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Abstract: Numerous inhibitors of tyrosine-protein kinase
KIT, a receptor tyrosine kinase, have been explored as a
viable therapy for the treatment of gastrointestinal stromal
tumor (GIST). However, drug resistance due to acquired
mutations in KIT makes these drugs almost useless. The
present study was designed to screen the novel inhibitors
against the activity of the KIT mutants through pharmaco-
phore modeling and molecular docking. The best two phar-
macophore models were established using the KIT mutants’
crystal complexes and were used to screen the new com-
pounds with possible KIT inhibitory activity against both
activation loop and ATP-binding mutants. As a result, two
compounds were identified as potential candidates from the
virtual screening, which satisfied the potential binding cap-
abilities, molecular modeling characteristics, and predicted
absorption, distribution, metabolism, excretion, toxicity
(ADMET) properties. Further molecular docking simula-
tions showed that two compounds made strong hydrogen
bond interaction with different KIT mutant proteins. Our
results indicated that pharmacophore models based on
the receptor–ligand complex had excellent ability to
screen KIT inhibitors, and two compounds may have
the potential to develop further as the future KIT inhibi-
tors for GIST treatment.
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1 Introduction

Gastrointestinal stromal tumor (GIST) is the most common
mesenchymal tumor in the gastrointestinal tract. Appro-
ximately 85–90% of GISTs are found to harbor activating
mutations of KIT or platelet-derived growth factor receptor
(PDGFR) [1,2]. These primary activating mutations in GIST
generally occur in either KIT juxtamembrane domain (exon
11) or extracellular domain (exon 9) and rarely in the cyto-
plasmic ATP-binding pocket (exon 13/14) or activation loop
(A-loop; exon 17) [3–5].

Imatinib, as a first-line therapy drug for GIST patients,
has favorable effects for about 86% of KIT primary muta-
tions (Figure S1) [6,7]. However, more than a half of
imatinib-treated patients present drug resistance due to
the acquired secondary KIT mutations within 2 years [8].
The majority of KIT secondary mutations affects the cyto-
plasmic ATP-binding pocket (exon 13/14) or A-loop (exon
17) [9]. Sunitinib, an approved second-line therapy drug
for imatinib-resistant GIST patients, potently inhibits
KIT of ATP-binding pocket mutants to overcome some
imatinib-resistant mutants [10]. Unfortunately, sunitinib
is ineffective against KIT of A-loop mutants, which
accounts for about 50% of imatinib-resistance mutations
[6], while ponatinib has been shown to inhibit the var-
iants of KIT through inhibiting exon 11 primary mutants
and secondary mutants of the A-loop [11]. Thus, the
development of new drugs is needed to overcome resis-
tance mutations in KIT, in particular those in ATP-binding
mutants and the A-loop.

Pharmacophore model describes the spatial arrange-
ment between a small active compound and a target pro-
tein. It can be used for virtual screening to select novel
compounds that match the specified structural require-
ments of the binding site. The pharmacophore model is
generally generated by ligand-based and structure-based
methods. In the present study, we approach structure-
based pharmacophore modeling, since the crystal struc-
ture of KIT protein has been released [12].

In the pursuit of overcoming resistance mutations in
KIT, we developed two novel pharmacophore models
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using the structure-based method. Subsequently, two
models were created using the known KIT inhibitors to
screen for new compounds that possessed KIT inhibitory
activity against both A-loop and ATP-binding pocket
mutants. The new compounds were subjected to filter
by ADME properties. Molecular docking of the protein–
ligand complexes was employed to analyze and evaluate
the affinity of the complexes, for revealing the response of
protein to the binding of ligands at the atomic level.

2 Materials and methods

2.1 Dataset preparation

We selected 20 structurally diverse compounds with the
reported inhibitory activity values from the literature
[13–18]. The compound selection in training set was
deeply considered based on the 3D quantitative struc-
ture–activity relationship generation. The respective 2D
structure of the compounds with their different activity
data used in the training set and test set was represented
in the supporting information (Figures S2 and S3). The
dataset was used for the pharmacophore validation.

2.2 Pharmacophore models’ generation

The pharmacophore models based on the receptor–ligand
complex were built using the complex based pharmaco-
phore (CBP) algorithm of BIOVIA Discovery Studio 2016
(DS 3.0) from two crystal structures of KIT protein. The
X-ray crystal structure of complex KIT with inhibitors
(PDB ID: 3G0E [7], 4U0I [11]) obtained from the RCSB
Protein Data Bank (www.rcsb.org) [19]. The small mole-
cule inhibitors, sunitinib (PDB ID: 3G0E) and ponatinib
(PDB ID: 4U0I), were removed from the complexes and
moved to a new window as active ligands in building
the pharmacophore models. The KIT protein preparation
was carried out by removing the water molecules, adding
the atoms for optimizing the side-chain conformation of
amino acid residues and modeling the missing loop using
protein prepare of DS 3.0. Following the aforementioned
steps of preparation, the protein was subjected to energy
minimization by applying CHARMm minimization. Sub-
sequently, KIT–sunitinib (PDB ID: 3G0E) and KIT–ponatinib
(PDB ID: 4U0I), two protein complexes were submitted to
the “Receptor–Ligand Pharmacophore Generation module”
of DS 3.0 in turn. The features that have been considered

for the generation of the pharmacophore models are
hydrogen bond acceptor (HBA), hydrogen bond donor
(HBD), hydrophobic features (HY), positive ionizable fea-
ture (P), and aromatic ring (R).

2.3 Pharmacophore validation

The best pharmacophore model was validated by selec-
tivity scoring which was calculated by a method named
“Rules” [20]. The method uses internal rule-based scoring
function. The scoring function is based on a genetic func-
tion approximationmodel, which is a function of the feature
set in the pharmacophore model and the feature–feature
distances of different types of features.

2.4 Pharmacophore-based virtual screening

Small-molecule structures were downloaded fromMaybridge
database (http://www.maybridge.com/) and Specs data-
base (http://www.specs.net/). These compounds were fil-
tered by Lipinski’s Rule of Five and Veber’s drug-likeness
Rules to select the ones with drug-like properties [21,22].
The receiver operating characteristic (ROC) graphs were
generated and the quality values, including area under
the curve as well as the enrichment factor, were calcu-
lated to validate the pharmacophore models. The phar-
macophore models could be used for the following
screening when their quality values were greater than
0.5. Finally, two well-validated pharmacophore models
were employed as a 3D query to screen the rest of the
small molecules, about 137,932 compounds.

2.5 ADMET prediction

ADMET means absorption, distribution, metabolism, excre-
tion, and toxicity. The protocol uses the quantitative
structure-activity relationship (QSAR)models to estimate
a range of ADMET-related properties for small molecules,
including aqueous solubility, blood–brain barrier pene-
tration (BBB), cytochrome P450 2D6 inhibition, hepato-
toxicity, human intestinal absorption, and plasma protein
binding [23]. ADMET prediction can take out the unfit
candidates early in the discovery phase, rather than during
the more costly drug development phases. In this study,
ADMET prediction was done via the program of ADMET
Descriptors in DS 3.0.
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2.6 Protein homology modeling

Due to the lack of crystal structure, three-dimensional
structure of KIT of ATP-binding pocket mutant was per-
formed using homology modeling by an online server of
SWISS-MODEL [24]. Briefly, the complete KIT protein
sequence was obtained from NCBI (https://www.ncbi.
nlm.nih.gov/protein/; Accession number: AAC50969.1).
The sequence of KIT was changed according to the muta-
tion forms of the ATP-binding pocket (V654A), which was
used for homology modeling by SWISS-MODEL. The tem-
plate (PDB ID: 3G0E) was manually selected based on
the target sequence coverage, experimental resolution,
sequence identity, and similarity after sequence alignment.
The generated model was selected based on the quality esti-
mation score and the overall structure similarity. The struc-
ture refinement of the model was achieved by energy mini-
mization via the OpenMM molecular mechanics library [25].
The quality of the homology-modeled structure of the KIT
mutant V654A was evaluated with ERRAT and PROVE pro-
grams [26,27]. In addition, the crystal structures of native KIT
(PDB ID: 4U0I) and KIT secondary mutants of the A-loop
(D816H) (PDB ID: 3G0F [7]) were retrieved from the RCSB
Protein Data Bank (http://www1.rcsb.org/).

2.7 Docking computation

Docking is amethod to evaluate protein–ligand interactions
and binding properties in order to predict the activity of
the ligand molecule. In this study, we employed CDOCKER
algorithm (Genetic Optimization for Ligand Docking) from
BIOVIA Discovery Studio 2016 (DS 3.0), for searching
the binding space and ligand conformational space. The
docking used in this study was semiflexible in which the
receptor proteins were rigid, but the ligands were flexible.
In addition, CDOCKER in DS 3.0 used a scoring function,
based on the interaction energy between receptor pro-
teins and ligands. The three-dimensional structures of
native KIT (PDB ID: 4U0I), D816H mutant KIT (PDB ID:
3G0F), and V654A mutant KIT (Homology modeling)
were considered as receptors. In the protein preparation,
all the water molecules and complexes bound to receptor
molecule were removed, hydrogen atoms were added,
and the missing atom residues were built. The binding
sites of the proteins were defined based on the active sites
from the PDB site records or volume occupied by the
known ligand pose already in reports [28,29]. During
the docking process, the top 10 ligand binding poses
were saved for each ligand according to their CDOCKER

energies, and the predicted binding interactions were
then analyzed using the standard protocol.

3 Results

3.1 Pharmacophore models’ generation

The pharmacophore hypotheses were generated based
on common features (Tables S1 and S2). As shown in
Figure 1, Hypo1 and Hypo2 were picked out considering
their most chemical features and the highest selectivity
scoring. Hypo1, based on the KIT–sunitinib complex,
consisted of one HBA, one HBD, and three hydrophobic
features (HY1, HY2, and HY3). In Hypo2-based KIT–pona-
tinib complex three function feature sets were identified,
including one HBA, three hydrophobic features (HY1,
HY2, and HY3), and two positive ionizable features (P1
and P2). The generated pharmacophore models com-
monly contained HBA and HY features, which led to
a conclusion that these two features are important for
the inhibition of KIT activity. In addition, the difference
between the two generated pharmacophore models (Hypo1
and Hypo2) was two positive ionizable features, which may
be an effect of different KIT mutations. Figure 2, illustrates
the geometrical constrains and excluded volume spheres for
the features of active compounds with pharmacophore
models. Figure S4 further displays the ROC graphs gene-
rated by screening the training set. The results indicated
that the built pharmacophore models were more sensitive
and reliable to screen the novel KIT inhibitors in the fol-
lowing database.

Figure 1: The final pharmacophore model-based KIT–sunitinib and
KIT–ponatinib complexes. (a) Pharmacophore model Hypo1 for KIT–
sunitinib; (b) pharmacophore model Hypo2 for KIT–ponatinib. The hypoth-
esis features are labeled as follows: hydrogen bonddonor (HBD), hydrogen
bond acceptor (HBA), hydrophobic feature (HY), and positive ioniz-
able feature (P).
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3.2 Pharmacophore-based virtual screening

Two pharmacophore models were employed to screen the
database and to test the model specificity. As a result,
only dozens of molecules fit all pharmacophore features
of Hypo2. Because of the excellent specificity of Hypo2,
Hypo1 was employed for the first screening and then
Hypo2. After screening, a total of nine compounds were
selected from two databases with 137,932 compounds
(Figure S5). ADMET computation showed that all nine
compounds have excellent ADMET quality except the
slightly bad aqueous solubility of three compounds (com-
pound 01, compound 02, and compound 04; Figure 3).

3.3 Model building and structure validation

Because no 3D structures for mutant KIT in ATP pocket
have been reported in the PDB data bank, the homology
modeling was performed to build a 3D structure of the
protein [30]. The final 3D structure is shown in Figure S6a.
The quality of 3D model was verified by using SWISS-
MODEL server and PROCHECK program. Typically, for
each residue of the model (Reported on the X-axis), the

similarity to the native structure (Y-axis), showing a score
above 0.6, was expected to be of high quality (Figure S6b).
As shown in Figure S6c, higher QMEAN Z scores indicated
better agreement between the model structure and experi-
mental structures of similar size. Scores below −4.0 indi-
cated that model’s quality was very low. The QMEAN Z
score of predicted model was −0.18, which indicated the
model’s high quality comparable to experimental struc-
tures. The Ramachandran plot for the predicted model indi-
cated that 99.7% of residues was in the allowed regions,
while only 0.3% was in the disallowed regions, confirming
that the predicted model was of high quality (Figure S6d).

3.4 Docking result analysis

Molecule docking can make a relative accurate prediction
of the interaction of small molecule with receptor. Many
screening research of inhibitor-based protein structure
employed mutation proteins built by homology modeling
methods to dockwith smallmolecules [31,32]. The receptor–
ligand total energy (CDOCKER ENERGY) and the receptor–
ligand interactional energy (CDOCKER INTERACTION
ENERGY) were the main parameters of CDOCK results,
which represented the stability of docking system and the
interaction energy in the bonding process of receptor with
ligand, respectively.

In the present study, nine compounds, which were
selectedbasedonpharmacophoremodels,weredockedwith
native KIT protein and two mutation proteins. The results
(Table 1) showed that all compounds (compounds 01 to 09)

Figure 2: Mapping of each of the best hits to Hypo1 and Hypo2. The
colors of the pharmacophore features, HBA, HBD, HY, and P are shown
by green sphere, heliotrope sphere, cyan sphere, and red sphere,
respectively. (a) Compound 05 is mapped with Hypo1; (b) compound
06 is mapped with Hypo1; (c) compound 05 is mapped with Hypo2; and
(d) compound 06 is mapped with Hypo2.

Figure 3: ADMET properties of the screened nine compounds.
Abosorption-95 and Abosorption-99 were 95 and 99% confidence
of absorption. BBB-95 and BBB-99 were 95 and 99% confidence of
BBB. Almost nine compounds had excellent ADMET quality except
the slightly bad aqueous solubility of three compounds (compounds
01, 02, and 04 are indicated by arrows).

306  Lili Jiang et al.



have excellent interaction with different proteins (Native
KIT, D816H mutant KIT, and V654Amutant KIT) and indi-
cated the high efficiency of pharmacophoremodels. More-
over, the docking scores were influenced by different
mutation types of KIT protein. Finally, to learnmore infor-
mation of the interactions, compounds 05 and 06 were
selected to show the 2Ddiagram interactions, as thepoten-
tial candidates for inhibition of KIT, based on the docking
results and ADMET scores.

The 2D diagram interactions between compounds
05 and 06, native KIT and two KIT mutants are illustrated
clearly in Figure 4. The oxygen atom had strong hydrogen
bond interactions with Thr670 residue in D816H, with
Glu13 and Gln15 residues in V654A. More over, the ben-
zene and nitrogen-containing heterocyclic rings formed
pi-alkyl interactions with Cys809 and Leu644 residues for
D816H, Ala93 and Tyr12 residues for V654A, respectively.
The binding sites of interactions between compound 05,
native KIT, and two KIT mutants were different, including
the residues or the major force of interactions. Moreover,
compound 06 mainly interacted with D816H and V654A
mutant KIT via hydrogen bond interactions and pi-alkyl
interactions, but the residues in the binding sites were
different from that of compound 05. The diversity of the
binding sites may be because of the diversity in the struc-
ture of the compounds (compounds 01 to 09) or proteins
(native KIT, D816H mutant KIT, and V654A mutant KIT).

4 Discussion

In the past few years, several commercially available KIT
inhibitors, for example, imatinib, sunitinib, and pona-
tinib, are under clinical investigation for GIST treatment.
However, many patients are observed to experience rapid
disease and present drug resistance after their treatment,
which is the most common due to the acquired secondary
KIT mutation [33]. The well-recognized mechanisms of
acquired secondary KIT mutation include an added ATP-
binding domain or the activation-loop domain of KIT [9].
Following these studies, we herein attempted to develop
two novel pharmacophore models that could screen the
potential candidates for KIT inhibitors with excellent
effect in inhibiting two kinds of typical KIT secondary
mutants. Previous study of Jiang et al. first established
the three-dimensional pharmacophore model of KIT [34].
Almerico et al. also performed a pharmacophore model
based on a co-crystallized compound (PDB ID: 1T46 [35]),
which was a crystal structure of native KIT kinase [35].
However, their pharmacophore modeling was only used

for screening KIT inhibitors without the secondary KIT
mutation, which is different from our model. In addition,
other studies [36,37] also developed the three-dimen-
sional pharmacophore models of KIT, but the features
of the models were different from our models developed
in this study. The two pharmacophore models in this
study consisted of several features, such as an HBA, an
HBD, three hydrophobic features (HY1, HY2, and HY3),
and two positive ionizable features (P1 and P2). These
features of the pharmacophore models were representa-
tive of the characteristic of KIT mutation active site,
which could be used for screening the potential candi-
dates. So the pharmacophore models could be used as a
fast and reliable tool to filter for discovering novel poten-
tial candidates for KIT inhibitor.

In addition, to get further insights into the receptor–
ligand interactions between the selected compounds and
two kinds of typical KIT secondary mutants, we used the
pharmacophore models to screen the database. Finally,
two compounds (compounds 5 and 6) were identified as

Table 1: Docking result of compounds with three protein models

Protein Compound CDOCKER
ENERGY
(−kcal/mol)

CDOCKER
INTERACTION
ENERGY
(−kcal/mol)

Native KIT Compound 01 55.25 54.17
Compound 02 47.52 46.49
Compound 03 31.29 37.69
Compound 04 30.28 51.20
Compound 05 29.49 51.04
Compound 06 28.03 48.68
Compound 07 26.03 46.14
Compound 08 17.56 40.46
Compound 09 15.72 45.00

V654 A
mutant
KIT

Compound 01 57.80 56.87
Compound 02 48.56 48.71
Compound 04 40.14 60.53
Compound 05 32.91 55.95
Compound 07 31.14 52.50
Compound 06 30.74 48.81
Compound 03 28.53 34.54
Compound 08 23.03 45.22
Compound 09 20.16 54.66

D816H
mutant
KIT

Compound 01 57.81 58.91
Compound 02 44.76 51.77
Compound 04 40.14 60.53
Compound 05 32.91 55.95
Compound 06 29.27 47.80
Compound 03 28.53 34.54
Compound 09 20.16 54.66
Compound 07 11.50 37.39
Compound 08 −4.70 32.52
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active compounds, which showed excellent ADMET quality
and strong interaction with two kinds of typical KIT sec-
ondary mutants involving the ATP-binding domain or the
activation-loop domain. The interaction sites between com-
pounds (compounds 5 and 6) and different proteins (native
KIT, D816H mutant KIT, and V654A mutant KIT) were dif-
ferent, including the residues or the major interaction

forces. These differences might be because of the diversity
in the structure of compounds or proteins. The docking
study was used to reduce false positive and identify the
suitable orientation for the ligand in a protein active site
as previous studies. For example, Mahadevan et al. used the
molecular modeling to explain the impact of KIT mutations
on imatinib resistance [38]. Hsueh et al. also introduced

Figure 4: The receptor–ligand interactions of screening compounds 05 and 06 with the native KIT protein and two mutation proteins (D816H
mutation KIT protein and V654A mutation KIT protein). (a) Interaction of ligands (compounds 05 and 06) with native KIT protein;
(b) interaction of ligands (compounds 05 and 06) with D816H mutation KIT protein; and (c) interaction of ligands (compounds 05 and 06)
with V654A mutation KIT protein. Compound 05 is red and compound 06 yellow.
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molecular modeling to elucidate the interaction between
KIT inhibitors and mutant KIT proteins [39]. The molecular
modeling showed that nilotinib had the best binding affinity
for exon 11/17, which is in consistent with the in vitro inhi-
bitory efficacy study on KIT mutants [39].

5 Conclusion

The resistance mutation in KIT is an important drawback
in the clinical treatment of GIST. Hence, it is vital to
consider it while exploring the new ways of treating
GIST, i.e., by developing compounds that can inhibit the
mutant KIT. Sunitinib and ponatinib present excellent
effects for inhibiting two kinds of typical KIT secondary
mutants. In the present study, the pharmacophore models
were generated by using the KIT mutant crystal complexes
and were employed to filter the databases. A few efficient
compounds were selected. Subsequently, the potential effect
was predicted by docking with the models of native KIT and
two mutation proteins. The discovery of new KIT inhibitors
was researched from the perspective of inhibiting different
types of KIT mutants. Finally, two active compounds were
identified from the virtual screening which satisfied the
pharmacophore models and ADMET properties and also
showed strong hydrogen bond interaction with different
KITmutant proteins. Therefore, the in silico screened com-
pounds can be proposed as lead candidates and can be
used for further in vitro and in vivo evaluation.
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