

Received 19 March 2017 Accepted 28 March 2017

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: crystal structure; titanium metallocene; titanocene; trimethylaluminium; trimethylgallium.

CCDC references: 1540662; 1540661

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structures of titanium–aluminium and –gallium complexes bearing two μ_2 -CH₃ units

Tim Oswald, Mira Diekmann, Annika Frey, Marc Schmidtmann and Rüdiger Beckhaus*

Institut für Chemie, Fakultät für Mathematik und Naturwissenschaften, Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg, Germany. *Correspondence e-mail: ruediger.beckhaus@uni-oldenburg.de

The isotypic crystal structures of two titanocene complexes containing an *E*Me₃ unit (*E* = Al, Ga; Me = methyl) with two μ_2 -coordinating methyl groups, namely $[\mu \cdot 1(\eta^5) \cdot (adamantan \cdot 1 \cdot yl \cdot 2\kappa C^1)$ cycylopentadienyl]di- μ_2 -methyl-methyl- $2\kappa C$ - $[1(\eta^5) \cdot (adamantan \cdot 1 \cdot yl \cdot 2\kappa C^1)$ cycylopentadienyl]di- μ_2 -methyl-methyl- $2\kappa C$ - $[1(\eta^5) \cdot (adamantan \cdot 1 \cdot yl \cdot 2\kappa C^1)$ cycylopentadienyl]-di- μ_2 -methyl-methyl- $2\kappa C \cdot [1(\eta^5) \cdot (adamantan \cdot 1 \cdot yl \cdot 2\kappa C^1)$ cycylopentadienyl]-di- μ_2 -methyl-methyl- $2\kappa C \cdot [1(\eta^5) \cdot (adamantan \cdot 1 \cdot yl \cdot 2\kappa C^1)$ cycylopentadienyl]-di- μ_2 -methyl-methyl- $2\kappa C \cdot [1(\eta^5) \cdot (adamantan \cdot 1 \cdot yl \cdot 2\kappa C^1)$ cycylopentadienyl]-di- μ_2 -methyl-methyl- $2\kappa C \cdot [1(\eta^5) \cdot (adamantan \cdot 1 \cdot yl \cdot 2\kappa C^1)$ cycylopentadienyl]-di- μ_2 -methyl-methyl- $2\kappa C \cdot [1(\eta^5) \cdot (adamantan \cdot 1 \cdot yl \cdot 2\kappa C^1)$ cycylopentadienyl]-di- μ_2 -methyl-methyl- $2\kappa C \cdot [1(\eta^5) \cdot (adamantan \cdot 1 \cdot yl \cdot 2\kappa C^1)$ cycylopentadienyl]-di- μ_2 -methyl-methyl- $2\kappa C \cdot [1(\eta^5) \cdot (adamantan \cdot 1 \cdot yl \cdot 2\kappa C^1)$ cycylopentadienyl]-di- μ_2 -methyl-methyl- $2\kappa C \cdot [1(\eta^5) \cdot (adamantan \cdot 1 \cdot yl \cdot 2\kappa C^1)$ cycylopentadienyl]-di- μ_2 -methyl-methyl- $2\kappa C \cdot [1(\eta^5) \cdot (adamantan \cdot 1 \cdot yl \cdot 2\kappa C^1)$ cycylopentadienyl]-di- μ_2 -methyl-methyl- $2\kappa C \cdot [1(\eta^5) \cdot (adamantan \cdot 1 \cdot yl \cdot 2\kappa C^1)$ cycylopentadienyl]-di- μ_2 -methyl-methyl- $2\kappa C \cdot [1(\eta^5) \cdot (adamantan \cdot 1 \cdot yl \cdot 2\kappa C^1)$ cycylopentadienyl]-di- μ_2 -methyl-methyl- $2\kappa C \cdot [1(\eta^5) \cdot (adamantan \cdot 1 \cdot yl \cdot 2\kappa C^1)$ cycylopentadienyl]-di- μ_2 -methyl-methyl- $2\kappa C \cdot [1(\eta^5) \cdot (adamantan \cdot 1 \cdot yl \cdot 2\kappa C^1)$ cycylopentadienyl]-di- μ_2 -methyl- $2\kappa C \cdot [1(\eta^5) \cdot 2\kappa C^1]$ cycylopentadienyl]-galliumtitanium(III), [GaTi(CH_3)_3(C_{10}H_{15})], are reported. Reacting a dinuclear nitrogenbridged low-valent titanium(III) complex with the Lewis acids AlMe_3 or GaMe_3 results in the loss of molecular dinitrogen and the formation of two monomeric titanocene(III) fragments bearing two μ_2 -bridging methyl groups. Single crystal X-ray diffraction reveals the formation of a new E -

1. Chemical context

Trimethylaluminium, AlMe₃, is of great interest because of its use in the synthesis of methylaluminoxane as co-catalyst in olefin polymerization (Wang, 2006; Janiak, 2006). In organometallic chemistry, many reactions involving trimethylaluminium have been investigated, e.g. the Tebbe reagent $Cp_2ZrCl(CH_2Al(CH_3)_2)$ (Cp = cyclopentadienyl), which can be used for methylation reactions (Tebbe et al., 1978; Thompson et al., 2014). Employing multiple C-H activation reactions, the formation of zirconium- or hafnium-containing clusters $[(Cp*M)_3Al_6Me_8(CH_2)_2(CH)_5]$ (M = Zr, Hf) have been described (Herzog et al., 1996). In a similar manner, the formation of [TiAl(C)CH₃] or [TiAl(CH₂)₂] metallacycles have been reported (Kickham et al., 2002; Stephan, 2005). It is noteworthy that all these complexes result from C-H activation reactions. Since bond activation reactions employing pentafulvene-substituted metal complexes have been of great interest in our work group (Oswald et al., 2016; Manssen et al., 2015; Ebert et al., 2014), we therefore investigated the reactivity of a dinuclear nitrogen-bridged pentafulvene titanium complex towards AlMe₃ and its heavier analogue GaMe₃. Here we report on syntheses and crystal structures of the resulting title compounds, 1 and 2.

2. Structural commentary

Figs. 1 and 2 show the molecular structures of **1** and isotypic **2**, respectively. Both complexes show the formation of a titanium trimethylaluminium or -gallium metallacycle, in which the EMe_3 units are still intact and exhibit a μ_2 -bridging mode of

research communications

the methyl groups. Additionally, a new C-Al/Ga bond is formed and the former double bond C11-C16 of the pentafulvene ligand is repealed and at 1.509 (2) Å (1), or 1.507 (2) Å (2) is within the range of a single bond (1.53 Å; March, 2007). As a result of this coordination, the tetravalent aluminium and gallium atoms differ from the ideal tetrahedral conformation.

The bond lengths Al1–C26 [2.028 (2) Å] and Al1–C27 [2.047 (2) Å] in **1** are significantly elongated in comparison with that to the terminal methyl group [1.969 (2) Å], but are in good agreement with those of the free Al₂Me₆ molecule (Vranka & Amma, 1967). The same behaviour can be observed in **2** where the Ga1–C26 and Ga1–C27 distances [2.056 (2) and 2.099 (2) Å, respectively] are elongated compared to the Ga1–C28 bond length of 1.987 (2) Å [1.966 (2) Å in GaMe₃; Beagley & Schmidling, 1974]. The Ti–C26 [2.546 (2) Å] and Ti–C27 [2.507 (2) Å] distances in **1** are significantly longer than terminal Ti–CH₃ distances, *e.g.* Cp₂TiMe₂ (*ca* 2.16 Å; Thewalt & Wöhrle, 1994) or bridging Ti–CH₃ distances such as in [Ti(NtBu)(Me₃[9]aneN₃)(μ -Me)₂AlMe₂]⁺ (*ca* 2.3 Å; Bolton *et al.*, 2005).

Figure 1

The molecular structure of complex **1**. Displacement ellipsoids correspond to the 50% probability level. H atoms have been omitted for clarity except for those of methyl groups C26, C27 and C28.

The molecular structure of complex **2**. Displacement ellipsoids correspond to the 50% probability level. H atoms have been omitted for clarity except for those of methyl groups C26, C27 and C28.

3. Supramolecular features

For both complexes, no significant supramolecular features are observed. The crystal packing (Fig. 3) appears to be dominated by van der Waals interactions.

4. Synthesis and crystallization

All reactions were carried out under a dry nitrogen atmosphere using Schlenk techniques or in a glove box. The starting titanium complex was prepared according to a published procedure (Scherer *et al.*, 2005). AlMe₃ and GaMe₃ solutions were purchased from Sigma Aldrich and used as received. Solvents were dried according to standard procedures over Na/K alloy with benzophenone as indicator and distilled under a nitrogen atmosphere.

Synthesis of 1:

Bis[$(\eta^5$ -pentamethylcyclopentadienyl)(η^5 : η^1 -adamantylidenepentafulvene)titanium]- μ^2 , η^1 , η^1 -dinitrogen (500 mg,

Figure 3

A view along the c axis showing the packing of molecules in the crystal structure of compound **1**. No significant supramolecular features can be observed. Colour code: C grey, H white, Al pink, Ti turquoise spheres.

Table 1Experimental details.

	1	2
Crystal data		
Chemical formula	$[AITi(CH_2)_2(C_{10}H_{15})(C_{15}H_{18})]$	$[GaTi(CH_2)_2(C_{10}H_{15})(C_{15}H_{18})]$
	453.49	496.23
Crystal system, space group	Monoclinic, $P2_1/c$	Monoclinic, $P2_1/c$
Temperature (K)	153	153
a, b, c (Å)	12.1618 (5), 19.8355 (8), 10.0403 (6)	12.1445 (8), 19.9196 (7), 10.0350 (4)
β (°)	91.417 (6)	91.400 (7)
$V(A^3)$	2421.3 (2)	2426.9 (2)
Z	4	4
Radiation type	Μο Κα	Μο <i>Κα</i>
$\mu (\text{mm}^{-1})$	0.40	1.45
Crystal size (mm)	$0.55 \times 0.18 \times 0.11$	$0.50 \times 0.30 \times 0.29$
Data collection		
Diffractometer	Stoe IPDS	Stoe IPDS
Absorption correction	_	Numerical (X-RED; Stoe, 1999)
$T_{\min}, \tilde{T}_{\max}$	-	0.571, 0.717
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	24801, 4572, 3201	28356, 5895, 4830
R_{int}	0.068	0.042
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.617	0.668
Refinement		
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.031, 0.068, 0.87	0.026, 0.065, 0.94
No. of reflections	4572	5895
No. of parameters	295	295
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.38, -0.22	0.57, -0.32

Computer programs: IPDS and X-RED (Stoe, 1999), SHELXS97 (Sheldrick, 2008), SHELXL2014/7 (Sheldrick, 2015), DIAMOND (Brandenburg & Putz, 2006) and publCIF (Westrip, 2010).

0.632 mmol) was dissolved in toluene and AlMe₃ (2 M solution in toluene, 0.65 ml, 1.3 mmol) was added. The colour of the solution changed from blue to green, after 48 h the volume had reduced to 5 ml and another 5 ml of *n*-hexane were added. Crystals suitable for X-ray diffraction separated after 48 h directly from the mother liquor.

Synthesis of 2:

Bis[$(\eta^5$ -pentamethylcyclopentadienyl)(η^5 : η^1 -adamantylidenepentafulvene)titanium]- μ^2 , η^1 , η^1 -dinitrogen (100 mg, 0.13 mmol) was dissolved in toluene and GaMe₃ (1.7 *M* solution in toluene, 0.15 ml, 0.25 mmol) was added. The former blue solution turned brown and was stored at 233 K. After 10 days, brown-green crystals suitable for X-ray diffraction separated from the mother liquor.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. Hydrogen atoms bonded to C atoms were located from difference-Fourier maps but were subsequently fixed to idealized positions using appropriate riding models with $U_{iso}(H) = 1.2U_{eq}(C)$; H atoms of all methyl groups were refined freely.

References

- Brandenburg, K. & Putz, H. (2006). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Ebert, H., Timmermann, V., Oswald, T., Saak, W., Schmidtmann, M., Friedemann, M., Haase, D. & Beckhaus, R. (2014). *Organometallics*, **33**, 1440–1452.
- Herzog, A., Roesky, H. W., Jäger, F., Steiner, A. & Noltemeyer, M. (1996). Organometallics, **15**, 909–917.
- Janiak, C. (2006). Coord. Chem. Rev. 250, 66-94.
- Kickham, J. E., Guérin, F. & Stephan, D. W. (2002). J. Am. Chem. Soc. **124**, 11486–11494.
- Manssen, M., Lauterbach, N., Dörfler, J., Schmidtmann, M., Saak, W., Doye, S. & Beckhaus, R. (2015). Angew. Chem. Int. Ed. 54, 4383– 4387.
- March, J. (2007). Advanced Organic Chemistry, 6th ed. New York: John Wiley & Sons.
- Oswald, T., Beermann, T., Saak, W. & Beckhaus, R. (2016). Z. Kristallogr. New Cryst. Struct. 232, 143–145.
- Scherer, A., Kollak, K., Lützen, A., Friedemann, M., Haase, D., Saak, W. & Beckhaus, R. (2005). Eur. J. Inorg. Chem. pp. 1003–1010.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Stephan, D. W. (2005). Organometallics, 24, 2548-2560.
- Stoe (1999). *IPDS* and *X-RED*. Stoe & Cie, Darmstadt, Germany. Tebbe, F. N., Parshall, G. W. & Reddy, G. S. (1978). *J. Am. Chem. Soc.* **100**, 3611–3613.
- Thewalt, U. & Wöhrle, T. (1994). J. Organomet. Chem. 464, C17–C19.
- Thompson, R., Nakamaru-Ogiso, E., Chen, C.-H., Pink, M. & Mindiola, D. J. (2014). Organometallics, 33, 429–432.
- Vranka, R. G. & Amma, E. L. (1967). J. Am. Chem. Soc. 89, 3121–3126.
- Wang, B. (2006). Coord. Chem. Rev. 250, 242-258.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

Beagley, B. & Schmidling, D. G. (1974). J. Mol. Struct. 21, 437–444.Bolton, P. D., Clot, E., Cowley, A. R. & Mountford, P. (2005). Chem. Comm. pp. 3313–3315.

Acta Cryst. (2017). E73, 691-693 [https://doi.org/10.1107/S2056989017004856]

Crystal structures of titanium–aluminium and –gallium complexes bearing two μ_2 -CH₃ units

Tim Oswald, Mira Diekmann, Annika Frey, Marc Schmidtmann and Rüdiger Beckhaus

Computing details

For both compounds, data collection: *IPDS* (Stoe, 1999); cell refinement: *IPDS* (Stoe, 1999); data reduction: *X-RED* (Stoe, 1999); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2014/7* (Sheldrick, 2015); molecular graphics: *DIAMOND* (Brandenburg & Putz, 2006); software used to prepare material for publication: *publCIF* (Westrip, 2010).

(1) $[\mu-1(\eta^5)-(\text{Adamantan-1-yl-}2\kappa C^1)$ cycylopentadienyl]di- μ_2 -methyl-methyl- $2\kappa C$ - $[1(\eta^5)-$ pentamethylcyclopentadienyl]-aluminiumtitanium(III)

Crystal data

[AlTi(CH₃)₃(C₁₀H₁₅)(C₁₅H₁₈)] $M_r = 453.49$ Monoclinic, $P2_1/c$ a = 12.1618 (5) Å b = 19.8355 (8) Å c = 10.0403 (6) Å $\beta = 91.417$ (6)° V = 2421.3 (2) Å³ Z = 4

Data collection

Stoe IPDS diffractometer Radiation source: sealed tube ω scans 24801 measured reflections 4572 independent reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.031$ $wR(F^2) = 0.068$ S = 0.874572 reflections 295 parameters 0 restraints F(000) = 980 $D_x = 1.244 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 7286 reflections $\theta = 2.4-26.0^{\circ}$ $\mu = 0.40 \text{ mm}^{-1}$ T = 153 KBlock, yellow $0.55 \times 0.18 \times 0.11 \text{ mm}$

3201 reflections with $I > 2\sigma(I)$ $R_{int} = 0.068$ $\theta_{max} = 26.0^\circ, \ \theta_{min} = 2.3^\circ$ $h = -14 \rightarrow 14$ $k = -24 \rightarrow 24$ $l = -12 \rightarrow 12$

Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.035P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.002$ $\Delta\rho_{max} = 0.38 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.22 \text{ e } \text{Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Ti1	0.26484 (3)	0.59327 (2)	0.23454 (3)	0.01418 (9)
Al1	0.24338 (5)	0.45093 (3)	0.21686 (5)	0.01685 (13)
C1	0.26433 (17)	0.62640 (9)	0.00582 (17)	0.0194 (4)
C2	0.35839 (16)	0.65709 (9)	0.06987 (16)	0.0174 (4)
C3	0.31849 (17)	0.70394 (9)	0.16359 (17)	0.0190 (4)
C4	0.20285 (17)	0.70296 (9)	0.15852 (17)	0.0208 (4)
C5	0.16835 (17)	0.65619 (10)	0.05950 (18)	0.0225 (4)
C6	0.2660 (2)	0.57896 (10)	-0.11059 (18)	0.0307 (5)
H6A	0.3388	0.5581	-0.1155	0.046*
H6B	0.2498	0.6040	-0.1929	0.046*
H6C	0.2104	0.5438	-0.0993	0.046*
C7	0.47622 (18)	0.64859 (10)	0.03299 (19)	0.0267 (5)
H7A	0.5229	0.6482	0.1140	0.040*
H7B	0.4980	0.6861	-0.0243	0.040*
H7C	0.4849	0.6059	-0.0148	0.040*
C8	0.3886 (2)	0.75391 (10)	0.2411 (2)	0.0310 (5)
H8A	0.3939	0.7959	0.1903	0.047*
H8B	0.4624	0.7351	0.2563	0.047*
H8C	0.3551	0.7631	0.3269	0.047*
C9	0.1279 (2)	0.75006 (11)	0.2308 (2)	0.0346 (5)
H9A	0.0632	0.7252	0.2602	0.052*
H9B	0.1045	0.7866	0.1709	0.052*
H9C	0.1672	0.7690	0.3085	0.052*
C10	0.05177 (19)	0.64766 (12)	0.0111 (2)	0.0343 (5)
H10A	0.0288	0.6877	-0.0397	0.051*
H10B	0.0040	0.6420	0.0875	0.051*
H10C	0.0462	0.6078	-0.0463	0.051*
C11	0.26346 (16)	0.52506 (9)	0.43500 (15)	0.0159 (4)
C12	0.18257 (18)	0.57674 (9)	0.44326 (17)	0.0201 (4)
H12	0.1054	0.5698	0.4466	0.024*
C13	0.2357 (2)	0.63998 (9)	0.44565 (17)	0.0261 (5)
H13	0.2007	0.6826	0.4513	0.031*
C14	0.34920 (19)	0.62892 (10)	0.43818 (18)	0.0267 (5)
H14	0.4046	0.6627	0.4378	0.032*
C15	0.36642 (17)	0.55903 (10)	0.43137 (17)	0.0208 (4)
H15	0.4361	0.5377	0.4253	0.025*
C16	0.24577 (16)	0.45016 (9)	0.41903 (16)	0.0157 (4)
C17	0.34159 (16)	0.40901 (10)	0.48341 (16)	0.0194 (4)
H17	0.4124	0.4229	0.4430	0.023*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

C10	0 22207 (10)	0 22271 (10)	0.45724 (10)	0.00(5.(5)
	0.32207 (19)	0.33371 (10)	0.45/34 (19)	0.0265 (5)
HI8A	0.3184	0.3253	0.3602	0.032*
HI8B	0.3841	0.30/3	0.4959	0.032*
C19	0.2146 (2)	0.31122 (10)	0.5197 (2)	0.0297 (5)
H19	0.2022	0.2622	0.5014	0.036*
C20	0.11873 (19)	0.35226 (10)	0.4600 (2)	0.0277 (5)
H20A	0.1123	0.3439	0.3629	0.033*
H20B	0.0491	0.3381	0.5008	0.033*
C21	0.13831 (17)	0.42731 (9)	0.48584 (17)	0.0205 (4)
H21	0.0750	0.4537	0.4474	0.025*
C22	0.34877 (18)	0.42069 (10)	0.63524 (17)	0.0253 (5)
H22A	0.4112	0.3948	0.6743	0.030*
H22B	0.3615	0.4691	0.6539	0.030*
C23	0.2225 (2)	0.32297 (11)	0.6709 (2)	0.0338 (5)
H23A	0.1536	0.3082	0.7126	0.041*
H23B	0.2840	0.2963	0.7101	0.041*
C24	0.14558 (18)	0.43886 (11)	0.63770 (18)	0.0267 (5)
H24A	0.1568	0.4874	0.6566	0.032*
H24B	0.0760	0.4247	0.6784	0.032*
C25	0.24165 (19)	0.39807 (11)	0.69803 (18)	0.0286 (5)
H25	0.2464	0.4059	0.7964	0.034*
C26	0.11305 (18)	0.51058 (10)	0.1682 (2)	0.0223 (4)
H26A	0.091 (2)	0.5577 (12)	0.195 (2)	0.033*
H26B	0.100 (2)	0.5063 (11)	0.073 (2)	0.033*
H26C	0.060 (2)	0.4816 (12)	0.212 (2)	0.033*
C27	0.38455 (18)	0.49812 (10)	0.1606 (2)	0.0218 (4)
H27A	0.4231 (19)	0.5418 (12)	0.172 (2)	0.033*
H27B	0.3890 (19)	0.4872 (11)	0.066 (2)	0.033*
H27C	0.433 (2)	0.4675 (12)	0.206 (2)	0.033*
C28	0.2331 (2)	0.36873 (10)	0.10736 (18)	0.0268 (5)
H28A	0.1724	0.3407	0.1380	0.040*
H28B	0.3022	0.3435	0.1157	0.040*
H28C	0.2196	0.3811	0.0139	0.040*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ti1	0.0176 (2)	0.01180 (14)	0.01316 (15)	-0.00042 (14)	-0.00005 (11)	-0.00074 (12)
Al1	0.0228 (4)	0.0132 (2)	0.0145 (2)	-0.0004 (2)	-0.0004 (2)	-0.0011 (2)
C1	0.0285 (13)	0.0163 (9)	0.0133 (8)	-0.0009 (8)	-0.0002 (7)	0.0028 (7)
C2	0.0200 (12)	0.0147 (9)	0.0177 (9)	0.0001 (7)	0.0013 (7)	0.0045 (7)
C3	0.0279 (13)	0.0111 (8)	0.0180 (8)	0.0006 (8)	0.0004 (7)	0.0022 (7)
C4	0.0272 (13)	0.0150 (9)	0.0203 (9)	0.0032 (8)	0.0042 (8)	0.0048 (7)
C5	0.0214 (13)	0.0234 (10)	0.0226 (9)	-0.0009 (8)	-0.0024 (8)	0.0099 (8)
C6	0.0501 (16)	0.0239 (11)	0.0180 (9)	-0.0048 (9)	-0.0025 (9)	-0.0018 (7)
C7	0.0246 (13)	0.0269 (10)	0.0289 (10)	0.0031 (9)	0.0052 (8)	0.0084 (8)
C8	0.0463 (16)	0.0196 (10)	0.0271 (11)	-0.0093 (10)	-0.0032 (9)	0.0005 (8)
C9	0.0413 (16)	0.0280 (12)	0.0352 (12)	0.0151 (10)	0.0105 (10)	0.0058 (9)

C10	0.0266 (14)	0.0356 (12)	0.0401 (12)	-0.0044 (10)	-0.0100 (9)	0.0184 (10)
C11	0.0201 (12)	0.0187 (9)	0.0089 (8)	-0.0006 (8)	-0.0007 (7)	0.0004 (7)
C12	0.0237 (12)	0.0222 (10)	0.0145 (8)	0.0032 (8)	0.0041 (7)	0.0005 (7)
C13	0.0468 (16)	0.0156 (10)	0.0158 (9)	0.0031 (9)	0.0015 (8)	-0.0042 (7)
C14	0.0397 (16)	0.0217 (10)	0.0183 (9)	-0.0113 (9)	-0.0076 (8)	-0.0006 (7)
C15	0.0232 (13)	0.0231 (10)	0.0158 (9)	-0.0044 (8)	-0.0061 (8)	0.0027 (7)
C16	0.0159 (11)	0.0142 (8)	0.0170 (8)	-0.0014 (7)	-0.0010 (7)	0.0001 (7)
C17	0.0192 (11)	0.0207 (9)	0.0182 (8)	0.0003 (8)	-0.0007 (7)	0.0037 (7)
C18	0.0325 (14)	0.0193 (10)	0.0276 (10)	0.0056 (9)	-0.0014 (9)	0.0034 (8)
C19	0.0385 (15)	0.0186 (10)	0.0321 (11)	-0.0045 (9)	-0.0011 (9)	0.0077 (8)
C20	0.0263 (14)	0.0265 (11)	0.0303 (11)	-0.0111 (9)	0.0004 (8)	0.0062 (8)
C21	0.0174 (12)	0.0229 (10)	0.0211 (9)	-0.0014 (8)	0.0010 (7)	0.0048 (7)
C22	0.0258 (13)	0.0292 (11)	0.0205 (9)	0.0000 (9)	-0.0070 (8)	0.0052 (7)
C23	0.0365 (15)	0.0327 (12)	0.0321 (11)	-0.0028 (10)	0.0006 (10)	0.0170 (9)
C24	0.0252 (13)	0.0344 (12)	0.0210 (10)	-0.0021 (9)	0.0081 (8)	0.0028 (8)
C25	0.0344 (14)	0.0350 (11)	0.0166 (9)	-0.0024 (10)	0.0006 (8)	0.0078 (8)
C26	0.0227 (13)	0.0239 (11)	0.0202 (10)	-0.0013 (8)	-0.0014 (8)	0.0035 (8)
C27	0.0259 (13)	0.0185 (9)	0.0213 (10)	0.0031 (8)	0.0051 (8)	0.0015 (7)
C28	0.0371 (14)	0.0214 (10)	0.0220 (10)	-0.0022 (9)	0.0001 (8)	-0.0044 (8)

Geometric parameters (Å, °)

Til—C13	2.3481 (18)	C11—C12	1.425 (3)
Ti1—C12	2.3673 (18)	C11—C16	1.509 (2)
Til—C14	2.3726 (18)	C12—C13	1.411 (3)
Til—Cl	2.3884 (17)	C12—H12	0.9500
Til—C2	2.3923 (17)	C13—C14	1.401 (3)
Til—C15	2.4025 (18)	C13—H13	0.9500
Til—C3	2.4032 (18)	C14—C15	1.404 (3)
Ti1—C4	2.4199 (18)	C14—H14	0.9500
Til—C11	2.4255 (16)	C15—H15	0.9500
Til—C5	2.4334 (18)	C16—C17	1.551 (3)
Ti1—C27	2.507 (2)	C16—C21	1.551 (3)
Ti1—C26	2.546 (2)	C17—C18	1.534 (3)
Ti1—Al1	2.8406 (6)	C17—C22	1.542 (2)
Ti1—H26A	2.26 (2)	C17—H17	1.0000
Al1-C28	1.9687 (19)	C18—C19	1.530 (3)
Al1—C26	2.028 (2)	C18—H18A	0.9900
Al1-C16	2.0294 (17)	C18—H18B	0.9900
Al1—C27	2.047 (2)	C19—C20	1.532 (3)
C1—C5	1.426 (3)	C19—C23	1.537 (3)
C1—C2	1.434 (3)	C19—H19	1.0000
C1—C6	1.501 (3)	C20—C21	1.529 (3)
С2—С3	1.417 (3)	C20—H20A	0.9900
C2—C7	1.499 (3)	C20—H20B	0.9900
C3—C4	1.406 (3)	C21—C24	1.542 (3)
С3—С8	1.511 (3)	C21—H21	1.0000
C4—C5	1.416 (3)	C22—C25	1.529 (3)

C4—C9	1.504 (3)	С22—Н22А	0.9900
C5—C10	1.497 (3)	С22—Н22В	0.9900
С6—Н6А	0.9800	C23—C25	1.531 (3)
С6—Н6В	0.9800	С23—Н23А	0.9900
С6—Н6С	0.9800	С23—Н23В	0.9900
С7—Н7А	0.9800	C24—C25	1.533 (3)
С7—Н7В	0.9800	C24—H24A	0.9900
С7—Н7С	0.9800	C24—H24B	0.9900
C8—H8A	0.9800	С25—Н25	1.0000
C8—H8B	0.9800	C26—H26A	1.01 (2)
C8—H8C	0.9800	C26—H26B	0.97 (2)
С9—Н9А	0.9800	C26—H26C	0.98 (2)
С9—Н9В	0.9800	С27—Н27А	0.99 (2)
С9—Н9С	0.9800	С27—Н27В	0.98 (2)
C10—H10A	0.9800	С27—Н27С	0.95 (2)
C10—H10B	0.9800	C28—H28A	0.9800
C10—H10C	0.9800	C28—H28B	0.9800
C11—C15	1.423 (3)	C28—H28C	0.9800
C13—Ti1—C12	34.82 (7)	H7A—C7—H7B	109.5
C13—Ti1—C14	34.53 (8)	С2—С7—Н7С	109.5
C12—Ti1—C14	57.43 (7)	H7A—C7—H7C	109.5
C13—Ti1—C1	139.68 (7)	H7B—C7—H7C	109.5
C12—Ti1—C1	153.91 (7)	С3—С8—Н8А	109.5
C14—Ti1—C1	137.51 (7)	C3—C8—H8B	109.5
C13—Ti1—C2	120.00 (7)	H8A—C8—H8B	109.5
C12—Ti1—C2	154.65 (6)	C3—C8—H8C	109.5
C14—Ti1—C2	103.59 (7)	H8A—C8—H8C	109.5
C1—Ti1—C2	34.91 (7)	H8B—C8—H8C	109.5
C13—Ti1—C15	56.98 (7)	С4—С9—Н9А	109.5
C12—Ti1—C15	56.82 (7)	С4—С9—Н9В	109.5
C14—Ti1—C15	34.19 (6)	H9A—C9—H9B	109.5
C1—Ti1—C15	149.06 (7)	С4—С9—Н9С	109.5
C2—Ti1—C15	118.32 (7)	Н9А—С9—Н9С	109.5
C13—Ti1—C3	87.44 (6)	H9B—C9—H9C	109.5
C12—Ti1—C3	120.84 (6)	C5-C10-H10A	109.5
C14—Ti1—C3	82.44 (6)	C5-C10-H10B	109.5
C1—Ti1—C3	57.18 (6)	H10A—C10—H10B	109.5
C2—Ti1—C3	34.37 (6)	C5-C10-H10C	109.5
C15—Ti1—C3	111.36 (6)	H10A—C10—H10C	109.5
C13—Ti1—C4	82.94 (6)	H10B—C10—H10C	109.5
C12—Ti1—C4	105.57 (6)	C15—C11—C12	105.67 (17)
C14—Ti1—C4	97.39 (7)	C15—C11—C16	125.91 (17)
C1—Ti1—C4	57.04 (6)	C12—C11—C16	128.15 (18)
C2—Ti1—C4	57.05 (6)	C15—C11—Ti1	71.98 (10)
C15—Ti1—C4	131.56 (7)	C12—C11—Ti1	70.48 (10)
C3—Ti1—C4	33.90 (7)	C16—C11—Ti1	117.70 (10)
C13—Ti1—C11	57.78 (6)	C13—C12—C11	108.90 (19)

C12—Ti1—C11	34 56 (6)	C13—C12—Ti1	71.85 (10)
C14— $Ti1$ — $C11$	57 51 (6)	C11-C12-Ti1	74 96 (10)
C1-Ti1-C11	162.06.(6)	C13 - C12 - H12	125.6
C_2 _Ti1_C11	151.86 (7)	C11_C12_H12	125.6
C_{15} T_{11} C_{11}	34.28 (6)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	110 /
C_{13} T_{11} C_{11}	130.72(6)	$111 - C_{12} - 1112$	119.4
C_{4} T_{1} C_{11}	139.73(0) 120.00(6)	C14 - C13 - C12	106.14(16)
C_{4} T_{11} C_{5}	139.00(0)	C12 - C12 - T11	73.09(11)
C13 - III - C5	111.04(7) 120.22(7)	C12 - C13 - III	/3.33 (10)
C12-111-C5	120.23 (7)	C14—C13—H13	125.9
	131.30(7)	С12—С13—Н13	125.9
CI-III-C5	34.39 (7)	Ti1—C13—H13	118.9
C2-Ti1-C5	57.22 (7)	C13—C14—C15	107.78 (18)
C15—Ti1—C5	165.47 (7)	C13—C14—Ti1	71.78 (11)
C3—Ti1—C5	56.43 (7)	C15—C14—Ti1	74.07 (11)
C4—Ti1—C5	33.92 (7)	C13—C14—H14	126.1
C11—Ti1—C5	150.72 (7)	C15—C14—H14	126.1
C13—Ti1—C27	131.75 (7)	Ti1—C14—H14	119.9
C12—Ti1—C27	114.77 (6)	C14—C15—C11	109.50 (19)
C14—Ti1—C27	103.74 (8)	C14—C15—Ti1	71.74 (11)
C1—Ti1—C27	84.85 (7)	C11—C15—Ti1	73.74 (10)
C2—Ti1—C27	84.51 (6)	C14—C15—H15	125.2
C15—Ti1—C27	74.94 (7)	C11—C15—H15	125.2
C3—Ti1—C27	115.85 (7)	Ti1—C15—H15	120.9
C4—Ti1—C27	139.65 (6)	C11—C16—C17	111.73 (15)
C11—Ti1—C27	80.89 (6)	C11—C16—C21	111.17 (15)
C5—Ti1—C27	116.46 (7)	C17—C16—C21	107.36 (14)
C13—Ti1—C26	111.45 (7)	C11—C16—A11	95.59 (10)
C12— $Ti1$ — $C26$	79 78 (7)	C17 - C16 - A11	114 39 (12)
C14—Ti1—C26	135 46 (7)	$C_{1} = C_{16} = A_{11}$	116 31 (12)
C1— $Ti1$ — $C26$	86 63 (7)	C18 - C17 - C22	108.65(12)
C_2 _Ti1_ C_26	120.95 (6)	C18 - C17 - C16	100.05(15) 109.26(15)
C_{15} T_{11} C_{26}	112 82 (6)	$C_{10} = C_{17} = C_{16}$	109.20(15)
$C_{13} = 11 = C_{20}$	112.32(0) 135.35(7)	$C_{22} = C_{17} = C_{10}$	100.3
C_{4} Til C_{26}	135.35(7) 106.17(7)	$C_{10} = C_{17} = H_{17}$	109.5
$C_{4} = 111 = C_{20}$	80.66.(6)	$C_{22} = C_{17} = H_{17}$	109.3
$C_{11} = 11 = C_{20}$	30.00(0)	$C_{10} = C_{17} = M_{17}$	109.3
$C_{27} = T_{11} = C_{20}$	70.93(7)	$C_{19} = C_{18} = C_{17}$	100.6
$C_{2} = -11 - C_{20}$	61.97(7)	С17—С18—Н18А	109.0
C13 - T11 - A11	115.05(5)	C10 - C18 - H18A	109.6
C12—111—A11	82.96 (5)	C19—C18—H18B	109.6
	112.78 (5)	C17—C18—H18B	109.6
Cl—Til—All	102.43 (5)	H18A—C18—H18B	108.1
C2—Iil—All	121.82 (5)	C18—C19—C20	109.55 (16)
C15—Ti1—Al1	79.34 (5)	C18—C19—C23	109.08 (18)
C3—Ti1—All	156.15 (5)	C20—C19—C23	109.54 (18)
C4—Ti1—Al1	147.83 (5)	C18—C19—H19	109.6
C11—Ti1—Al1	59.66 (4)	C20—C19—H19	109.6
C5—Ti1—Al1	115.01 (5)	C23—C19—H19	109.6
C27—Ti1—Al1	44.47 (5)	C21—C20—C19	109.71 (17)

C26—Ti1—A11	43.81 (5)	C21_C20_H20A	109 7
C_{13} T_{11} H_{26A}	97.0 (6)	C19 - C20 - H20A	109.7
C_{12} Ti1 H26A	72 5 (5)	C_{21} C_{20} H_{20R}	109.7
C12 III II20A	1290(5)	$C_{10} = C_{20} = H_{20B}$	109.7
$C1 Ti1 H26\Lambda$	863 (5)	$H_{20A} = C_{20} = H_{20B}$	109.7
$C_1 = 111 = 1120 A$	120.2(5)	1120A - C20 - 1120B	108.2
$C_2 = 111 = 1120A$	120.2(5) 121.2(6)	$C_{20} = C_{21} = C_{24}$	108.30(13) 100.01(15)
C_{13} H_{20} H_{20}	121.2(0)	$C_{20} = C_{21} = C_{10}$	109.91(13)
$C_3 = H_2 C_A$	119.5 (6)	$C_{24} = C_{21} = C_{16}$	110.84 (10)
C4—111—H26A	86.6 (6)	C20—C21—H21	109.2
C11—111—H26A	8/.0 (6)	C24—C21—H21	109.2
C5—111—H26A	66.3 (6)	С16—С21—Н21	109.2
C27—Ti1—H26A	105.1 (6)	C25—C22—C17	109.61 (16)
C26—Ti1—H26A	23.3 (6)	C25—C22—H22A	109.7
Al1—Ti1—H26A	66.1 (6)	C17—C22—H22A	109.7
C28—Al1—C26	108.08 (9)	C25—C22—H22B	109.7
C28—Al1—C16	123.47 (8)	C17—C22—H22B	109.7
C26—Al1—C16	103.71 (8)	H22A—C22—H22B	108.2
C28—Al1—C27	105.47 (9)	C25—C23—C19	109.20 (15)
C26—Al1—C27	108.83 (9)	С25—С23—Н23А	109.8
C16—Al1—C27	106.73 (8)	C19—C23—H23A	109.8
C28—Al1—Ti1	149.60 (6)	С25—С23—Н23В	109.8
C26—Al1—Ti1	60.34 (6)	С19—С23—Н23В	109.8
C16—Al1—Ti1	86.90 (5)	H23A—C23—H23B	108.3
C27—A11—Ti1	59.09 (6)	C25—C24—C21	109.67 (16)
C5-C1-C2	107.81 (16)	C25—C24—H24A	109.7
C5-C1-C6	125.52 (18)	C21—C24—H24A	109.7
$C^2 - C^1 - C^6$	126.12 (19)	C_{25} C_{24} H_{24B}	109.7
C_{2} C_{1} T_{1}	7454(10)	$C_{21} - C_{24} - H_{24B}$	109.7
$C_2 - C_1 - T_1$	72 70 (10)	$H_{24} = C_{24} = H_{24B}$	109.7
C6-C1-Til	125 20 (12)	C^{22}	100.2
C_{3} C_{2} C_{1}	125.20(12) 107.00(17)	$C_{22} = C_{23} = C_{23}$	109.80(16) 100.33(16)
$C_3 = C_2 = C_1$	107.09(17) 125.69(19)	$C_{22} = C_{23} = C_{24}$	109.33(10) 100.38(19)
$C_{3} = C_{2} = C_{7}$	125.06(18) 126.77(17)	$C_{23} = C_{23} = C_{24}$	109.38 (18)
$C_1 = C_2 = C_1$	120.77(17)	$C_{22} = C_{23} = H_{23}$	109.4
$C_3 = C_2 = T_1^2$	73.24 (10)	C23—C25—H25	109.4
C1 = C2 = T1	/2.40 (10)	C24—C25—H25	109.4
$C/-C_2-111$	125.83 (12)	AII = C26 = III	/5.85 (/)
C4—C3—C2	109.00 (16)	All—C26—H26A	133.6 (13)
C4—C3—C8	125.40 (18)	Til—C26—H26A	62.1 (14)
C2-C3-C8	125.0 (2)	Al1—C26—H26B	107.4 (14)
C4—C3—Ti1	73.70 (10)	Ti1—C26—H26B	114.7 (14)
C2—C3—Ti1	72.40 (10)	H26A—C26—H26B	107.4 (18)
C8—C3—Ti1	126.91 (12)	Al1—C26—H26C	94.0 (14)
C3—C4—C5	108.26 (16)	Ti1—C26—H26C	138.2 (13)
C3—C4—C9	126.24 (18)	H26A—C26—H26C	104.1 (18)
C5—C4—C9	125.0 (2)	H26B—C26—H26C	107.1 (19)
C3—C4—Ti1	72.40 (10)	Al1—C27—Ti1	76.44 (7)
C5—C4—Ti1	73.56 (11)	Al1—C27—H27A	140.1 (13)
C9—C4—Til	126.44 (13)	Ti1—C27—H27A	65.5 (14)

C4—C5—C1	107.81 (18)	Al1—C27—H27B	103.6 (14)
C4—C5—C10	124.33 (19)	Ti1—C27—H27B	120.1 (13)
C1—C5—C10	127.44 (18)	H27A—C27—H27B	105.4 (18)
C4—C5—Ti1	72.52 (10)	Al1—C27—H27C	94.9 (14)
C1—C5—Ti1	71.08 (10)	Ti1—C27—H27C	133.8 (13)
C10—C5—Ti1	127.77 (13)	H27A—C27—H27C	102.7(19)
C1—C6—H6A	109.5	H27B—C27—H27C	106.2 (19)
C1—C6—H6B	109.5	Al1—C28—H28A	109.5
H6A—C6—H6B	109.5	Al1—C28—H28B	109.5
C1 - C6 - H6C	109.5	H28A—C28—H28B	109.5
H6A - C6 - H6C	109.5	A11-C28-H28C	109.5
H6B-C6-H6C	109.5	H28A—C28—H28C	109.5
$C^2 - C^7 - H^7 A$	109.5	$H_{28B} - C_{28} - H_{28C}$	109.5
$C_2 - C_7 - H_7B$	109.5	11200 020 11200	109.5
	109.5		
$C_{5}-C_{1}-C_{2}-C_{3}$	1 29 (19)	C12—C13—C14—Ti1	65 77 (12)
C6-C1-C2-C3	173 12 (17)	C13 - C14 - C15 - C11	-0.2(2)
$T_{1} - C_{1} - C_{2} - C_{3}$	-6554(12)	Ti1-C14-C15-C11	-64.56(12)
$C_{5} - C_{1} - C_{2} - C_{7}$	$-171\ 20\ (17)$	C13— $C14$ — $C15$ — $Ti1$	64 34 (13)
C6-C1-C2-C7	0.6(3)	C_{12} C_{11} C_{15} C_{14}	0.43(19)
$T_{1} - C_{1} - C_{2} - C_{7}$	121.97(18)	C16-C11-C15-C14	$174\ 87\ (15)$
C_{5} C_{1} C_{2} T_{11}	66.83 (12)	Ti1-C11-C15-C14	63 28 (13)
$C_{6} - C_{1} - C_{2} - T_{11}$	-12134(18)	C_{12} C_{11} C_{15} T_{11}	-62.86(11)
$C_1 - C_2 - C_3 - C_4$	-0.15(19)	$C_{12} = C_{11} = C_{15} = T_{11}$	111 59 (15)
$C_1 - C_2 - C_3 - C_4$	$172\ 44\ (16)$	$C_{10} - C_{11} - C_{16} - C_{17}$	35 8 (2)
$C_1 - C_2 - C_3 - C_4$	-65.13(12)	C_{12} C_{11} C_{16} C_{17}	-150.96(16)
$C_1 C_2 C_3 C_8$	-171.86(16)	$T_{11} = C_{11} = C_{10} = C_{17}$	122 01 (13)
$C_1 - C_2 - C_3 - C_8$	171.00(10) 0.7(3)	$C_{15} = C_{11} = C_{16} = C_{17}$	155 76 (16)
$C_1 - C_2 - C_3 - C_6$	123 17 (18)	$C_{12} = C_{11} = C_{10} = C_{21}$	-310(2)
$C_1 = C_2 = C_3 = C_3$	123.17(18) 64.07(12)	$T_{11} = C_{11} = C_{10} = C_{21}$	-117 17 (14)
$C_1 - C_2 - C_3 - T_{11}$	-122.43(17)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-83.21(17)
$C_{1}^{2} = C_{2}^{2} = C_{3}^{2} = C_{4}^{2} = C_{5}^{2}$	-1.1(2)	$C_{12} = C_{11} = C_{16} = A_{11}$	80.00(17)
$C_2 - C_3 - C_4 - C_5$	1.1(2) 170 61 (17)	$\begin{array}{c} C12 - C11 - C10 - A11 \\ T11 - C11 - C16 - A11 \end{array}$	386(14)
$C_{0} - C_{1} - C_{1} - C_{2}$	-65.34(13)	$C_{11} = C_{16} = C_{17} = C_{18}$	-176.03(14)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-173 03 (17)	$C_{11} = C_{10} = C_{17} = C_{18}$	60.04 (18)
$C_2 - C_3 - C_4 - C_9$	-14(3)	11 - 16 - 17 - 18	-60.73(17)
$C_{0} - C_{1} - C_{1} - C_{2}$	1.7(5)	$C_{11} = C_{10} = C_{17} = C_{18}$	63.35(17)
$C_2 = C_3 = C_4 = C_3$	64.29(12)	$C_{11} = C_{10} = C_{17} = C_{22}$	-58.78(19)
$C_2 = C_3 = C_4 = 111$	-124.05(12)	$A_{11} = C_{16} = C_{17} = C_{22}$	170.55(13)
$C_{3} = C_{4} = C_{5} = C_{1}$	124.03(10)	$C_{10} = C_{10} = C_{17} = C_{22}$	170.33(13)
C_{3} C_{4} C_{5} C_{1}	1.0(2) 172.05(17)	C_{22} C_{17} C_{18} C_{19}	-60.05(10)
$C_{9} - C_{4} - C_{5} - C_{1}$	-62.72(12)	C10 - C17 - C18 - C19	-00.93(19)
111 - 04 - 05 - 01	-02.73(12) -171.10(17)	C17 - C18 - C19 - C20	59.2(2)
C_{3} C_{4} C_{5} C_{10}	-1/1.19(1/)	C17 - C18 - C19 - C23	-58.0(2)
$C_7 - C_4 - C_5 - C_{10}$	U.9 (3) 124 22 (19)	$C_{10} - C_{19} - C_{20} - C_{21}$	-30.9(2)
111 - 04 - 03 - 010	124.23 (18)	C_{23} $-C_{19}$ $-C_{20}$ $-C_{21}$ C_{24}	00.7(2)
$C_{0} = C_{4} = C_{5} = T_{1}^{11}$	04.37(12)	$C_{19} - C_{20} - C_{21} - C_{24}$	-00.5(2)
$C_{3} = C_{4} = C_{5} = C_{4}$	-123.32(18)	C19 - C20 - C21 - C16	00.8 (2)
$U_2 - U_1 - U_3 - U_4$	-1.9 (2)	C11—C16—C21—C20	1/6.23 (15)

C6—C1—C5—C4	-173.83 (17)	C17—C16—C21—C20	-61.29 (19)
Ti1—C1—C5—C4	63.66 (12)	Al1—C16—C21—C20	68.30 (18)
C2-C1-C5-C10	170.82 (17)	C11—C16—C21—C24	-63.84 (19)
C6—C1—C5—C10	-1.1 (3)	C17—C16—C21—C24	58.64 (19)
Ti1—C1—C5—C10	-123.58 (19)	Al1—C16—C21—C24	-171.78 (13)
C2—C1—C5—Ti1	-65.60 (12)	C18—C17—C22—C25	-59.5 (2)
C6—C1—C5—Ti1	122.50 (18)	C16—C17—C22—C25	60.6 (2)
C15—C11—C12—C13	-0.48 (18)	C18—C19—C23—C25	60.0 (2)
C16-C11-C12-C13	-174.75 (15)	C20—C19—C23—C25	-59.9 (2)
Ti1—C11—C12—C13	-64.34 (12)	C20—C21—C24—C25	60.5 (2)
C15—C11—C12—Ti1	63.87 (11)	C16—C21—C24—C25	-60.3 (2)
C16—C11—C12—Ti1	-110.41 (16)	C17—C22—C25—C23	60.2 (2)
C11—C12—C13—C14	0.4 (2)	C17—C22—C25—C24	-59.9 (2)
Ti1—C12—C13—C14	-66.01 (13)	C19—C23—C25—C22	-60.2 (2)
C11—C12—C13—Ti1	66.37 (12)	C19—C23—C25—C24	59.8 (2)
C12-C13-C14-C15	-0.1 (2)	C21—C24—C25—C22	59.8 (2)
Ti1—C13—C14—C15	-65.86 (13)	C21—C24—C25—C23	-60.5 (2)

(2) $[\mu-1(\eta^5)-(\text{Adamantan}-1-yl-2\kappa C^1)$ cycylopentadienyl] di- μ_2 -methyl-methyl- $2\kappa C$ - $[1(\eta^5)-$

pentamethylcyclopentadienyl]-galliumtitanium(III)

Crystal data [GaTi(CH₃)₃(C₁₀H₁₅)(C₁₅H₁₈)] $M_r = 496.23$ Monoclinic, $P2_1/c$ a = 12.1445 (8) Å b = 19.9196 (7) Å c = 10.0350 (4) Å $\beta = 91.400$ (7)° V = 2426.9 (2) Å³ Z = 4

Data collection

Stoe IPDS diffractometer Radiation source: sealed tube ω -scans Absorption correction: numerical (*X-RED*; Stoe, 1999) $T_{\min} = 0.571, T_{\max} = 0.717$ 28356 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.026$ $wR(F^2) = 0.065$ S = 0.945895 reflections 295 parameters 0 restraints F(000) = 1052 $D_x = 1.358 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 8000 reflections $\theta = 2.6-28.4^{\circ}$ $\mu = 1.45 \text{ mm}^{-1}$ T = 153 KBlock, green $0.50 \times 0.30 \times 0.29 \text{ mm}$

5895 independent reflections 4830 reflections with $I > 2\sigma(I)$ $R_{int} = 0.042$ $\theta_{max} = 28.3^{\circ}, \ \theta_{min} = 2.7^{\circ}$ $h = -16 \rightarrow 16$ $k = -26 \rightarrow 26$ $l = -13 \rightarrow 13$

Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.045P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.57$ e Å⁻³ $\Delta\rho_{min} = -0.32$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Ti1	0.26510(2)	0.59328 (2)	0.23594 (3)	0.01499 (6)	
Gal	0.24185 (2)	0.44945 (2)	0.21612 (2)	0.01868 (5)	
C1	0.26371 (12)	0.62639 (7)	0.00683 (16)	0.0200 (3)	
C2	0.35740 (11)	0.65699 (7)	0.07047 (15)	0.0187 (3)	
C3	0.31964 (12)	0.70397 (7)	0.16453 (16)	0.0201 (3)	
C4	0.20233 (12)	0.70289 (7)	0.16042 (16)	0.0218 (3)	
C5	0.16791 (12)	0.65626 (8)	0.06199 (16)	0.0220 (3)	
C6	0.26467 (16)	0.57887 (8)	-0.10972 (18)	0.0306 (4)	
H6A	0.3388	0.5603	-0.1187	0.046*	
H6B	0.2434	0.6031	-0.1914	0.046*	
H6C	0.2124	0.5423	-0.0950	0.046*	
C7	0.47592 (12)	0.64853 (8)	0.03272 (18)	0.0263 (3)	
H7A	0.5226	0.6463	0.1137	0.039*	
H7B	0.4984	0.6868	-0.0215	0.039*	
H7C	0.4839	0.6070	-0.0185	0.039*	
C8	0.38924 (15)	0.75375 (8)	0.24158 (19)	0.0305 (4)	
H8A	0.3962	0.7951	0.1894	0.046*	
H8B	0.4625	0.7346	0.2593	0.046*	
H8C	0.3544	0.7640	0.3262	0.046*	
C9	0.12758 (15)	0.75012 (9)	0.2327 (2)	0.0341 (4)	
H9A	0.0645	0.7251	0.2662	0.051*	
H9B	0.1014	0.7852	0.1713	0.051*	
H9C	0.1682	0.7707	0.3077	0.051*	
C10	0.05046 (13)	0.64805 (9)	0.0134 (2)	0.0336 (4)	
H10A	0.0258	0.6894	-0.0312	0.050*	
H10B	0.0035	0.6390	0.0894	0.050*	
H10C	0.0456	0.6105	-0.0495	0.050*	
C11	0.26365 (12)	0.52545 (7)	0.43654 (15)	0.0169 (3)	
C12	0.18259 (13)	0.57730 (8)	0.44522 (16)	0.0220 (3)	
H12	0.1053	0.5705	0.4491	0.026*	
C13	0.23655 (15)	0.64068 (8)	0.44711 (17)	0.0276 (3)	
H13	0.2018	0.6833	0.4528	0.033*	
C14	0.35007 (15)	0.62917 (8)	0.43912 (17)	0.0275 (3)	
H14	0.4059	0.6626	0.4382	0.033*	
C15	0.36680 (12)	0.55911 (7)	0.43266 (16)	0.0211 (3)	
H15	0.4364	0.5377	0.4266	0.025*	
C16	0.24577 (11)	0.45104 (7)	0.41968 (15)	0.0160 (3)	
C17	0.34130 (11)	0.40929 (7)	0.48259 (16)	0.0199 (3)	
H17	0.4123	0.4234	0.4427	0.024*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

C18	0.32215 (14)	0.33399 (8)	0.45491 (19)	0.0268 (3)
H18A	0.3188	0.3260	0.3575	0.032*
H18B	0.3842	0.3076	0.4934	0.032*
C19	0.21393 (15)	0.31129 (8)	0.51680 (19)	0.0307 (4)
H19	0.2013	0.2626	0.4975	0.037*
C20	0.11816 (13)	0.35279 (8)	0.45715 (19)	0.0279 (3)
H20A	0.0482	0.3385	0.4971	0.033*
H20B	0.1122	0.3451	0.3598	0.033*
C21	0.13800 (12)	0.42791 (8)	0.48504 (16)	0.0211 (3)
H21	0.0748	0.4545	0.4470	0.025*
C22	0.34832 (13)	0.41990 (8)	0.63446 (17)	0.0256 (3)
H22A	0.4107	0.3938	0.6729	0.031*
H22B	0.3615	0.4680	0.6543	0.031*
C23	0.22157 (16)	0.32224 (9)	0.6678 (2)	0.0360 (4)
H23A	0.2831	0.2954	0.7065	0.043*
H23B	0.1525	0.3073	0.7089	0.043*
C24	0.14504 (14)	0.43846 (9)	0.63692 (18)	0.0283 (3)
H24A	0.1565	0.4867	0.6569	0.034*
H24B	0.0751	0.4243	0.6771	0.034*
C25	0.24086 (14)	0.39729 (9)	0.69729 (18)	0.0300 (4)
H25	0.2455	0.4046	0.7959	0.036*
C26	0.10953 (13)	0.50957 (8)	0.16647 (18)	0.0233 (3)
H26A	0.0920 (18)	0.5522 (11)	0.194 (2)	0.035*
H26B	0.0986 (18)	0.5057 (11)	0.077 (3)	0.035*
H26C	0.0531 (19)	0.4848 (11)	0.206 (2)	0.035*
C27	0.38617 (12)	0.49823 (8)	0.15818 (17)	0.0185 (3)
H27A	0.4057 (18)	0.5323 (11)	0.169 (2)	0.028*
H27B	0.3895 (16)	0.4900 (10)	0.076 (2)	0.028*
H27C	0.4357 (17)	0.4692 (10)	0.206 (2)	0.028*
C28	0.23418 (15)	0.36701 (8)	0.10482 (19)	0.0298 (4)
H28A	0.1762	0.3374	0.1374	0.045*
H28B	0.3051	0.3436	0.1101	0.045*
H28C	0.2174	0.3793	0.0120	0.045*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ti1	0.01601 (11)	0.01426 (11)	0.01467 (14)	-0.00026 (8)	-0.00024 (9)	-0.00099 (9)
Gal	0.02268 (8)	0.01700 (8)	0.01628 (9)	0.00069 (6)	-0.00110 (6)	-0.00145 (6)
C1	0.0237 (7)	0.0198 (7)	0.0162 (8)	-0.0006 (5)	-0.0012 (6)	0.0024 (5)
C2	0.0195 (6)	0.0185 (6)	0.0181 (8)	0.0002 (5)	0.0019 (5)	0.0040 (5)
C3	0.0240 (7)	0.0166 (6)	0.0196 (8)	-0.0012 (5)	0.0001 (6)	0.0022 (5)
C4	0.0236 (7)	0.0189 (7)	0.0230 (8)	0.0044 (5)	0.0040 (6)	0.0051 (6)
C5	0.0198 (7)	0.0234 (7)	0.0228 (9)	-0.0001 (5)	-0.0017 (6)	0.0079 (6)
C6	0.0467 (10)	0.0263 (8)	0.0186 (9)	-0.0027 (7)	-0.0031 (7)	-0.0022 (6)
C7	0.0210 (7)	0.0296 (8)	0.0285 (9)	0.0032 (6)	0.0057 (6)	0.0071 (6)
C8	0.0410 (9)	0.0209 (7)	0.0293 (10)	-0.0085 (7)	-0.0037 (7)	-0.0007 (6)
C9	0.0379 (9)	0.0302 (8)	0.0347 (11)	0.0139 (7)	0.0106 (8)	0.0035 (7)

C10	0.0214 (7)	0.0389 (9)	0.0400 (11)	-0.0047 (6)	-0.0089 (7)	0.0157 (8)
C11	0.0198 (6)	0.0186 (6)	0.0124 (7)	-0.0002 (5)	-0.0010 (5)	-0.0001 (5)
C12	0.0253 (7)	0.0241 (7)	0.0168 (8)	0.0039 (6)	0.0035 (6)	-0.0015 (6)
C13	0.0475 (10)	0.0183 (7)	0.0170 (8)	0.0036 (6)	0.0006 (7)	-0.0036 (6)
C14	0.0392 (9)	0.0219 (7)	0.0210 (9)	-0.0097 (6)	-0.0083 (7)	-0.0007 (6)
C15	0.0225 (7)	0.0226 (7)	0.0180 (8)	-0.0048 (5)	-0.0057 (6)	0.0017 (5)
C16	0.0150 (6)	0.0165 (6)	0.0167 (7)	-0.0006 (5)	-0.0007(5)	0.0012 (5)
C17	0.0173 (6)	0.0213 (7)	0.0210 (8)	0.0012 (5)	-0.0020 (5)	0.0041 (6)
C18	0.0313 (8)	0.0198 (7)	0.0291 (10)	0.0052 (6)	-0.0024 (7)	0.0051 (6)
C19	0.0353 (8)	0.0215 (7)	0.0351 (10)	-0.0060 (6)	-0.0029 (7)	0.0089 (7)
C20	0.0255 (7)	0.0250 (8)	0.0330 (10)	-0.0094 (6)	-0.0007 (6)	0.0059 (7)
C21	0.0161 (6)	0.0243 (7)	0.0230 (9)	-0.0027 (5)	0.0006 (6)	0.0031 (6)
C22	0.0243 (7)	0.0304 (8)	0.0217 (9)	-0.0011 (6)	-0.0056 (6)	0.0044 (6)
C23	0.0385 (9)	0.0350 (9)	0.0345 (11)	-0.0036 (7)	-0.0007 (8)	0.0180 (8)
C24	0.0265 (8)	0.0362 (9)	0.0226 (9)	-0.0013 (6)	0.0078 (6)	0.0037 (7)
C25	0.0336 (8)	0.0389 (9)	0.0176 (9)	-0.0036 (7)	0.0009 (7)	0.0086 (7)
C26	0.0210 (7)	0.0271 (8)	0.0216 (9)	0.0014 (6)	-0.0019 (6)	0.0035 (6)
C27	0.0180 (6)	0.0173 (7)	0.0205 (8)	-0.0001 (5)	0.0062 (6)	0.0016 (6)
C28	0.0369 (9)	0.0261 (8)	0.0264 (10)	-0.0022 (6)	0.0004 (7)	-0.0091 (7)

Geometric parameters (Å, °)

Til—C13	2.3533 (17)	C11—C12	1.431 (2)
Til—C12	2.3704 (16)	C11—C16	1.5069 (19)
Til—C14	2.3728 (16)	C12—C13	1.422 (2)
Til—C2	2.3906 (15)	C12—H12	0.9500
Til—C1	2.3916 (16)	C13—C14	1.402 (3)
Til—C15	2.4013 (15)	C13—H13	0.9500
Til—C3	2.4160 (14)	C14—C15	1.412 (2)
Til—C11	2.4248 (15)	C14—H14	0.9500
Til—C4	2.4279 (14)	C15—H15	0.9500
Til—C5	2.4318 (15)	C16—C21	1.5483 (19)
Til—C27	2.5322 (16)	C16—C17	1.5493 (19)
Til—C26	2.6023 (17)	C17—C22	1.539 (2)
Til—Gal	2.8852 (3)	C17—C18	1.542 (2)
Ti1—H27A	2.22 (2)	C17—H17	1.0000
Ga1—C28	1.9869 (16)	C18—C19	1.535 (2)
Gal—C16	2.0423 (15)	C18—H18A	0.9900
Gal—C26	2.0556 (15)	C18—H18B	0.9900
Gal—C27	2.0985 (15)	C19—C23	1.531 (3)
C1—C2	1.428 (2)	C19—C20	1.536 (2)
C1—C5	1.430 (2)	C19—H19	1.0000
C1—C6	1.505 (2)	C20—C21	1.540 (2)
С2—С3	1.414 (2)	C20—H20A	0.9900
С2—С7	1.507 (2)	C20—H20B	0.9900
С3—С4	1.424 (2)	C21—C24	1.539 (2)
С3—С8	1.504 (2)	C21—H21	1.0000
C4—C5	1.412 (2)	C22—C25	1.531 (2)

C_{4} - C_{9}	1 506 (2)	С22_Н22А	0.000
C_{5} C_{10}	1.505(2)	C22 H22R	0.9900
C6 H6A	0.0200	C22—I122B	1.541(2)
	0.9800	C23—C23	0.0000
	0.9800	C23—H23A	0.9900
	0.9800	C23—H25B	0.9900
	0.9800	C_{24}	1.536 (2)
	0.9800	C24—H24A	0.9900
C = H C	0.9800	C24—H24B	0.9900
C8—H8A	0.9800	C25—H25	1.0000
C8—H8B	0.9800	С26—Н26А	0.92 (2)
C8—H8C	0.9800	C26—H26B	0.90 (2)
С9—Н9А	0.9800	C26—H26C	0.94 (2)
С9—Н9В	0.9800	С27—Н27А	0.73 (2)
С9—Н9С	0.9800	C27—H27B	0.84 (2)
C10—H10A	0.9800	C27—H27C	0.96 (2)
C10—H10B	0.9800	C28—H28A	0.9800
C10—H10C	0.9800	C28—H28B	0.9800
C11—C15	1.422 (2)	C28—H28C	0.9800
C13—Ti1—C12	35.05 (6)	H7A—C7—H7B	109.5
C13—Ti1—C14	34.51 (6)	C2—C7—H7C	109.5
C12—Ti1—C14	57.56 (6)	H7A—C7—H7C	109.5
C13—Ti1—C2	119.63 (6)	H7B-C7-H7C	109.5
C12 - Ti1 - C2	154 45 (5)	$C_3 - C_8 - H_8 A$	109.5
C14—Ti1—C2	103 62 (6)	$C_3 - C_8 - H_{8B}$	109.5
C13 Ti1 C1	139.23(5)	H8A - C8 - H8B	109.5
C_{12} T_{11} C_{1}	153.58 (5)	$C_3 - C_8 - H_8C$	109.5
C_{12} III Cl	137.36(5)		109.5
$C_2 T_1 C_1$	34 74 (5)		109.5
$C_2 = 111 = C_1$	57.16 (6)	CA = CO = HOA	109.5
$C_{13} = T_{11} = C_{15}$	56.80 (5)	$C_4 = C_9 = H_9 R_1$	109.5
C12 - T11 - C15	30.09(5)	C_{4}	109.5
$C_1 = C_1 $	34.40(3)	$H_{A} = C_{A} = H_{A} = H_{A}$	109.5
$C_2 = 111 = C_{15}$	110.75(5)		109.5
C12 T11 C2	149.30 (5)	H9A—C9—H9C	109.5
	87.04 (6)	H9B—C9—H9C	109.5
C12-111-C3	120.68 (5)	C5—C10—H10A	109.5
C14 - 111 - C3	82.14 (5)	C5—C10—H10B	109.5
C2—Ti1—C3	34.20 (5)	HI0A—CI0—HI0B	109.5
C1— $I11$ — $C3$	57.23 (5)	C5—C10—H10C	109.5
C15—Ti1—C3	111.30 (5)	H10A—C10—H10C	109.5
C13—Ti1—C11	58.12 (5)	H10B—C10—H10C	109.5
C12—Ti1—C11	34.70 (5)	C15—C11—C12	105.61 (13)
C14—Ti1—C11	57.75 (5)	C15—C11—C16	125.82 (13)
C2—Ti1—C11	152.31 (5)	C12—C11—C16	128.26 (13)
C1—Ti1—C11	162.12 (5)	C15—C11—Ti1	71.96 (9)
C15—Ti1—C11	34.28 (5)	C12—C11—Ti1	70.57 (9)
C3—Ti1—C11	139.68 (5)	C16—C11—Ti1	117.31 (10)
C13—Ti1—C4	82.43 (6)	C13—C12—C11	108.91 (14)

C12—Ti1—C4	105.13 (5)	C13—C12—Ti1	71.82 (9)
C14—Ti1—C4	97.12 (6)	C11—C12—Ti1	74.73 (9)
C2—Ti1—C4	56.96 (5)	C13—C12—H12	125.5
C1—Ti1—C4	57.12 (5)	C11—C12—H12	125.5
C15—Ti1—C4	131.51 (5)	Ti1—C12—H12	119.7
C3—Ti1—C4	34.20 (5)	C14—C13—C12	107.91 (14)
C11— $Ti1$ — $C4$	13874(5)	C14— $C13$ — $Ti1$	73 51 (10)
C13— $Ti1$ — $C5$	111 09 (6)	C12-C13-Til	73 13 (9)
C12— $Ti1$ — $C5$	119.80 (5)	C14—C13—H13	126.0
C14— $Ti1$ — $C5$	130.89 (6)	C12—C13—H13	126.0
C_2 —Ti1—C5	56.98 (5)	Ti1_C13_H13	119.2
C1 - Ti1 - C5	34.49(5)	C_{13} C_{14} C_{15}	107.89 (14)
C_{15} T_{11} C_{5}	165.29(5)	C_{13} C_{14} C_{15}	71.00(0)
C_{13} T_{11} C_{5}	105.29(5)	$C_{15} = C_{14} = T_{11}$	71.99(9)
C_{11} T_{11} C_{5}	150.30(5)	$C_{13} = C_{14} = 111$	126.1
$C_1 = 11 = C_2$	130.40(3)	$C_{15} = C_{14} = H_{14}$	120.1
$C_{4} = 11 = C_{3}$	33.76(3)	C13 - C14 - H14	120.1
C13 - 111 - C27	132.01 (0)	111—C14—H14	119.9
C12-111-C27	115./1 (5)	C14 - C15 - C11	109.69 (14)
C14-111-C27	104.27 (6)	C14 - C15 - 111	/1.69 (9)
$C_2 = 111 = C_27$	84.10 (5)		73.77 (8)
C1— 111 — $C27$	84.29 (5)	С14—С15—Н15	125.2
C15—T11—C27	75.55 (6)	С11—С15—Н15	125.2
C3—Ti1—C27	115.18 (5)	Ti1—C15—H15	121.0
C11—Ti1—C27	81.67 (5)	C11—C16—C21	111.47 (12)
C4—Ti1—C27	139.16 (5)	C11—C16—C17	112.20 (11)
C5—Ti1—C27	116.09 (6)	C21—C16—C17	107.46 (12)
C13—Ti1—C26	112.11 (6)	C11—C16—Ga1	97.31 (9)
C12—Ti1—C26	80.29 (6)	C21—C16—Ga1	114.82 (10)
C14—Ti1—C26	136.13 (6)	C17—C16—Ga1	113.46 (10)
C2—Ti1—C26	120.25 (5)	C22—C17—C18	108.45 (13)
C1—Ti1—C26	86.05 (5)	C22—C17—C16	110.65 (12)
C15—Ti1—C26	113.21 (5)	C18—C17—C16	109.91 (12)
C3—Ti1—C26	135.06 (5)	С22—С17—Н17	109.3
C11—Ti1—C26	81.10 (5)	C18—C17—H17	109.3
C4—Ti1—C26	105.80 (5)	C16—C17—H17	109.3
C5—Ti1—C26	78.57 (5)	C19—C18—C17	109.91 (14)
C27—Ti1—C26	82.04 (5)	C19—C18—H18A	109.7
C13—Ti1—Ga1	116.37 (4)	C17—C18—H18A	109.7
C12—Ti1—Ga1	83.39 (4)	C19—C18—H18B	109.7
C14—Ti1—Ga1	113.47 (4)	C17—C18—H18B	109.7
C2—Ti1—Ga1	121.73 (4)	H18A—C18—H18B	108.2
C1—Ti1—Ga1	102.07 (4)	C23—C19—C18	109.06 (15)
C15—Ti1—Ga1	79.79 (4)	C23—C19—C20	109.62 (16)
C3—Ti1—Gal	155.90 (4)	C18 - C19 - C20	109.35(13)
C11—Ti1—Gal	60.08 (3)	C23—C19—H19	109.6
C4—Ti1—Gal	147 35 (4)	C18—C19—H19	109.6
C5—Ti1—Gal	114 70 (4)	C20-C19-H19	109.6
C27—Ti1—Gal	45.00(3)	C19 - C20 - C21	109 78 (13)
<i>C_,</i> III Out		017 020 021	107.10(10)

C26—Ti1—Ga1	43.62 (3)	C19—C20—H20A	109.7
C13—Ti1—H27A	128.8 (6)	C21—C20—H20A	109.7
C12—Ti1—H27A	122.9 (6)	C19—C20—H20B	109.7
C14—Ti1—H27A	96.0 (6)	C21—C20—H20B	109.7
C2—Ti1—H27A	72.6 (6)	H20A—C20—H20B	108.2
C1—Ti1—H27A	81.1 (6)	C24—C21—C20	108.49 (13)
C15—Ti1—H27A	73.2 (6)	C24—C21—C16	110.60 (12)
C3—Ti1—H27A	101.0 (6)	C20—C21—C16	110.01 (13)
C11—Ti1—H27A	88.2 (6)	C24—C21—H21	109.2
C4—Ti1—H27A	129 5 (6)	C20—C21—H21	109.2
C_5 —Ti1—H27A	115 4 (6)	C_{16} C_{21} H_{21}	109.2
C_{27} Ti1 H27A	15.8 (6)	C_{25} C_{22} C_{17}	109.89 (13)
C_{26} Ti1_H27A	97.3 (6)	$C_{25} = C_{22} = H_{22} \Delta$	109.09 (13)
C_{20} III H_{27A}	57.5 (0) 60.6 (6)	$C_{23} = C_{22} = H_{22A}$	109.7
$C_{28}^{28} = C_{16}^{21} = C_{16}^{16}$	125 07 (7)	$C_{17} = C_{22} = H_{22R}$	109.7
$C_{20} = C_{10}$	123.07(7) 108.64(7)	C_{23} C_{22} C_{22} C_{22} C_{23} C_{22} C_{23} C	109.7
$C_{20} = C_{20} = C_{20}$	100.04(7)	C17 - C22 - H22B	109.7
C10 - Ga1 - C20	103.44 (6)	H22A—C22—H22B	108.2
$C_{28} = Ga1 = C_{27}$	104.//(/)	C19 - C23 - C25	109.49 (14)
C16-Ga1-C27	105./1 (6)	C19—C23—H23A	109.8
C_{26} —Gal—C27	108.45 (6)	C25—C23—H23A	109.8
C28—Gal—Til	149.61 (6)	С19—С23—Н23В	109.8
C16—Gal—Til	85.17 (4)	С25—С23—Н23В	109.8
C26—Ga1—Ti1	60.85 (5)	H23A—C23—H23B	108.2
C27—Ga1—Ti1	58.56 (4)	C25—C24—C21	109.93 (14)
C2—C1—C5	107.23 (13)	C25—C24—H24A	109.7
C2—C1—C6	126.51 (14)	C21—C24—H24A	109.7
C5—C1—C6	125.75 (14)	C25—C24—H24B	109.7
C2—C1—Ti1	72.59 (9)	C21—C24—H24B	109.7
C5—C1—Ti1	74.30 (9)	H24A—C24—H24B	108.2
C6—C1—Ti1	125.01 (10)	C22—C25—C24	109.01 (13)
C3—C2—C1	108.26 (13)	C22—C25—C23	109.48 (15)
C3—C2—C7	124.70 (14)	C24—C25—C23	109.39 (15)
C1—C2—C7	126.55 (14)	С22—С25—Н25	109.6
C3—C2—Ti1	73.88 (9)	C24—C25—H25	109.6
C1—C2—Ti1	72.67 (8)	С23—С25—Н25	109.6
C7—C2—Ti1	125.61 (10)	Ga1—C26—Ti1	75.53 (5)
$C_2 - C_3 - C_4$	108.13 (13)	Ga1—C26—H26A	130.7(14)
$C_2 - C_3 - C_8$	126 31 (14)	Ti1—C26—H26A	60.0(14)
C4-C3-C8	125.02(15)	Ga1—C26—H26B	106.6(14)
$C^2 - C^3 - Til$	71.92 (8)	Ti1-C26-H26B	1141(14)
C4-C3-Til	73 36 (8)	H_{264} C_{26} H_{26B}	110(2)
C_{8} C_{3} T_{11}	127 13 (11)	G_{21} C_{26} H_{26C}	99.6(13)
C_{5} C_{4} C_{3}	108 00 (13)	Ti1	1303(13)
$C_{5} = C_{4} = C_{5}$	100.00(13) 125.20(14)	H_{-C20} H_{20C}	100.7(14)
$C_{3} = C_{4} = C_{7}$	123.20(14) 126.22(15)	$H_{20}A = C_{20} = H_{20}C$	100.7 (19) 106.1 (10)
C_{3} C_{4} C_{5} C_{4} C_{1}	120.22(13)	$\Pi_{20} = 0.20 = \Pi_{20} = 0.000$	76.45(5)
$C_{2} = C_{4} = 111$	73.20(0)	$G_{a1} = C_{27} = H_{27}^{A}$	121.9(17)
C_{3} C_{4} T_{11}	12.44 (0)	$Ua1 - U2/ - \Pi 2/A$	131.0(17)
U9-U4-111	120.83 (11)	HI - UZ / - HZ / A	30.3 (17)

C4—C5—C1	108.35 (13)	Ga1—C27—H27B	103.9 (14)
C4—C5—C10	124.06 (15)	Ti1—C27—H27B	119.3 (14)
C1—C5—C10	127.09 (16)	H27A—C27—H27B	107 (2)
C4—C5—Ti1	72.96 (9)	Ga1—C27—H27C	95.7 (12)
C1—C5—Ti1	71.22 (8)	Ti1—C27—H27C	131.1 (13)
C10-C5-Ti1	128.02 (11)	H27A—C27—H27C	107 (2)
C1—C6—H6A	109.5	H27B—C27—H27C	109.4 (18)
C1—C6—H6B	109.5	Ga1—C28—H28A	109.5
Н6А—С6—Н6В	109.5	Ga1—C28—H28B	109.5
С1—С6—Н6С	109.5	H28A—C28—H28B	109.5
Н6А—С6—Н6С	109.5	Ga1—C28—H28C	109.5
H6B—C6—H6C	109.5	H28A—C28—H28C	109.5
С2—С7—Н7А	109.5	H28B—C28—H28C	109.5
С2—С7—Н7В	109.5		
C5—C1—C2—C3	0.94 (16)	C12-C13-C14-Ti1	65.56 (12)
C6—C1—C2—C3	173.10 (15)	C13-C14-C15-C11	-0.01 (19)
Ti1—C1—C2—C3	-65.84 (10)	Ti1-C14-C15-C11	-64.46 (11)
C5—C1—C2—C7	-171.35 (14)	C13—C14—C15—Ti1	64.45 (12)
C6—C1—C2—C7	0.8 (2)	C12-C11-C15-C14	0.17 (18)
Ti1—C1—C2—C7	121.87 (15)	C16—C11—C15—C14	174.25 (14)
C5—C1—C2—Ti1	66.78 (10)	Ti1-C11-C15-C14	63.15 (12)
C6—C1—C2—Ti1	-121.06 (15)	C12-C11-C15-Ti1	-62.98 (11)
C1—C2—C3—C4	0.13 (17)	C16—C11—C15—Ti1	111.10 (15)
C7—C2—C3—C4	172.59 (14)	C15-C11-C16-C21	156.47 (15)
Ti1—C2—C3—C4	-64.91 (10)	C12-C11-C16-C21	-30.8 (2)
C1—C2—C3—C8	-171.72 (15)	Ti1-C11-C16-C21	-116.80 (11)
C7—C2—C3—C8	0.7 (2)	C15-C11-C16-C17	35.9 (2)
Ti1—C2—C3—C8	123.24 (16)	C12-C11-C16-C17	-151.37 (15)
C1—C2—C3—Ti1	65.04 (10)	Ti1—C11—C16—C17	122.62 (11)
C7—C2—C3—Ti1	-122.49 (15)	C15-C11-C16-Ga1	-83.18 (15)
C2—C3—C4—C5	-1.17 (17)	C12-C11-C16-Ga1	89.56 (16)
C8—C3—C4—C5	170.82 (15)	Ti1—C11—C16—Ga1	3.55 (10)
Ti1—C3—C4—C5	-65.14 (10)	C11—C16—C17—C22	63.70 (16)
C2—C3—C4—C9	-172.80 (15)	C21—C16—C17—C22	-59.17 (15)
C8—C3—C4—C9	-0.8 (3)	Ga1—C16—C17—C22	172.79 (9)
Ti1—C3—C4—C9	123.23 (16)	C11—C16—C17—C18	-176.55 (13)
C2—C3—C4—Ti1	63.97 (10)	C21—C16—C17—C18	60.58 (16)
C8—C3—C4—Ti1	-124.05 (16)	Ga1—C16—C17—C18	-67.47 (14)
C3—C4—C5—C1	1.75 (17)	C22—C17—C18—C19	60.40 (16)
C9—C4—C5—C1	173.49 (15)	C16—C17—C18—C19	-60.68 (17)
Ti1—C4—C5—C1	-62.84 (10)	C17—C18—C19—C23	-60.83 (17)
C3—C4—C5—C10	-170.61 (14)	C17—C18—C19—C20	59.03 (19)
C9—C4—C5—C10	1.1 (2)	C23—C19—C20—C21	60.45 (18)
Ti1-C4-C5-C10	124.79 (15)	C18—C19—C20—C21	-59.06 (19)
C3—C4—C5—Ti1	64.60 (10)	C19—C20—C21—C24	-60.25 (17)
C9—C4—C5—Ti1	-123.66 (16)	C19—C20—C21—C16	60.87 (18)
C2-C1-C5-C4	-1.67 (17)	C11—C16—C21—C24	-64.24 (16)

C6—C1—C5—C4	-173.90 (15)	C17—C16—C21—C24	59.08 (16)
Ti1—C1—C5—C4	63.97 (11)	Ga1—C16—C21—C24	-173.66 (10)
C2-C1-C5-C10	170.41 (15)	C11—C16—C21—C20	175.92 (12)
C6—C1—C5—C10	-1.8 (3)	C17—C16—C21—C20	-60.76 (16)
Ti1—C1—C5—C10	-123.96 (15)	Ga1—C16—C21—C20	66.50 (14)
C2—C1—C5—Ti1	-65.64 (10)	C18—C17—C22—C25	-59.99 (16)
C6-C1-C5-Ti1	122.13 (15)	C16—C17—C22—C25	60.63 (16)
C15—C11—C12—C13	-0.26 (18)	C18—C19—C23—C25	60.07 (18)
C16—C11—C12—C13	-174.15 (15)	C20—C19—C23—C25	-59.62 (18)
Ti1—C11—C12—C13	-64.19 (12)	C20—C21—C24—C25	60.31 (16)
C15—C11—C12—Ti1	63.92 (11)	C16—C21—C24—C25	-60.43 (17)
C16—C11—C12—Ti1	-109.97 (15)	C17—C22—C25—C24	-59.51 (18)
C11—C12—C13—C14	0.26 (19)	C17—C22—C25—C23	60.12 (17)
Ti1—C12—C13—C14	-65.81 (12)	C21—C24—C25—C22	59.47 (18)
C11—C12—C13—Ti1	66.08 (11)	C21—C24—C25—C23	-60.21 (18)
C12-C13-C14-C15	-0.16 (19)	C19—C23—C25—C22	-59.94 (18)
Ti1—C13—C14—C15	-65.72 (12)	C19—C23—C25—C24	59.45 (19)