent to

p,.00001 uncorrected, for voxel-wise comparisons.

MLD: N0Sp vs. N0S0
Second-level random effects analysis revealed a small region

reaching voxel-wise significance in the left inferior frontal gyrus

(LIFG) for the contrast N0Sp - N0S0. The opposite contrast N0S0 -

Table 1. Thresholds (measured in dB SPL) for detection of 500 Hz sinusoid signal in 75 dB SPL, 400–600 Hz band-pass noise, with
all measurements made in the sound booth.

Participant Gender Age N0S0 (Ref) N0Sp (MLD) NpS0 (MLD) N0SL (MLD) N0SR (MLD)

1 M 31 67 55 (12) 55 (12) 57 (10) 57 (10)

2 M 27 63 49 (14) 55 (8) 59 (4) 59 (4)

3 F 43 67 55 (12) 55 (12) 57 (10) 61 (6)

4 F 26 65 55 (10) 55 (10) 59 (6) 65 (0)

5 F 30 73 61 (12) 59 (14) 59 (14) 65 (8)

6 M 25 67 53 (14) 55 (12) 59 (8) 57 (10)

7 F 24 77 53 (24) 57 (20) 59 (18) 57 (20)

8 M 25 71 57 (14) 61 (10) 61 (10) 57 (14)

9 M 41 65 51 (14) 53 (12) 59 (6) 51 (14)

10 F 23 71 53 (18) 59 (12) 61 (10) 61 (10)

Mean 27 68.6 54.2 (14.4) 56.4 (12.2) 59.0 (9.6) 59.0 (9.6)

doi:10.1371/journal.pone.0041263.t001

Table 2. A comparison between MLD condition
measurements (in dB SPL) made in the sound booth and
scanner room of the thresholds for detection of 500 Hz
sinusoid signal in 75 dB SPL, 400–600 Hz band-pass noise.

Subject N0S0 N0Sp
Scanner
MLD

Sound Booth
MLD

1 63 55 8 12

2 67 53 14 14

3 63 55 8 12

4 61 57 4 10

5 73 57 16 12

6 65 53 12 14

7 67 51 16 24

8 71 59 12 14

9 65 53 12 14

10 67 55 12 18

66.2 54.8 11.4 14.4

doi:10.1371/journal.pone.0041263.t002

Functional Anatomy of the Masking Level Difference
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N0Sp showed a 1608 mm3 region of significant activation, located

in and around the right insula.

MLD: NpS0 vs. N0S0
Second-level analysis did not reveal any regions reaching

significance using FWE correction for the contrast NpS0– N0S0.

The maximum occurred within the LIFG, p,.0001, uncorrected,

which we include in our discussion because of its similar location

to the N0Sp –N0S0 activation. Likewise the opposite contrast,

N0S0-NpS0, did not reveal any significant or trending regions.

The largest threshold region was located in left insula and planum

polare (p = .167, FWE, cluster-wise).

N0Sp vs. NpS0
The contrast NpS0 - N0Sp had a widely-distributed set of

regions which reached significance: left insula, right superior

frontal gyrus, a region on the right side of the corpus callosum, and

the right pulvinar thalami; three of these regions had significance

p,.01, FWE, cluster-wise. Additionally, the right insula met our

weaker cluster significance threshold of p,.1, FWE. Statistical

parametric maps showing the (group) activation in the corpus

callosum and pulvinar thalamus are shown in Figures 1 and 2.

There were no regions which reached or approached significance

for the contrast N0Sp - NpS0.

Lateralization
SPM results for conditions involving N0SR and N0SL did not

exhibit clear patterns. The contrasts N0SL vs. N0S0, N0SR vs.

N0S0, and N0SL vs. N0SR had no regions of activation. The most

notable results arose from the contrast N0SR – N0Sp, which

showed large activations in and around the left and right caudate

nucleus. Individual participant results for contrasts involving

N0SL and N0SR vs. N0S0 appeared inconsistent. We believe

this might be due to differences in subjects’ lateralization ability.

To test this belief, an analysis using a participant’s overall

lateralization success (percentage correct) as a covariate was

attempted, as was limiting the analysis to only participants who

performed well on the lateralization task. The results of both post-

hoc analyses did not reach significance, and likely suffered from

limited power.

Other
We also present comparisons between three noise-with-signal

conditions versus the corresponding noise-only conditions: N0S0

vs. N0, N0Sp vs. N0, and NpS0 vs. Np. We found no activations

between N0S0 and N0, in either direction. The opposite contrast,

N0-N0Sp, yielded two regions: one in the post-central gyrus that

reached significance, and the other in the right STG that

approached significance. The contrast NpS0-Np revealed two

regions that approached or reached significance: LIFG (similar in

location to the contrasts NpS0-N0S0 and N0Sp –N0S0), and right

pulvinar thalamus. There were no activations for the opposite

contrast, Np -NpS0.

We hypothesized, but did not observe, activation in the primary

auditory cortex with the N0Sp – N0S0 contrast. In Figure 3, we

show the number of participants that presented increased

activation in the R. STG (SPM T .1.0), as well as the number

of participants showing decreased activation (SPM T ,1.0). The

cross hairs mark a location in the right STG where three

participants exhibited an increase, three a decrease, and four had

no change for the contrast N0Sp – N0S0. For the N0Sp-NoStim

contrast, a search of voxels with p,.01 (uncorrected) reveals a

cluster of 3012 mm3 in the left STG, which is cluster-wise

significant, p = .035, FWE. There was a cluster located in the right

STG, which did not reach significance with peak spm t value

= 5.5 and extent size of 1620 mm3. For the contrast N0S0–

NoStim there was a cluster with extent size 1207 mm3 and peak

spm t = 5.19 in the left STG, and a cluster with extent size

1187 mm3 with peak spm t = 5.44 in the right STG, however

neither cluster was statistically significant accounting for FWE. As

a check of the processing, the contrasts S0– NoStim was examined

for all subjects using a height threshold of p = .01, uncorrected. All

but two subjects had a peak spm t value .3 located in both the left

and right STG, with peak spm t = 11.5. While no regions were

significant for the second level analysis, there was a cluster of size

1100 mm3 with peak spm t = 5.8 located in the left STG, and a

cluster with extent size 2185 mm3 and peak spm t = 8.12 located

in the right STG, using a height threshold of p,.01, uncorrected.

Hence for our tested Stim vs NoStim contrasts, we consistently

observed clusters of voxels with moderately high spm t values

Table 3. Individual volunteer’s confusion matrices for
identifying whether the signal was presented to the ‘‘Left’’,
‘‘Both’’, or ‘‘Right’’ ear(s).

Participant
No.

Lateralization
% Correct Response Presentation

Left Both Right

1 90.0% Left 4 2 0

Both 0 10 1

Right 0 0 13

2 23.3% Left 0 2 2

Both 3 6 12

Right 1 3 1

3 93.3% Left 6 0 0

Both 0 12 1

Right 0 1 10

4 26.7% Left 4 1 3

Both 1 3 5

Right 0 12 1

5 40.0% Left 3 5 2

Both 1 3 5

Right 1 4 6

6 63.3% Left 1 0 1

Both 3 10 2

Right 0 5 8

7 76.7% Left 4 2 0

Both 1 9 1

Right 0 4 9

8 30.0% Left 6 10 1

Both 4 1 6

Right 0 0 2

9 93.3% Left 6 0 0

Both 0 12 0

Right 0 2 10

10 90.0% Left 5 1 0

Both 0 12 0

Right 0 2 10

doi:10.1371/journal.pone.0041263.t003
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located in the STG, as would be expected in response to auditory

stimuli.

Discussion

Our study used functional imaging to search nearly the entire

brain for neural correlates to the MLD. We did not find support

for our hypothesis of activation associated with MLD (compari-

sons: NpS0 vs. N0S0, N0Sp vs. N0S0, N0SL vs. N0S0 and N0SR

vs. N0SR) in more rostral regions of the central auditory nervous

system, such as the IC and AC, which was based on animal model

work [20–23]. We do not rule out the involvement of these

regions, but speculate that the functional anatomical variability of

the AC prevented detection using voxel-wise statistics family-wise

error corrected across the whole brain. However, our results do

indicate clear neural correlates of the MLD in the insula, pulvinar

thalamus, and corpus callosum. We interpret this activation

pattern as consistent with the Kimura model for REA for speech

processing [29], and syllable-based dichotic-listening studies [36–

38,50–54].

The main assumptions of Kimura’s model are: 1) auditory

information is principally processed in the temporal lobe

contralateral to the ear of presentation; 2) the left hemisphere is

more specialized for language/speech processing than the right (in

particular for right-handed participants); 3) there is a decussation

of auditory information from the right hemisphere across the

corpus callosum to the left hemisphere (which is specialized for the

processing of speech stimuli) for further processing; and 4) the

ipsilateral pathway can be suppressed by the contralateral pathway

[29,55].

Assumption 1 is firmly established in the literature [56], but is

not addressed by our data, as all of our conditions (except the

NoStim condition) are presented to both ears. Assumption 2 is

supported by our data, as there was a significant cluster for the

contrast N0Sp -NoStim with extent size 3012 mm3 which reached

significance within the left STG, whereas a cluster about half the

size located in the right STG did not reach significance. The

activation in the LIFG for the MLD contrasts: N0Sp - N0S0,

NpS0– N0S0, and NpS0-Np also fits with the left lateralization

proposed by the ‘‘what’’ portion of the ‘‘what’’/‘‘where’’ model

[57–60], which postulates that the neural processing of informa-

tion will follow different pathways, depending on whether it is

being processed based on recognition or localization. While the

Kimura model is for speech, and we used tonal (500 Hz) stimuli, it

is not unreasonable to expect a left-hemisphere dominant

response, since the stimuli were not continuous but presented in

short 250 ms enveloped bursts every half second. The left AC has

been shown to respond well to temporal changes [55], as would be

required in the tracking of formants. We did not find significant

regional activation in the right STG, for any of the contrasts using

the ‘‘NoStim" condition or any other evidence to argue for right

hemisphere dominance.

Activation of the corpus callosum for the contrast (NpS0–

N0Sp) gives evidence of inter-hemispheric communication (part of

Table 4. Table of SPM activations for study contrasts.

Contrast MNI Coor. Location Label Size Cluster P, FWE Voxel P, FWE

x,y,z mm mm3

N0Sp-N0S0 252, 30, 10 LIFG 170 0.737 0.017

N0S0-N0Sp 33,27, 20 R. Insula 1608 ,0.001 0.757

NpS0-N0Sp 234, 27, 21 L. Insula 2919 ,0.001 0.809

31, 222, 21 R. Insula 433 0.091 1.000

10, 69, 14 Superior
Frontal Gyrus

513 0.047 0.676

14, 27, 10 Genu Corpus
Callosum

566 0.031 0.999

10, 13, 16 Corpus Callosum 1476 ,0.001 0.386

26, 224, 22 R. Pulvinar Thalami 2241 ,0.001 0.201

N0Sp – N0SL 28, 282, 215 Declive 101 0.955 0.051

N0SR-N0Sp 222, 23, 23 Left Caudate Nucleus 3618 ,0.001 0.754

27, 26, 18 Right caudate Nucleus 5835 ,0.001 0.826

18, 214, 37 Right Cingulate Gyrus 536 0.027 0.351

N0-N0Sp 50, 11, 14 Post. Central Gyrus 551 0.041 1.000

63, 253, 13 R. STG 465 0.081 0.836

NpS0-Np 247, 31, 23 LIFG 932 0.056 0.988

24, 232, 9 R. Pulvinar Thalami 575 0.025 0.999

N0-Np 242, 60, 44 Left Angular Gyrus 627 0.023 0.919

51, 259, 34 Right Angular Gyrus 861 0.004 0.982

4, 234, 31 Right Cingular Gyrus 1012 0.002 0.817

10, 257, 26 Right Posterior Cingulate 456 0.084 0.813

7, 43, 25 Right Medial Frontal Gyrus 1239 ,0.001 0.982

54, 24, 8 Right Inferior Frontal Gyrus 852 0.005 0.955

For each region of activation; the values from SPM are reported, together with the best representative anatomical label.
doi:10.1371/journal.pone.0041263.t004
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assumption 3 of the Kimura model). While less common, corpus

callosum activation has been previously observed, including in

studies that involved stimulation requiring high inter-hemispheric

communication [61–63]. We were careful to guard against

artifacts, and we believe this white matter activation to reflect a

true processing path. The two contrasted conditions are similar

perceptually compared to the other stimuli, and we did not

observe any relative motion of the subjects between conditions.

While we employed standard SPM realignment methods, we also

eliminated scans that had more than 1 mm total motion from the

previous scan. The conditions were presented in an order

determined by random permutations, and hence all conditions

were balanced in being presented both early and late in the

presentation sequence. The contrasts in this study were all

‘‘within’’ subject, hence we do not expect an artifact due to

spatial normalization differences, such as could be found if

comparing between groups. Finally, we used SPMd to eliminate

scans that had the possibility of being a transient, which was a

cautionary step most others do not take, likely because of the

increased difficulty of performing the analysis.

We note that differences between our MLD conditions NpS0

and N0Sp imply an underlying activation difference between at

least one of the conditions and the control condition, N0S0. The

noise portion of the stimuli has a wider bandwidth and a

(generally) higher overall SPL than the sine-wave portion.

Accordingly, we speculate that metabolic differences in processing

Figure 1. Two separate activation regions are seen within the corpus callosum for the group comparison using the 2nd level
contrast NpS0 - N0Sp, threshold p,.001, uncorrected for family-wise error (FWE). Because the activation maps have been smoothed at
86868 mm FWHM, there may appear to be an overlap of the activation with the ventricle seen on the high resolution T1 image, which we did not
attempt to mask. The statistics for this cluster is an indication that there exists at least one point of activation within the cluster with true significance
(p,.01, FWE, cluster-wise for the larger region, Table 4). Obviously, the true source of activation would be in the tissue region, as the region of
significance would likely be near voxels with the highest t-scores, which are located within the corpus callosum. The large activation seen in the L.
insula is also cluster-wise significant (p,.01). All conditions were presented using random permutation ordering to prevent possible cyclic responses
or habituation effects being mix with the contrast of conditions. Furthermore, SPMd was used to prevent any possible influence of outliers or motion.
doi:10.1371/journal.pone.0041263.g001

Figure 2. Activation seen in the right pulvinar thalamus for the
group comparison 2nd level contrast NpS0 - N0Sp, threshold
p,.001, uncorrected for FWE.
doi:10.1371/journal.pone.0041263.g002
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are largely influenced by changes in the noise component of our

stimuli. We conjecture that information of the noise signal for

NpS0 crosses the corpus callosum, going from right to left

hemisphere. We believe this ipsilateral (double crossing) noise

signal may combine with the matching contralateral signal in the

left insula, with a net suppression effect. Plausible evidence

supporting this belief is seen by the activity decrease in the left

insula for NpS0 compared to N0S0.

In contrast, we conjecture that the noise portion of N0Sp is

suppressed earlier in the processing chain, perhaps in the right

insula or pulvinar thalamus, which would support the reduced

activity seen in the corpus callosum (contrast: NpS0– N0Sp), and

the large decrease in activation (1500 mm3) in the right insula

(contrast: N0S0 - N0Sp). Furthermore, we believe that the

resulting combination of the noise signal with the ipsilateral

auditory signal in the left insula is reduced as a result of the

diminished inter-hemispheric transfer. Diagrams of our hypothe-

sized release from masking models for the MLD conditions NpS0

and N0Sp are shown in Figure 4 and 5. While dichotic listening is

generally believed to involve the transfer of auditory information

across the corpus callosum, studies which have examined the

effects of surgical sectioning of the corpus callosum indicate that

primary auditory pathways are more towards the caudal end than

the activation we found [64–66] This could indicate that the

contrast reflects a decrease in activity for the N0S0 condition. This

is consistent with previous findings, where one subject [64] had an

improved score for a left ear attention after the anterior sectioning

of the corpus callosum. If nothing else, the contrast difference

between NpS0– N0Sp, shows that all dichotic stimuli are not

treated similarly. The surgical studies used dichotic speech pairs

(numbers or constant vowels). We suspect that auditory signals

cross in the caudal portion of the corpus callosum, but the differences

between conditions were not great enough to be observed. Again,

white matter activation is rare, and the reason we found a

difference may only be because we are observing both a slight

increase and decrease compared to the control condition N0S0.

Assumption 4 of Kimura’s model states that the ipsilateral

pathway is suppressed; which has empirical support from the study

by Pollmann et al. [50], who found that patients with lesions in the

posterior part of the corpus callosum showed a nearly 100% REA.

Our data is not inconsistent with this, but neither does it support

this element of the model.

Dichotic Listening
The thalamus has been proposed as a gating system for

speech (and possibly other stimuli) to be sent to more rostral

brain regions [67,68], based on dichotic-listening experiments

with patients undergoing stereothalamotomy. A dichotic-listen-

ing study by Fitch et al. [69] found that lesions in the posterior

thalamus inhibited the processing of auditory stimuli, including

attending to stimuli presented to a particular ear. If the pulvinar

thalamus is acting as a gating mechanism in our study, we

propose that it is triggered when the signal is present in the

stimuli. The right pulvinar was observed as part of the large

activation pattern for the contrast NpS0 - N0Sp (Table 4 and

Figure 1). The results also revealed activation in the pulvinar

thalamus for the contrast NpS0– Np (p = .025, FWE, cluster-

wise), which gives another example of its responsiveness to the

presence of the signal in background noise. As a final example,

if the signal is removed from the contrast of MLD conditions

NpS0-N0Sp (which had strong activations), the resulting

contrast, Np-N0, has no regions with significant activation.

The reverse contrast, N0-Np, yielded a very different activation

pattern, with significant activation found in the left and right

Figure 3. Left image: T1 image showing R STG. Middle image: subjects with a decrease in activation for N0Sp – N0S0. Right image: Image of
number of participants with an increase in activation for N0Sp – N0S0.
doi:10.1371/journal.pone.0041263.g003

Figure 4. Diagram showing theorized release from masking
processing paths for NpS0. When the noise portion of the stimuli
from the left ear arrives in the left hemisphere after crossing the corpus
callosum, the subsequent combined noise component after mixing
with matching but opposite-phase noise from the right ear is
suppressed, because the combining signals lack coincidence.
doi:10.1371/journal.pone.0041263.g004
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angular gyrus, right cingular gyrus, right posterior cingulate,

right medial gyrus, and right inferior frontal gyrus.

Lateralization
Our study’s focus was on finding neural correlates associated

with the MLDs, and we have reported on the primary focus of the

study. In addition to the MLD conditions N0Sp and NpS0, we

used the MLD conditions N0SL and N0SR. These conditions

have an interesting place in the hierarchy of the MLD conditions,

since starting from the N0SL or N0SR condition, the addition of

the signal in-phase to the opposite ear becomes N0S0, or becomes

N0Sp if the added signal is p radians out-of-phase. Based on pilot

testing, we believed that participants would be able to distinguish

between the signal being presented to the left, right or both ears,

amid the noise background.

Lateralization testing with MLDs is not normally performed,

and has only infrequently been reported in the literature [70].

The results of the lateralization testing, which was only

performed during the screening session (in the soundbooth)

were very mixed, with four participants performing very well,

and three very poorly (slightly less than expected by chance).

Yet, overall, in less than 4% of responses did participants

mistake the signal presented to the left as right, or vice versa.

The signal was presented at 3 dB above the N0S0 threshold,

and was on average ,13 dB above the thresholds for N0SL

and N0SR. The thresholds for N0SL and N0SR were also

mixed. For example, one subject’s MLD for N0SR was 0 dB.

By basing the signal level on the N0S0 condition, we effectively

made the lateralization harder on those who may have had a

more effective strategy for N0S0 signal detection. The

remainder of MLD behavioral testing was unremarkable. For

example, we observed N0Sp was roughly 2 dB better than

NpS0 [14], which was roughly 2.5 dB better than N0SL or

N0SR. Based on the lateralization results, we will assume that

at least some of the participants were unable to lateralize the

location of the signal while in the scanner. The perceptual

difference for a signal presented in-phase and out-of-phase

diminishes at levels above threshold [71], therefore we did not

consider a higher signal level.

Lack of a strong finding in our hypothesized regions of AC

and IC has some support from previous studies. We believe our

results to be consistent with a study by Hall and Plack [41,42],

which used dichotic stimuli to investigate Huggins pitch, where

the perception of pitch was created by linearly changing the

phase between ears through 1 cycle of a small band centered

around 200 Hz of broadband noise. In their study, Huggins

pitch was contrasted against a ‘‘just-noise’’ condition, whereas

we contrasted our MLD conditions against N0S0, which has a

detectable pitch due to the presence of the (audible) in-phase

500 Hz stimulus. As both MLD and non-MLD conditions had

a detectable tonal stimulus in our study, we expect our ‘pitch’

vs. control contrast to be smaller than that found by Hall and

Plack. In a study using 16 participants, Hall and Plack had

comparisons between pitch and noise that did not identify a

single pitch center common to all listeners [41] (pg. 579).

However, as an indication of the between-subject anatomical

variability of the auditory cortex, they were able to find regions

sensitive to pitch stimuli in most subjects, but in slightly varying

locations. Hence, our lack of finding any MLD-related

activation in the AC is not surprising. In our study we had

fewer subjects, and we limited ourselves to FWE statistics

corrected for the whole brain as a search region. The advantage

of our approach is that we were able to find regions we didn’t

originally specify (e.g. pulvinar thalamus); our disadvantage is

that our analysis methods are less sensitive than studies that

limit their search to the auditory cortex.

The MLD conditions, when compared to the no stimulus

condition (N0S0 - NoStim and N0Sp - NoStim), only showed one

cluster which was significant, which was located in the left STG for

contrast N0Sp – NoStim. However, for both contrasts, there were

clusters in both the left and right STG with peak spm t value

greater than 5 and size greater 1100 mm3, when using a height

threshold of p = .01, uncorrected. Examination of individual

results for contrast S0– NoStim showed that there was large

variability in responses between individuals ranging from two

subjects having only a weak activation in either the left or right

STG to one subject that had peak t values greater than 11

(bilaterally). We believe that the weakness of these contrasts is

likely the result of anatomical variability. Also, given that our

instructions to the subject was to ‘‘listen for the signal’’, different

subjects may have treated the absence of stimuli ambiguously [72].

We’ll note that we consider our true control condition for the

study to be N0S0, and that the ‘‘NoStim’’ condition was intended

primarily to test the processing path. We believe that our finding

for N0S0– NoStim in which the signal portion (S0) is barely

audible, is similar to that by Hart et al. [73], who on a larger data

set (12 participants versus our study’s 10 participants, 28

repetitions vs. our study’s 24, and using a presentation level of

90 dB SPL compared to our presentation level of 75 dB SPL),

reported no activation for stationary unmodulated (i.e. constant)

tones.

Our study compared conditions that were the same in intensity,

spectrum, and duration, and we expected neural activation

differences because of the perceptual differences. Yet the

conditions used in the contrasts with the two largest activation

patterns, NpS0 - N0Sp and N0 - Np, are close enough that

perceptually they may be hard for some to distinguish, in the same

way that some may not recognize stereo speakers or headphones

as being wired out of phase. Our rationale for comparing NpS0

and N0Sp was based on the findings of Wong and Stapells [27],

who found an auditory steady state response MLD for modulation

Figure 5. Diagram showing theorized release from masking
processing paths for N0Sp. When (if) the noise signal from the left
ear arrives in the left hemisphere, after crossing the corpus callosum, it
has already been greatly suppressed. The site of the original
suppression could be at the right pulvinar thalamus or insula of the
right hemisphere.
doi:10.1371/journal.pone.0041263.g005
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frequencies of 7 or 13 Hz for the N0Sp versus N0S0 comparison,

but not for the NpS0 vs. N0S0 contrast. That we find greater

activation for NpS0 than N0Sp, yet the auditory evoked response

MLD was seen only for N0Sp, could be due to the auditory evoked

response being sensitive to the signal portion of the stimulus (i.e.,

phase locked to the envelope of the signal), while the fMRI finding

was driven by the noise portion of the stimulus, as we previously

argued.

Strengths and Weaknesses
Our design approach was purposely broad (using 10 conditions)

and exploratory in nature. Utilizing fMRI, we were able to search

nearly the entire brain for activation patterns in response to MLD

conditions. The benefit of our broad approach was that we

achieved strong and interesting results outside of our stated study

hypothesis, while within our SPM analysis hypotheses. We opted

against the use of a button press for monitoring a participant’s

attention in order to avoid potential conflicting neural activations;

participants were instead instructed to listen for the signal. We

believe this approach was sufficient for our set of attentive and

well-intentioned participants. The participants, as observed

through conversation with the scanners communication system,

remained alert throughout the study. SPMd was used as a final

guard to identify and eliminate scans which may have been

influenced by system transients or brief, unexpected participant

behavior or focus.

A sparse MRI sequence allowed the stimuli to be presented

during periods of relative quiet, and provided a better environ-

ment for listening for the modulated signal in the noise. We

included a one second gap of ‘no stimulus’ between the end of the

scanner data collection and the presentation to preserve a clear

and consistent onset of the stimulus, and to prevent an auditory

adaptation effect [74,75] from the scanner noise. Since the band-

passed noise component of the stimuli and 500 Hz tone are

correlated, we went through the additional step of searching

through 2 ms of the noise, to find the noise starting position that

gave the maximum correlation, for a consistent presentation

strategy [76]. The N0S0 threshold with the scanner headphones in

the scanner room was approximately 2 dB better (lower) than in

the sound booth. The lower threshold is likely related to a peak in

the noise spectrum above 600 Hz for the scanner headphone,

which implies a lower overall noise level near 500 Hz for the

scanner vs. sound booth headphones. Also, this indicates that the

use of a sound booth isn’t critical, likely due to the 75 dB SPL

background noise masking much of the environmental back-

ground noise.

Our study enrolled 10 participants, and was limited by

resources. This allowed sufficient power for our primary hypoth-

esizes and contrasts, as many of our reported regions had p,.01,

FWE, cluster-wise. Our analysis of a hypothesized region in

auditory cortex showed that some participants had increased

activations while some others had decreased activations. We

believe this indicates that a moderate increase in the number of

participants would not have appreciably improved our findings for

our hypotheses. However, while we approached the analysis

globally, a regionally-specific analysis of the auditory cortex (which

also accounted for anatomical variability of the auditory cortex)

may have been able to find significance. While we are satisfied

with not using a button press for our main hypothesizes, we

recommend that future work, if it focuses on lateralization, include

a button press.

Conclusions
Our findings reveal a network of neural correlates associated

with the MLD (that are outside of the previous focus of MLD

research) which involves the pulvinar thalamus, the insulae, and a

neural process that crosses the corpus callosum. These findings, in

particular the involvement of the pulvinar thalamus, fit with the

dichotic listening research, and are congruent with the proposed

model of Kimura.
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