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Abstract: Plants are the most abundant bioresources, providing valuable materials that can be used
as additives in polymeric materials, such as lignocellulosic fibers, nano-cellulose, or lignin, as well
as plant extracts containing bioactive phenolic and flavonoid compounds used in the healthcare,
pharmaceutical, cosmetic, and nutraceutical industries. The incorporation of additives into polymeric
materials improves their properties to make them suitable for multiple applications. Efforts are made
to incorporate into the raw polymers various natural biobased and biodegradable additives with a
low environmental fingerprint, such as by-products, biomass, plant extracts, etc. In this review we
will illustrate in the first part recent examples of lignocellulosic materials, lignin, and nano-cellulose
as reinforcements or fillers in various polymer matrices and in the second part various applications of
plant extracts as active ingredients in food packaging materials based on polysaccharide matrices
(chitosan/starch/alginate).

Keywords: lignocellulosic fibers; nano-cellulose; lignin; plant extracts; polysaccharides; chitosan;
starch; antioxidant; antimicrobial; additive; reinforcement

1. Introduction

Pristine polymeric materials alone often show poor physico-chemical properties. The incorporation
of additives into polymeric materials improves their processability, tuning their properties to make them
suitable for multiple applications like packaging, automotive, design, constructions, etc. Additivation
of various compounds or nanoparticles to the virgin polymers can improve both bulk and surface
properties of the products. According to the European Community an additive is “a substance which
is incorporated into plastics to achieve a technical effect in the finished product, and it is intended to be
an essential part of the finished article” [1].

Efforts are made to incorporate into the raw polymers various biodegradable additives with a
low environmental fingerprint, such as by-products and biomass. Therefore, biobased, biodegradable
polymer composites are more and more studied, as a large number of biodegradable polymers are
already commercially available [2].

Composite materials exhibit advantages from the combination of multiple properties, which
cannot be achieved by a monolithic material as they are systems which consist of one or more
discontinuous phases enclosed in a continuous matrix [3]. The discontinuous, disperse phase, which
is completely immiscible with the matrix, can be a reinforcement (reinforcing agent) or filler and
the resultant composite shows optimized mechanical properties, such as strength, stiffness, and
hardness [4]. As traditional plastics are resistant to biodegradation, the concept of using natural plastics
(natural biodegradable polymers or biopolymers) as reinforced matrices for biocomposites is getting
more and more interest.
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In this review various recent applications of plant-based additives (lignocellulosic
fibers/nano-cellulose as well as bioactive plant extracts) as reinforcements and active ingredients
in food packaging materials are illustrated. Natural polysaccharide biopolymers (such as
chitosan/starch/alginate) are nontoxic, biodegradable, biocompatible, and largely used in food
packaging: Chitosan is known for its broad antimicrobial activity and its excellent film-forming
properties; alginates have good film-forming properties, retain moisture, reduce microbial counts,
and retard oxidative off-flavors; and starch is also particularly important for its cheap price and its
frequency in nature. For these reasons, this review will present applications of plant extracts as active
ingredients in natural polysaccharide biopolymers: chitosan/starch/alginate.

Classification of Natural Biodegradable Polymers and Additives

Natural biodegradable polymers and additives are polymers formed naturally by the living
organisms by enzyme-catalyzed reactions and reactions of chain growth from monomers which are
formed inside the cells by complex metabolic processes [5].

Natural additives can be high molecular weight (natural polymers), such as proteins (collagen, silk,
and keratin), carbohydrates (starch and glycogen), lignin, cellulose, high molecular weight phenolics
(tannins and derivatives), and low molecular weight active substances, such as cold-pressed oils,
essential oils (organic volatile compounds, generally of low molecular weight, containing phenols,
alcohols, ethers or oxides, aldehydes, ketones, esters, amines, amides, heterocycles, and terpenes [6]), or
low molecular weight phenolics (phenolic acids and flavonoids) [7]. Natural additives are widely used
materials in many applications in combination with synthetic or natural polymers. These materials,
together with pomaces and biowaste, are nontoxic, less expensive than the synthetic ones, ecologically
friendly, and widely available.

The natural polymeric additives and fibers can be classified according their origin
into polymers extracted from biomass or produced by micro-organisms (Figure 1 [8]) or
obtained from vegetable (plant), animal, or mineral sources (Figure 2; [9]). Biopolymers
that are biobased and bio-degradable include polylactic acid (PLA), polyhydroxyalkanoates
(PHA: Poly(3-hydroxybutyrate) (PHB), poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), and
poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (PHBHB)) derived mainly from microorganisms and
thermoplastic starch (TPS)-based materials. Aliphatic polyesters are also used because of their
biodegradability and include poly(glycolic acid) (PGA)) and poly(alkylene dicarboxylate)s (such as
poly(butylene succinate) (PBS) and poly(butylene adipate-co-terephthalate) (PBAT)), derived from
both fossil fuel and renewable resources [8].
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Mineral and animal fibers such as hair silk and fibers are not widely used as reinforcements - but
plant fibers have been used widely in biocomposites field for applications in the areas of automotive,
marine and construction [10].

The most interesting fibers for composite reinforcements and most commonly accepted fibers by
the industry [11] are from plants, in particular bast, leaf, and wood fibers. The fibers are basically a
rigid, crystalline cellulose microfibril-reinforced amorphous lignin and/or hemicelluloses matrix. As
the environment is concerned, these fibers are biodegradable, light weight, relatively cheap, and are
“carbon positive” since they absorb more carbon dioxide than they release. In thermoplastics they
are introduced by melt mixing and in thermosets by vacuum-assisted transfer molding (VARTM) and
vacuum bag resin transfer molding (RTM) [12].

In Table 1, recent data regarding the applications of the most-used natural polymers and natural
extracts used as components/additives in new performant materials, based on their source and
type (animal/vegetable/mineral and low/high molecular weight), are summarized, together with the
corresponding obtaining and mixing methods. As can be seen, the natural additives are widely
used as filler and additive materials to improve the biodegradability or the mechanical properties
(reinforcements) or to provide antioxidant or antibacterial activity in various synthetic or natural
polymeric matrices. These natural additives are added to the polymeric matrices mainly by melt
blending and solution casting.



Polymers 2020, 12, 28 4 of 34

Table 1. Natural compounds (polymers and natural extracts) used as components/additives in new polymeric materials together with their methods of preparation
and applications.

Source and Compound Obtaining Method Mixing Method Application

Plant Sources

Polysaccharides

Cellulose; used as pulp,
nanocrystals, nanofibers and

fibers

Cellulose can be isolated using a combination of chemical and mechanical treatments like
ultrasonication combined with chemical pretreatments, high shear homogenization coupled

with acid hydrolysis and steam explosion, etc. [13].

Extrusion (for example in polypropylene
composites [14]), reactive extrusion [15].

Reinforcement in polymer composites
[14,16–18].

Starch Starch is extracted from seeds, roots and tubers, by wet grinding, washing, sieving and
drying [19].

Extrusion, injection molding, film casting [20],
reactive extrusion [15]. For incorporating starch in

plastics, commercialized technologies were
developed to overcome the moisture sensitivity

and inferior mechanical properties of starch [21].

As a filler in biodegradable food packaging
materials [22–24] or in plastic films can

improve the biodegradability [25].

Pectin Extracted using acids and enzymes [26]. Extrusion (for example in polyvinyl alcohol
composites) [27]. Antimicrobial packaging materials [28].

Proteins

Soy Protein, hydrolyzed
proteins (wheat gluten, wheat

gliadin), zein, polypeptides

- Alkaline extraction followed by protein precipitation at isoelectric pH;
- protein extraction with salt solution, followed by precipitation from a salt extract by

ultrafiltration, diafiltration membranes or dilution in cold water (micellization) [29]; and
- novel techniques, such as ultrasound assisted extraction, enzyme-assisted extraction in the

form of proteases and/or carbohydrolases [29].

Extrusion foaming [30], reactive extrusion [15].

Reinforcement in polymer composites [31,32].
Polypeptides: Reinforcement in polymer

composites [33].
Food packaging applications [34] or

incorporated as a reinforcement in films with
enhanced barrier properties [35] (zein).

Mixing different proteins with
polysaccharides is an effective way to improve
barrier and mechanical properties of protein-

polysaccharides films [36].

Lignins

Industrially, lignin is isolated from cellulosic fibers by chemical treatment, which breaks
down lignin–carbohydrate complexes. During this process, partial depolymerization of the
complex lignin macromolecules occurs along with re-polymerization (condensation) which

may alter the native lignin structure [37].
The paper pulping process (lignin extraction from lignocellulosic biomass) which produces

industrial lignin as a byproduct [37] may include chemical methods [38], such as
- Kraft process which uses a mixture of Na2S and NaOH (White Liquor) at high temperature

(150–180 ◦C),
- sulfite process which employs sulfite or bisulfite to digest biomass,

- organosolv pretreatment of lignocellulose which involves a biomass extraction in a
mixture of solvent (ethanol being the most common) and water under high pressure [39],

- single pot soda cooking pre-treatment for extracting lignin and isolate cellulose nanofibrils
simultaneously [13].

The methods of blending lignin with thermoplastic
polymers (natural or synthetic - as polyethylene

(PE), polypropylene (PP), polyvinyl chloride
(PVC), polymethylmethacrylate (PMMA),

polyvinyl alcohol (PVA), ethylene-vinyl acetate
copolymer (EVA), polyester, starch, and protein)
include melt-blending (extrusion, compression,

injection, and blow-molding) and solution mixing
[40].

Lignin as reinforcer/fillers in thermoplastic
polymers improved mechanical properties,

decreased water absorption, antioxidant effect
due to the phenols in the lignin structure [41],

improved water resistance, and thermal
stability of the natural polymers such as starch

or proteins. [40].
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Table 1. Cont.

Source and Compound Obtaining Method Mixing Method Application

Polyphenols
Plant Extracts
Essential Oils

The most commonly applied methods for the extraction of polyphenols uses water in
combination with organic solvents (acetone, ethanol, methanol, ethyl acetate) as per the

type of polyphenols present in the plant [42].

Blending methods to circumvent the loss of the
volatile compounds:

- melt blending requires the addition of the active
compound in a later stage of the mixing after the
polymer is melted, low melting temperature and

decreased mixing time [43].
- dispersion/dissolution of the polymer and all
active components in a common solvent that is

subsequently evaporated (solution casting
technique)—method that can also be used as a

coating technique by casting the dissolution onto
the particular surface [43].

- novel method which involves
electrospinning/electrospraying the polymer/active

component solution—the advantage of faster
solvent evaporation compared with the solution

casting technique with the possibility to
encapsulate volatile compounds into polymeric

fibers/particles.

Plant extracts and essential oils [44,45] are
mainly used as antioxidant and antibacterial

agents due to the components present in
essential oils (eugenol, eugenyl acetate,

carvacrol, cinnamaldehyde, thymol, squalene,
rosmarinic acid, tyrosol, β-caryophyllene [46])

and plant extracts (isoprenylflavones,
flavonone phytoalexins, isoflavonoids,
monomeric polyphenols, epicatechin,

epicatechin gallate, epigallocatechin gallate,
terpenes, alkaloids) [47]. The minimal

inhibitory concentration of an antimicrobial
agent is the lowest (i.e., minimal)

concentration of the antimicrobial agent that
inhibits a given bacterial isolate from

multiplying and producing visible growth in
the test system. For example, in ethanol,

thyme, clove and tea tree essential oils had
approximately 1, 12, 25 v/v % MIC against

Staphylococcus aureus and 1, 3, 12 v/v % against
Escherichia coli [48].

Animal Sources

Polysaccharides

Chitin
Isolation of chitin from crustaceans, such as crayfish, crab, shrimp, and other organisms
such as fungi [49], by deproteinization with alkaline treatment at high temperatures,

and demineralization with dilute hydrochloric acid [50].

Chitin nanocrystals and nanofibers were added by
melt-mixing as fillers into thermoplastic

starch-based biocomposites [51]. Also, chitin
nanofibers were added in molten PLA by

extrusion [52].

Reinforcement in polymer composites [52,53].

Chitosan By chitin N-deacetylation [50,54].

Solvent blending [55,56], extrusion blending and
reactive extrusion blending [57] as chitosan may be

heated up to temperatures below its glass
transition temperature without affecting its

physicochemical properties [58].

Polymer composites (polyvinyl chloride,
polyurethane) with antibacterial properties

[59,60]. Reinforcement in polymer composites
[54].
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Table 1. Cont.

Source and Compound Obtaining Method Mixing Method Application

Proteins

Silk/Wool

- In thermoplastics: melt mixing, single/twin screw
extruder, and compression molding

- In thermosets: vacuum assisted transfer molding,
vacuum bag resin transfer molding and

vacuum-assisted resin-infused repairing [12].

Reinforcement in polymer composites [10,61].

Collagen/hyaluronic acid

Hyaluronic acid it is mainly produced via streptococcal fermentation. Recently the
production of hyaluronic acid via recombinant systems was studied due to the

avoidance of potential toxins [49].
- Collagen can be basically obtained from the slaughter of pork and beef by chemical

hydrolysis and enzymatic hydrolysis [62].

Bioactive composite scaffolds for bone tissue
engineering [63,64].

Mineral Source - Clays/Nanoclays

Natural clays: e.g.,
montmorillonite, hectorite,
sepiolite, laponite, saponite,

bentonite, kaolinite,

Relatively simple techniques are used in industrial processing for separation and
purification of natural clays: decomposition of carbonates, dissolution of (hydr)oxides,

oxidation of organic material, dissolution of silica, dialysis, and fractionation. [65].

Polymer–nanoclay nanocomposites may be
prepared by melt or solution blending, with

partially exfoliated clays, in situ polymerization,
and melt intercalation by conventional polymer
extrusion process, microwave and ultrasound

irradiation [66].

Nanoclays used as fillers in various polymer
matrices enhancing mechanical properties of
the polymer matrix [67]. In biomedical field: -

nanoclays as fillers in chitosan poli
e-caprolactone poly-ethylene glycol

poly(2-hydroxyethyl methacrylate) for drug
delivery applications, as reinforcements for

PMMA composites for bone cement
applications or implants with improved
bioactivity and mechanical properties or

incorporated to polysaccharide hydrogels that
can support cell proliferation (chitosan, gellan

gum) [68].
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2. Lignocellulosic Materials and Plant Extracts in Polymeric Composites (As
Reinforcements/Components/Additives)

In this review, various applications of plants used as bioresources are discussed, providing
valuable raw materials used as additives in polymeric matrices, such as lignocellulosic fibers [69] and
nano-cellulose [70], as well as plant extracts containing bioactive phenolic compounds [42] used in the
pharmaceutical and cosmetic industries [71]. The increasing environmental concerns draw attention
on their use as active compounds, instead of synthetic ones.

In this review we will illustrate in the first part (Section 2.1) recent examples of lignocellulosic
materials, lignin, and nano-cellulose as reinforcements or fillers in various polymer matrices, and in the
second part (Section 2.2) various applications of plant extracts as active ingredients in food packaging
materials based on polysaccharide matrices (chitosan/starch/alginate).

2.1. Lignocellulosic Materials, Lignin and Nano-Cellulose As Reinforcements (Additives) in Polymer Matrices

Lignocellulosic biomass, mainly composed of cellulose, hemicellulose, and lignin (Figure 3), is
the most abundant plant material and therefore is the most promising feedstock being renewable,
inexpensive, biodegradable and non-toxic. Due to the environmental concerns, the development of
composite polymeric materials containing lignocellulosic materials has increased and is becoming
common in the polymer industry [72].Polymers 2020, 12, 28 8 of 36 
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Cellulose, the most abundant biopolymer in nature, has promising uses as reinforcement of
mechanical properties in polymeric bionanocomposites. Nanocellulose also has several advantages for
the development of new materials: The mechanical properties and its nanometric dimensions, together
with its abundance, renewability, and biodegradability, open a wide range of possible applications for
biocomposites or pharmaceutical carriers [74,75].

Lignin draws attention as a valuable environmentally friendly and biodegradable raw natural
resource. Lignin is the second most abundant organic substance in the world, estimated to represent
30% of the total biomass produced in the biosphere and is mostly produced by the paper pulping
industry [37].
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2.1.1. Lignocellulosic Materials

The use of natural fibers expanded due to the higher prices for petroleum products but also
supported by the acceptance among consumers who encourage the use of renewable and non-polluting
raw and waste materials [12]. As reinforcements in bioplastics, lignocellulosic fibers are biodegradable,
renewable, and widely available; moreover, they have low density, competitive specific mechanical
properties, and a relatively low cost [76,77]. Various polyolefins, polylactic acid, and PVA have recently
been reinforced using cellulosic fibers from by-products from the production process in industry.

For example, some authors have tested composite formulations with mechanical and physical
properties improved compared with the neat polymer and with the advantage of a higher bio-based
content [78]. Thus, polypropylene composites containing dried distillers’ grains (DDG—10, 2.4,
and 2.2 wt %), a coproduct of corn ethanol industries, maleated polypropylene, and maleated
ethylene-propylene diene monomer rubber as compatibilizers, had improved strength and modulus
compared with the neat polypropylene. The DDG with irregular shapes, mostly in the form of
flakes—the majority of the particles were between 0.25 and 2 mm in their smallest dimension —was
used in the as-received form with no surface modification or size reduction treatment. [78].

It is known from many reported papers that incorporation of natural fibers from approximately
20 to 35 wt % in polymer composites is the most appropriate amount to achieve optimum technical
and economic benefits and addition of more fiber does not lead to any significant enhancement in the
mechanical properties of the fiber composites [79,80].

Thus, Yerba mate (Ilex paraguariensis) fibers (20, 30 and 40 wt %) were used as reinforcing filler
in polypropylene composites in order to increase the mechanical properties of the composites. The
residue, ground and sieved to obtain a fibrillar structure with diameters above 100 µm, was processed
into PP in a single-screw extruder, then ground in a knife mill, oven dried, and reprocessed in a
twin-screw extruder [81]. The study revealed that the tensile strength at break was highest for 30%
yerba mate but with further reduction for higher amounts of Yerba mate fiber. The addition of the filler
also introduced regions of poor interfacial adhesion and stress concentration in the composite due to
the imperfection in filler dispersion (agglomeration) [81], which explains the lower flexural strength
of the composites and a gradual reduction of the impact resistance with the increase of the Yerba
mate fiber content. Similar results have been obtained by other authors: High density polyethylene
composites filled with three kinds of shell fibers (peanut shell, rice husk nor walnut shell −30–70 wt
%), [82] increased the creep resistance and decreased the impact strength of the three composites for all
compositions studied [82], while the bending and tensile strength increased first with the fiber content,
and then decreased [82].

The mechanical properties (tensile strength, Young’s modulus, flexural strength, and flexural
modulus) of polylactic acid (PLA) composites reinforced with hybrid sisal and hemp fiber (30 wt %)
were improved compared to neat PLA [83]. The dried hemp and sisal fiber (a by-product from the
production process in industry, where the leaves of the plant are predominantly used) [79] were aligned
and granulated into 4 mm lengths and further processed/blended through extrusion and injection
molding [83]. Thus, it is possible to replace 30%–40% by mass of the matrix with fibers (a by-product
from the production process in industry, where the leaves of the plant are predominantly used) [81].

2.1.2. Lignin

Lignin, a natural polyphenol [38], is a major component of all plants and an enormous renewable
material and is mainly produced as a side-product by the bioethanol and the paper industry during
the cellulose extraction [38].

As a thermoplastic polymer with high-impact strength and heat-resistance, lignin can be
compounded within a polymer matrix, enhancing the mechanical properties due to the relatively
high rigidity of the 3D network structure of the lignin molecules [40]. Blending lignin with other
biopolymer or synthetic polymer materials has been attractive because of its wide availability, good
mechanical properties, and biodegradability, along with the diversity of potential modifications due
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to its chemical structure [84]. For example, solution-casted lignin-modified PVC membranes had
improved hydrophilic and anti-fouling properties together with improved stability and durability after
a 6-cycle oily wastewater treatment of PVC membranes [85].

Lignin is generally described as a highly cross-linked co-polymer containing phenyl-propanoid
units linked together through a variety of C–C and C–O bonds, resulting in the presence of aliphatic
hydroxyl and phenolic hydroxyl groups (Figure 4) [86]. Due to its numerous hydroxyl groups, the
lignin molecule is relatively polar and generally presents poor compatibility with nonpolar polymers,
such as polyolefins and polystyrene (or aromatic polymers) [38]. Lignin can enter only into weak
dispersion interactions; thus, in the lignin/polyolefin systems limited compatibility is expected [38],
which may be improved by using compatibilizers, reactive compatibilization [40], chemically modified
lignin, or by adding a coupling agent [38]. Due to the strong self-interactions, lignin forms immiscible
blends (0–60 vol % lignin) with ethylene-vinyl alcohol (EVOH) copolymers (0–76 mol % vinyl alcohol)
as lignin was dispersed in the form of particles in the EVOH phase even at lignin contents as large as
60 vol %, in spite of the hydrogen bonds acting between the two components. Additionally, as the
equilibrium thermodynamic factors are stronger than kinetic ones in the studied system, changing
shear stresses during the melt (220 ◦C) blending process did not influence particle size much [87].
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The hydroxyl content influences the compatibility between lignin and polyolefins: The less
aliphatic hydroxyl content (0.4 mol/kg) of de-polymerized hydrolysis lignin (DHL) promotes better
dispersion in polyethylene (PE) compared with de-polymerized kraft lignin (DKL) (0.7 mol/kg) [88].

Many studies have focused on the incorporation of lignin into natural biopolymers, such as
starch, protein, cellulose, PLA, and PHB, to form bioplastics [89]. For example, the properties of
the starch/lignin bio-nanocomposites, such as water uptake, water swelling, hydrolytic degradation,
water vapor permeability, mechanical, and thermal properties, were enhanced significantly due to the
lignin addition [90]. Lignin caused the rougher surface of the starch film, modified some structural
properties, and improved thermal properties [91]. The addition of alkali lignin (AL) as a filler into the
soy protein isolate (SPI) films increased the UV light absorption, improved tensile strength (TS) and
thermal stability, as well as decreased the water vapor permeability of the films [92].

In addition, lignin plays an important part in antioxidant properties as a stabilizer because
the phenolic hydroxyl groups can scavenge free radicals [93]. The antioxidant behavior of lignin
stems from its inherent hindered phenolic structure, which facilitates lignin to work as a free radical
scavenger [94]. For example, addition of 2.5 wt % of de-polymerized kraft lignin (DKL) or 5
wt % of de-polymerized hydrolysis lignin (DHL) to polyethylene (PE) attained the same level of
antioxidant activity as the addition of 0.5 wt % of Irganox 1010 (a phenolic antioxidant—pentaerythritol
tetrakis(3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate). The lower antioxidant activity compared to
the commercial antioxidant, caused by the lower phenolic concentration, complex molecular feature,
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and higher hydrophilicity of the de-polymerized lignins, can be compensated for by the lower price of
the de-polymerized lignins [88].

2.1.3. Nanocellulose

Nanocellulose fibrils, which are the building blocks of plant cell [95] walls and give plants
and trees their structural strength and stiffness, are a very interesting and well-studied nanoscale
natural material that can potentially improve the properties of the polymers [96]. Many studies have
already reported on use of nanocellulose in different forms for composite applications [70]. Cellulose
nanomaterials are considered as a suitable solution to replace commonly used inorganic nanofillers [97]
because they are widely available, renewable, and biodegradable [96]. Moreover, they possess unique
valuable characteristics, such as a high specific strength, moduli (100–200 GPa), and specific surface
area. Composites with nanocellulose nanoscale reinforcements have been proposed [98].

Regarding the nanocellulose, there some particularities compared with other artificial
nanoparticles: In the case of carbon nanoparticles or nanoclays, the mechanical constraining of polymer
chains [99], and surface/polymer interaction (with formation of layer of perturbed macromolecules
around nanoparticles [100]) are supposed to be responsible for the beneficial effect of nanoparticles on
the mechanical properties. In the case of nanocellulose, different mechanisms allow the nanocellulose
to influence and enhance the polymer properties [101], i.e., the formation of a network of long nanoscale
fibers [101]; the interaction between nanoparticles/nanofibrils, which is controlled not only by Van der
Waals forces but also by strong hydrogen bonds [102,103]; and also the adhesion to the polymer matrix,
which is dominated by hydrogen bonding [104,105]. Different to carbon nanoparticles, nanocellulose
fibrils do not form clusters but percolation networks [106], which have a positive effect on the strength
of the composites [107].

Cellulose nanofibers are characterized by a short-rod-like shape less than 100 nm in diameter and
several micrometers in length with ordered regions (Figure 5), induced by the linear nature of the
cellulose polymers and the extensive intermolecular attractions between adjacent chains [108]. Cellulose
nanofibers can be extracted from different natural sources [109] (wood or non-woody plants [110]), by
mechanical treatment [111], acid hydrolysis (the most-used method) [112], or a combination of the
two [113]. Acid hydrolysis can be assisted by ultrasonic treatment (sonication) [114,115] and enzymatic
hydrolysis [116].
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Acid hydrolysis is an easy and fast method to produce nanocellulose. A strong acid such as H2SO4
or HCl is commonly used to break the glycoside bonds in cellulose under controlled conditions (acid
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concentration, time, temperature, and acid/cellulose ratio) [117], a process which is stopped by dilution
with water followed by washing/dialysis to remove free acid molecules and drying of the suspension
to yield solid nano-cellulose [112]. Acid hydrolysis leads to agglomerated cellulose in the micrometer
scale, which can be reduced to nanofibers in the nm scale by high pressure homogenization [118]
due to the shear forces caused by the high velocity and pressure on the micro-suspension of cellulose
nanofibers [119,120]. Using this procedure and high pressure homogenization, ginger cellulose
nanofibers (GNF) (100–200 nm width and 2–3.5 µm length) were isolated and used (1% to 7% GNF)
in bionanocomposites prepared by the solvent cast method in order to reinforce chitosan (CS) and
polyvinyl alcohol (PVA). The best GNF content was 5% in terms of mechanical properties [120] due
to the formation of hydrogen bonds between GNF and both CS and PVA. As CS has antibacterial
activities over a wide range of bacteria [121] the chitosan containing GNF film had a higher inhibitory
effect against Bacillus cereus, Escherichia coli, Staphylococcus aureus, and Salmonella typhimurium [120]
because the bacterial cell wall can adhere to CS by electrostatic interaction [122], thereby changing the
structure and permeability of the bacterial cell membrane [122].

Cellulose nanocrystals (CNC) were also successfully isolated from waste cotton cloth fibers using
a mixed acid hydrolysis of the extracted cellulose (H2SO4 (98 wt %), HCl (37 wt %), and deionized
water solution at a volume ratio of 3:1:11.) and subsequently used as fillers to reinforce a polylactic
acid (PLA) matrix (0–0.7 wt % CNC) [123]. The PLA/CNC solvent cast films showed high crystallinity,
tensile strength, and elasticity modulus at 0.1% and 0.3% CNC content [123]. However, at higher
CNC content (0.7%), the CNCs were not well distributed in the polymer matrix, leading to minimal
light transmittance, crystallization, tensile strength, elasticity modulus, and elongation at break [123].
Furthermore, the elongation at break of PLA/CNC composite films decreased with the increase in
CNC content due to the restricted mobility of polymer macromolecules due to the increased film
stiffness [123]. A significant decrease in light transmittance (from 67% to 53% at λ = 800 nm) was
observed for PLA/CNC composite films when the CNC content increased from 0.1% to 0.7% [123]. The
surface structure of the PLA/CNC composite films became increasingly compact with the higher CNC
content [123] while considerable particle aggregation was observed on the surface of the composite
film with the highest CNC content due to the hydrogen bond formation [123].

For effective use of cellulose fibers, good dispersion and adhesion between the fiber surface and
resin are essential [124]. However, the OH groups on the surface of cellulose fibers make them highly
hydrophilic [125,126], while most polymer resins are hydrophobic, which leads to poor dispersion
and adhesion. Furthermore, the OH groups from nanocellulose result in strong hydrogen bonding
leading to agglomeration of these fibrils during the drying process [127], making them difficult to
re-disperse these fibrils even in water [128]. To address this, some authors followed a new approach in
which chopped, loosely packed (i.e., low density) freeze-dried cellulose nanofibrils (CNF) networks
(foams, i.e., bundles of CNFs) were used as “microsponges” that polymer resins can penetrate during
melt processing, creating mechanical interlocking by hydrogen bonding among CNFs as a reinforcing
mechanism, provided that the low packing density was achieved [124]. The dried PLA/CNF composites
were mixed in chloroform and fed to a high-shear mixer and finally compression molded [124]. The use
of CNFs (10–40 wt %) increased the tensile strength (up to 80%), elastic modulus (up to 200%), strain
at break (75%), and toughness (220%) compared to the neat PLA resin [124]. Similar improvements
in tensile strength and elastic modulus were observed when the PLA/CNF composite was tested as
material for 3D-printing, although strain at break and toughness values dropped [124]. Still, the shear
forces in the 3D-printing process [129] resulted in orientation and stretching of these CNF bundles in
the printing direction, leading to further increases in stiffness and storage modulus. In other words,
beneficial controlled directional stiffening of the manufactured parts can be attained with the printing
process [124].

The polymer nanocomposites are traditionally constructed utilizing one nanomaterial as a
filler [130]. There is also a possibility to tune the mechanical properties through the introduction of a
second nanofiller (for example carbon nanotubes together with montmorillonites [131]). Tricomponent
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materials containing poly(vinyl alcohol) (PVA) and cellulose nanocrystals (CNC)/chitin nanofibers
(ChNF) as filler (total filler content 5 wt %) [132] showed an overall increase in stiffness, tensile strength,
and thermal stability [132]. Furthermore, CNC /ChNF mixtures at certain ratios were able to more
effectively reinforce PVA better than CNC or ChNF alone [132]. Results showed certain ratios between
cellulose and chitin had the largest moduli and tensile strength. The authors suggested this is the result
of chitin nanofibers binding to themselves through hydrogen bonding and also creating a high strength
network with the CNC [132]. The authors also suggested that above certain CNC loadings (1 wt %)
agglomeration occurs between particles which generates weak points in the material, which could
explain the relative decrease in mechanical properties with loadings higher than 1 wt % [132,133].

The mechanical behavior of the gelatin scaffolding material used in tissue regeneration
can be improved by reinforcing it with TEMPO-oxidized cellulose nanofibrils and subsequent
cross-linking [134]. By dehydrothermal crosslinking (with formation of zero-length cross-linking
without any bridging molecule), both intra- and inter-molecular peptide bonds within gelatin and
amidic bonds between gelatin and cellulose nanofibers were formed, which increased the mechanical
stability of the scaffold. The crosslinking also decreased the degradation rate by hydrolysis [135] during
the healing process in order to allow the replacement of the scaffold with newly formed tissue [136].

Not only the mechanical properties but also the barrier properties and water solubility can
be improved by addition of cellulosic nanofibers (CNF) [137]. Starch naturally has poor moisture
resistance [138], so the addition of CNFs is an effective way to reduce its moisture absorption, moisture
sensitivity, and to improve the mechanical strength and stability of starch [137]. Due to the highly
crystalline and hydrophobic character of cellulose in comparison to the starch molecule, CNFs are less
hydrophilic than starch, making them effective to improve the barrier properties by reducing water
vapor permeability [137]. The addition of CNFs introduced a tortuous path for water molecules to pass
through [137]. However, additional amounts of CNFs might agglomerate and form a heterogeneous
film, which in turn facilitates the water vapor permeation and holes in the film [137]. Cassava starch
filled with chitosan/glycerol/gallic acid/CNFs (0.15, 0.5, 0.1, 0-0.1 g/g starch respectively) were prepared
by a subcritical fluid system, which promotes both hydrolysis and cross-linking reactions between
chitosan and starch to form a strong network [139]. The addition of CNFs reduced the film solubility
in water significantly due to strong interactions between starch [140] and chitosan chains [141] with
cellulose through hydrogen bonds in the film matrix [137]. This affinity or compatibility between
CNFs and the starch matrix can be attributed to the chemical similarities of starch and cellulose, the
nanoscale of the fibers, and the hydrogen bonds between CNFs and starch [137]. Due to the formation
of hydrogen bonds between starch, chitosan, and CNFs, the gallic acid and chitosan addition to the
CNF/starch also decreased the number of active −OH groups in starch and cellulose that promotes
water absorption reducing the film water activity [137]. Because the addition of CNFs decreased the
mobility of the starch and chitosan chains, the tensile strength increased, and elongation decreased
considerably in CNF-reinforced films compared to cassava starch/chitosan/gallic acid film without CNF.
Due to the cross-linking (by ester and electrostatic interactions) the addition of gallic acid and chitosan
increased the tensile strength and decreased the elongation [137]. Moreover, due to the aggregation
that occurred in films with 15 and 20 wt % of CNFs, the tensile strength did not increase above 17
MPa [137].

Table 2 summarizes the most recent examples of natural additives in polymers used as antioxidants,
antibacterials, plasticizers, or used to increase degradability and thermal insulation. Besides lignin,
natural fibers, plant extracts, and cellulose nanocrystals are presented, as well as other natural additives,
such as chitosan, essential oils, and alginate.
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Table 2. Various natural additives used in polymers.

Matrix Additive (content) Mixing/Preparation
Method Role, Change in Properties/Observations Ref.

Antibacterial/Antioxidant Plastics

PVC-based composites with
self-sterilizing and antibacterial activity
against S. aureus (functional
antibacterial plastic).

Chitosan (wt % 0–40).
The mix was
melt-compounded in an
internal mixer at 150 ◦C.

Chitosan addition increased Young’s modulus
evidencing a good CS–PVC interaction. Chitosan
addition had no negative impact on thermal stability
of the PVC composites which allows for possibility
of producing composites by with thermo-mechanical
processes, without risk of thermal decomposition.

[59]

Biodegradable polymer fiber nets of
poly (lactic acid) (PLA)/poly (butylene
adipateco-terephthalate) (PBAT) (60:40).
Packaging material for fruit and
vegetables preservation.

Pine essential oil (10%–20%).
Some formulations were
additionally coated with
chitosan (1%).

Extruded biodegradable
polymer.

With essential oil addition increased plasticity (at
10% Pine EO), elongation at break and decreased
Young’s modulus. When chitosan was added as a
coating, stiffening of the fiber was observed.

[142]

PLA-based composites for the
packaging industry.

Water-soluble extracts (2%;
10%; 20%; 30%) from banana
pseudo–stems.

Solution blending, casting
and thermocompression.

Water-soluble extracts acted as a plasticizer on PLA
(Tg decrease) and has slightly positive influence on
its stiffness in the glassy state, whereas the
drawability remained fairly acceptable when
PLA-based materials where drawn at 75 ◦C above
Tg.

[143]

Antimicrobial PLA films for food
packaging with low silver release.

Alginate microbeads
obtained by electrostatic
extrusion (200 µm) with
incorporated AgNPs (1.5 wt
% Ag; 3 wt % alginate).

Solvent casting

PLA matrix acted as a diffusion barrier so that the
released silver in water after 10 days was within the
prescribed limit of 0.05 mg kg−1 while the films
induced inhibitory effects against Staphylococcus
aureus.

[144]

Poly caprolactone (PCL) nano fibrous
mat with antioxidant activity for
antimicrobial wound dressings.

Extract of medicinal plant
Clerodendrum phlomidis. Electrospinning

The plant extract conferred antibacterial activity and
increased in wettability of the PCL fibers without
affecting their mechanical properties.

[145]

Polyethylene oxide (PEO) These results
will recommend these films a potential
candidate in electrochemical and
photoelectrical devices.

Starch (30 wt %) doped with
various concentrations of
gold nanoparticles (Au NPs)

Solvent casting

Differential scanning calorimetry (DSC)
measurement indicated miscibility between the two
polymers. Found electrical conductivity increased as
Au NPs content increased. The miscibility between
PEO and starch could be due to the oxygen atoms of
PEO interacting through hydrogen H-bonds
between the hydroxyl groups of starch. DSC
revealed that the thermal stability of the blend
polymer decreased after addition of the nanofiller.

[146]

Poly(lactic acid), PLA. The low cost and
toxicological impact make cardanol a
valid alternative to the plasticizer PEG.

Cardanol derived
plasticizers (10%, 20% and
30%); three different
plasticizers were used: neat
cardanol, cardanol acetate
(CA), and epoxidized
cardanol acetate (ECA) were
used, at contents ranging
between 10% and 30%.

Mixing PLA, pre-dried at 70
◦C for 24 h, and different
amounts of plasticizers (10%,
20%, and 30%) for 15 min at
190 ◦C in a HAAKE
RHEOMIX 600\610 mixer,
with a rotor speed of 60 rpm.

PLA plasticized by cardanol derivatives showed
lower modulus than PEG plasticized PLA. The
tensile modulus of plasticized PLA was correlated to
the evolution of glass transition temperature and
degree of crystallinity. At low plasticizers content,
the modulus of PLA decreased as the glass transition
temperature decreased, due to a better miscibility of
the plasticizer with PLA. The opposite occurred at
high plasticizer content; in this case, the higher
modulus found for more compatible plasticizers
were attributed to an increased crystallization
kinetic.

[147]

PU polyurethane 3D-printed foams as
thermal insulation, sound absorption or
as damping materials.

Cork powder (1%, 3%, and
5% wt/wt).

The TPU powder was mixed
with cork powder (1%, 3%,
and 5% wt/wt) in the Retsch
cross beater mill SK1 without
sieves. Afterwards, the
mixtures were left over night
in an oven at 105 ◦C to
remove moisture. The
mixtures were then extruded
in a Felfil Evo Colours
extruder using 4 rpm at 210
◦C to produce the 3D
printable filaments.

3D-printed PU polyurethane composite foams for
thermal applications with enhanced mechanical
properties. Due to the presence of cork as well as to
the presence of voids the resulting foams presented
lower density, lower thermal conductivity and
proved to be more flexible. The stiffness of the
ensuing composites was also reduced but the
elastomeric behavior of the 3D-printed foams
produced may find applications that combine
thermal insulation with damping properties. Yet, the
use of cork did not affect the thermal stability of the
composites. Cork is a well-known low thermal
conductive material, which can further reduce the
thermal conductivity of PU foams Besides their
thermal insulation properties, their elastomeric
behavior suggests that the 3D-printed foams
produced may be used as thermal insulation, sound
absorption or as damping materials.

[148]

Polyethylene/poly (lactic
acid)/Degradable polymeric films

Chitosan (15 wt %) with and
without poly
(ethylene-g-maleic
anhydride) (PEgMA) as
compatibilizer.

Laboratory mixer-extruder.
145 ◦C and 155 ◦C for the
screw barrel.

Polyethylene/poly (lactic acid)/chitosan films, with
and without poly (ethylene-g-maleic anhydride)
(PEgMA) as compatibilizer, were prepared by
extrusion. It was demonstrated that blends of
synthetic and natural polymers have a higher
susceptibility to degradation in comparison to neat
polyethylene and poly (lactic acid) films.
Additionally, it is found that the incorporation of
PEgMA into the extruded films apparently favored
the polymer degradation, as it deduced from the fall
of the mechanical properties when the films are
exposed to accelerated weathering simulation.

[149]

2.2. Plant Extracts as Active Ingredients in Food Packaging Materials Based on Polysaccharide Matrices
(Chitosan/Starch/Alginate)

The need for better preservation of perishable food products, such as fruits, vegetables, or meat,
has raised new postharvest preservation technologies, such as edible coatings, coating the solid package
by electrospinning, UV irradiation, modified atmosphere packaging, and ozonation [150,151]. Edible
coatings—a thin layer formed on the food surface to extend its shelf life—can preserve the properties
and functionality of foods as they are easy to apply by spraying or immersion (Figure 6), and can be
prepared with environmentally friendly materials [152].
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There is great interest in biodegradable active composite packaging materials that release
substances for the purpose of extending shelf life, by incorporation of active substances, such as
antioxidants, antimicrobials, and antifungals, and which can enhance barrier, thermal, and mechanical
properties [153]. Herbs, spices, agricultural waste as extracts, essential or cold-pressed oils contain
bioactive compounds as thymol, carvacrol, tocopherols, benzoic acids, simple or functionalized
phenolics and flavonoids, lignans, etc., which confer onto them activities and nutritional values.
Representative examples of their structures can be found in References [154,155].

The mechanical and antibacterial properties of chitosan edible films were improved after the
incorporation of gelatin and natural cinnamon essential oil [156]. Cassava starch food packaging
films with antioxidant, UV-vis light barrier and pH-sensitive properties, increased water vapor
permeability, and tensile strength were also obtained by addition of anthocyanin-rich bayberry extract
(1 wt %) due to the hydrogen-binding interactions between BBE and starch [157]. Similarly, the
incorporation of hydrolyzed cottonseed proteins into alginate films increased the thickness and water
vapor permeability, the barrier properties to visible light, and the total phenolic content and the
antioxidant activity with inhibitory effect against Staphylococcus aureus, Colletotrichum gloeosporioides
and Rhizopus oligosporus [158].

Electrospun antibacterial and antifungal coatings form the base solid package: Antibacterial
and antifungal active elements can be incorporated in chitosan matrices by electrospinning [159],
for example, antibacterial polylactic acid/AgNPs/vitamin E nanofibers presented antioxidant activity
during tests on fresh apple and apple juice due to reduced polyphenol oxidase activity, which make
this materials a potential preservative packaging for fruits and juices [160]. The electrospun nanofibers
containing low amounts of bioactive substances can be coated onto various substrates [161,162].
For example, polylactic acid (PLA) films coated by coaxial electrospinning with clove and argan
oils and encapsulated into chitosan had higher antibacterial and antioxidant activity when clove
oil and high molecular weight chitosan where used [163]. Polyethylene films coated with chitosan
by electrospinning had good antimicrobial activity against Gram-positive (Listeria monocytogenes) or
Gram-negative (Escherichia coli, Salmonella typhymurium) bacteria and the addition of vitamin E to
the coatings improved the aspect, smell, pH, and total number of germs for minced poultry meat
packaging [164,165].

2.2.1. Chitosan/Starch/Alginate Containing Plant Extracts as Edible Food Packaging

Edible food packaging and coating materials are renewable and easily degradable that can enhance
the shelf life of whole as well as fresh-cut fruits and vegetables by retarding physiological processes,
such as respiration, degradation of cell walls, and transpiration, and also restrict microbial action [166].
They are generally obtained from polysaccharides such as starch, alginate, and chitosan [167].
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Starch is the most abundant and commonly used renewable, biodegradable natural resource, with
recognized flexibility, transparency, and film-forming ability, but with low mechanical and barrier
properties that are usually improved by mixing the starch with other polymers (e.g., chitosan) [168].
For example, previous studies have reported that the chitosan–starch blends exhibited an improved
barrier and mechanical properties as well as good antimicrobial effect [169,170]. Alginate is a naturally
occurring polysaccharide can be used in coating for extending the shelf-life of fruit, vegetable, meat,
poultry, and film preparation [171]. Chitosan is a good candidate for food packing material because of
its film-forming ability, biodegradability, and satisfactory mechanical strength [172].

Alginate, starch, and chitosan are materials of choice for matrices used in a wide range of
applications like pharmaceutics and medicine, active food packaging, and agriculture, to develop an
environmentally friendly slow or controlled release systems for drugs, bioactive compounds, and
respectively pesticides entrapment/encapsulation, and so on. This is because they alone or in binary and
ternary combinations of them, or with other polymers, accomplish the main requirements necessary in
these fields. They have a hydrophilic nature, are biocompatible, biodegradable, highly versatile, form
non-toxic matrices for the protection of active ingredients (especially probiotic microorganisms and
cells sensitive to heat, pH, dissolved oxygen) among other factors in which food is exposed to during
processing and storage, offer economics and safety of processing methods, etc. These polymers are
also presented as tasteless and odorless food additives. Chitosan and alginate exhibit mucoadhesion,
immunogenicity, thickening properties, and the ability to form gels in the presence of multivalent
ions, and are very good coating materials and show properties which allow their processing by simple
one-stage processes (as the external gelation technique.). They are preferable for use in microparticles
production for medicines [173,174] and pharmacy [175].

Microencapsulation is widely studied to protect microorganisms from acid environments, bile
salts, and oxygen. This helps to maintain the microorganism’s viability during the product shelf life,
which is a one of the major challenges to the food industry, since certain cultures are extremely sensitive
to environmental factors such as acid and oxygen. Both maize starch and chitosan provided better
protection of probiotics after exposure of the moist microparticles to simulated gastric and intestinal
juice [176], demonstrating that a combination of alginate with starch improves the efficiency of different
bacterial cells, particularly lactic acid-producing bacteria, due to the production of granules of good
prebiotic structure and effect in the microcapsules.

A starch–chitosan–calcium alginate system showed the highest entrapment efficiency,
drug/pesticide loading, and the slowest release rate, as well as an obvious slower degradation
rate in soils than the commercially available formulation. [177,178]. The leaching of pesticides during
the preparation of alginate beads has been improved by synthesizing bi-polymeric beads of alginate
with other natural polysaccharides. An herbicide was encapsulated in chitosan and starch modified by
cross-linking with alginate. The use of alginate helps bead formation and strengthens the structure
of the matrices of the herbicide that was encapsulated in starch and chitosan beads reinforced with
alginate. The addition of alginate improved matrix strength and prevented leakage of the encapsulated
herbicide. [179].

Edible coatings could also be enriched with natural additives, such as antioxidant
antibrowning [180] and antimicrobial agents, which in turn enhance the performance of the native
edible coating material [181] as antioxidant activity, respiration rate, total phenolic retention, retention
of ascorbic acid (AA), UV protection, etc.

The low antioxidant ability of chitosan [182] is usually improved by mixing chitosan with high
antioxidant natural extracts (for example, tomato plant extract [183,184], leaf and seed extracts of
Pistacia terebinthus [185], Ficus hirta fruits extract [186], flax seed mucilage extract [187], and Laurus
nobilis extract [188]). Alginate and chitosan coatings containing olive leave extract were also found to
improve the TP content and antioxidant activity of Sweet Cherries (Prunus avium L.). Alginate coatings
containing Fircus hirta fruit extract enhanced the antioxidant activity and TP content in mandarin [189],
and an edible coating from green tea extract and chitosan preserved the quality of strawberry (Fragaria
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vesca L.). Pomegranate peel extract (PPE) incorporated in chitosan had better retention of total phenol
(TP), flavonoid content, antioxidant activity in terms of DPPH, and ripening index compared with pure
chitosan, and also better than the corresponding alginate-based samples [190]. Similarly, blueberries
coated with chitosan/ blueberry leaf extract (BLE) had higher TP than those coated with chitosan
alone [191].

Respiration rate: One important function of edible films is to act as gas barriers and to create a
biodegradable semi-permeable barrier protection and an internal modified atmosphere during the
storage [192]. The application of various coating treatments could delay the rise in the respiration rate
of the samples by causing changes in CO2 production and utilization of O2 [190]. A similar effect on
retarding the respiration rate was found for mandarins coated with alginate containing Fircus hirta
fruit extract [189] and avocado coated with chitosan containing moringa extract [193]. This impact of
plant extracts was attributed to their antimicrobial activity that enhanced the barrier properties of the
coating and restricted the gas diffusion [190] as other authors found similar effects for chitosan coatings
incorporating natamycin or nisin, i.e., reduced the O2 consumption of the fruit, delayed changes of pH,
and lower CO2 production during the storage compared to fruits coated with pure chitosan [194].

Total phenolic retention: Under oxidative stress, the total phenolic (TP) levels tend to decrease
during storage period [195,196] and in the uncoated samples may be attributed to the higher respiration
rate resulting in the breakdown of total phenols [197]. To slow down the deterioration events, such
as respiration and moisture loss, ready-to-eat products should be protected with an edible film that
modifies the internal atmosphere, resulting in slowing down the metabolism in fresh product [198].

Coating treatments could delay the declining of the total phenolic content, flavonoids, and
anthocyanins content and antioxidant activity in various fruits as was found for strawberries coated
with alginate containing carvacrol and methyl cinnamate (natural antimicrobials) [199], walnut kernel
coated with sodium alginate coating containing pomegranate peel extract [200], and strawberries
coated with chitosan containing peony extracts [201].

Retention of ascorbic acid (AA): Ascorbic acid prevents the oxidative damage in fruits and
vegetables by scavenging the free radicals of the hydroxyl group, superoxide anion, and hydrogen
peroxide through the ascorbate peroxidase reaction [202]. The ascorbic acid in fruits decreases
continuously during the storage time [203]. In this respect, chitosan and alginate coatings enriched with
PPE could retard the oxidation process in guava by maintaining higher levels of AA than the control
during storage and, thereby, prevented ageing and resulting in lower oxygen permeability followed by
reduction in the enzyme activity and, thereby, resulting in the reduction of AA oxidation [190].

UV protection: Food products are sensitive to various light wavelengths. Protection against
light is an important and critical property of food packaging material, since light can accelerate food
degradation and oxidation, resulting in nutrients and bioactive compounds destruction, forming
off odors and flavors, food color loss, as well as the formation of toxic substances degradation and
oxidation reactions [204].

Chitosan–plant extract films could effectively protect food against UV/visible radiation, for
example, transmittance of chitosan–black soybean seed coat extract (BSSCE) was nearly in the 200–320
nm interval [205] and chitosan films containing aqueous hibiscus extract (HAE) exhibited transmittance
below 10% in the 200–600 nm range [204], which was explained by the presence of several compounds
in the plant extract, such as flavonoids, anthocyanin, phenolic acids, etc., which contains double bonds
and could absorbs in UV/visible radiation [206].

2.2.2. Phenols from Plant Extracts as pH-Sensitive Indicators of Chitosan/Starch/Alginate Matrices

Intelligent packaging combines benefits from active (antimicrobial, antioxidant, etc.) and intelligent
packaging (sensing and sharing information about the condition of packaged products) [207]. Food
spoilage is associated with pH change, which enables the use of alternative, inexpensive, natural-based
colorimetric pH indicators in the form of labels or tags. These pH-sensitive indicators could react with
the non-neutral volatile gases that were generated from foods during spoilage and are composed of
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natural and safe pH sensing pigments, such as anthocyanins and curcumin and a dye carrier/(solid
matrix) [208]. Both ingredients have to be non-toxic, meet the food safety requirements, and be stable
at the applied pH [209].

Anthocyanins are natural-based, non-toxic, water soluble pigments, extracted from different
plants that provide the purple, blue, and red color of many plants [208]. Anthocyanins possess excellent
antioxidant potential [210–212], which can be released from packaging films [213] for extending shelf
life of food, anti-inflammatory [214], and anticarcinogenic [215] activities. Moreover, the colors of
anthocyanins are sensitive to pH changes due to their structural transformations [216,217]. Thus, films
incorporated with anthocyanins can be used as antioxidant, intelligent food packaging that can monitor
the food quality (as colorimetric indicators) [218] because food spoilage is frequently associated with
pH change (Figure 7) [219].

For example, by changing pH from 7 to 3, different color variations (from brown to bright red)
were observed in chitosan films containing black soybean seed coat extract (BSSCE) rich in various
anthocyanins while the plain chitosan film was colorless and did not respond to pH changes [205].
Similarly, the color of purple-fleshed sweet potato extract (PSPE) encapsulated into the chitosan
matrix could change the color with pH from pink-red (pH 3–6) to purple-brown (pH 7–8) to finally
greenish-green (pH 9–10) (depending on the incorporated amount of PSPE) [220]. Likewise, aqueous
hibiscus extract (HAE) encapsulated in chitosan changed color under different pH conditions: brown
to lightly greenish tones were observed at pH values ranging from 5 to 8 while yellow color was
observed at pH 13.0 [204].
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Figure 7. Color change of poly(vinyl alcohol)/chitosan/anthocyanin films in contact with raw pork
belly slices exposed to ambient air for 12 h (left) and 24 h (right). After 12 h, the wrapping film becomes
pink indicating an acidic condition near pH 5–6 on the surface of the pork slices. With further exposure
for another 8 h, the pork meat turned dark-brown and softer, while the pH indicative film became
yellowish with pale green, corresponding to a slightly alkaline range ([221]).

Anthocyanins, which are phenolic compounds with hydroxyl groups used as an indicator dye [221]
could reduce the solubility of chitosan in distilled water [205] as they proved to support chitosan
hydrogel formation with reduced water absorption and solubility [222]. Migration tests that showed
that anthocyanins from chokeberry extract are both chemically bonded and physically immobilized in
the chitosan matrix due to the interactions between the phenolic components and the hydroxyl and
free amine groups of chitosan [209]. This is an important feature for the edible coatings: Applying the
coating in humid conditions but not liquid media, or on the surface of the product, would not lead to
leakage of the dye [209] while the coatings kept their swelling ability, which still provided efficient pH
sensing in the bulk material [209].

2.2.3. Plant Extracts Incorporated As Antioxidants in Chitosan/Starch/Alginate Matrices

Oxidative reactions in food as a deteriorative process promote the discoloration and the
development of rancidity and off-flavors [223], which is usually overcome by using synthetic
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antioxidants with suspicious health properties [224]. Currently, natural antioxidants are studied
because they are considered to be safe and due to the high consumer acceptance and willingness
to buy these products [225]. Incorporation of natural antioxidants into packaging material (active
packaging) [226] can be more effective than adding high levels of additives directly into the food [227].

Plant-derived phenolic compounds are natural antioxidants [228] that can scavenge reactive
oxygen species by inhibiting the oxidation of low-density lipoproteins [229], which makes them
substitutes for synthetic antioxidants in the food industry [230–233]. These polyphenols could be
incorporated [234] within a film or coating applied to the food [235], which could release the antioxidant
into the product or act on its surface, limiting the oxidative reactions of food components [236]. Aromatic
herbs containing polyphenols have been traditionally used as healthy food ingredients [237–240]
obtained through an aqueous extraction [241,242] process.

The direct addition of polyphenols to food is limited by their relatively rapid depletion [243].
The combined use of natural antioxidants and packaging materials increases the effectiveness of the
antioxidants due to the protective effect of the chitosan matrix against polyphenol oxidation during
storage of the films [244] and extending their action during a longer time [245,246].

For example, the use of a chitosan coating enriched with moringa leaf extract on avocado [193] and
alginate coating enriched with grape seed extract on grapes [247] have demonstrated improvement in
their overall quality. Similar enhancements in antioxidant activity were achieved when grape pomace
extract [248], maqui berry extract [249], thinned young apple [250], peanut skin (EPS), and pink pepper
residue (EPP) extract [251] polyphenols were incorporated into a chitosan film while the chitosan
film itself showed very low antioxidant activity [252] due to the absence of antioxidants along with
the presence of catalysts of the lipid oxidation (light, technological treatment, presence of salt and
unsaturated lipids) [251]. Blueberry leaf extracts (BLE) incorporated into a chitosan coating could
maintain higher radical scavenging activity (RSA) of fresh blueberries during refrigerated storage in
the first days of storage, but after three days the samples had lower RSA than the control and chitosan
coating alone [191].

As chitosan interacted with the polyphenols to a greater extent than starch, it is reported that
the fastest delivery rate and the higher delivery ratio of thyme extract polyphenols [253] were when
starch is used as the matrix, which is explained by the high solubility of starch matrix, without the
crosslinking effect with the phenolic compounds [253].

The peroxide value (the quantity of the total primary oxidation products present in edible oils [254])
of rainbow trout coated by dipping with films containing chitosan and different concentrations of
pomegranate peel extract (PPE), was significantly lower compared to the control [255] during storage
time due to the proper antioxidant effect of the PPE, which inhibited superoxide hydroxyl and peroxyl,
which finally lead to the oxidation of fats [256]. However, even though the best performance to prevent
the oxidation of fats and proteins and also antimicrobial efficacy was observed for higher plant extract
content, due to its undesirable color, the chitosan combined with 2% PPE was preferred [255].

2.2.4. Phenols from Plant Extracts as Crosslinkers for the Chitosan/Starch/Alginate Matrices

Swelling ability is beneficial for the release of active substances and also in the case of indicator
labels [257] because the aqueous media with the changed pH can penetrate into the bulk matrix, which
enhances the effectiveness of the pH sensing and also controls the release. In the same time, dissolution
and degradation are undesired [258]. For chitosan films containing active substances it is important to
reduce its solubility (e.g., via cross-linking) [259], thus preventing the indicator label/active substances
from dissolving when pH is lowered due to food spoilage as the pH affects the swelling and release
behavior of the active substances [260].

In order to replace toxic chemical cross-linkers for hydrogel formation, such as glutaraldehyde [261]
or epichlorohydrin [262], edible chitosan films with reduced solubility can be obtained by using
cross-linking agents extracted from natural plants [263].
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Phenolic components obtained from different kinds of plants can interact (intermolecular
interactions) with hydroxyl and free amine groups of [264,265] that reduce the solubility of chitosan
films: by hydrogen-bonding, electrostatic attraction (ionic complexations in acidic conditions) [266]
between the anthocyanins and chitosan, and even through ester linkage [253,267]. For example, a small
amount of purple-fleshed sweet potato extract (PSPE) (5 wt % on chitosan basis) could establish physical
interactions with chitosan molecules and act as bridges among different chitosan chains [205,220].

Thus, the incorporation of pure phenolics or phenolic-rich plant extracts [42,268], in addition to
the increased antioxidant ability, can greatly enhance the physical property (by crosslinking through
non covalent bonds) of chitosan film (thinned young apple polyphenols [250], thyme extract [244],
and protocatechuic acid—a potent antioxidant agent found in fruits and vegetables [269]), leading to a
more rigid and compact chitosan matrix and improving the film physical properties [244].

Tannic acid is a polyphenol naturally found in some green leaves, which exhibits antioxidant
properties due to its multiple phenolic groups which can help crosslinking chitosan films [270], a
process facilitated by exposure to high temperatures (100 ◦C) [271]. Thyme-extract polyphenols have
been also used as crosslinkers [253,272].

The interactions of chitosan with phenolic substances through non-covalent bonds were proved by
FTIR analysis, for example, for chitosan films containing black soybean seed coat extract (BSSCE) [205].

The IR spectra evidenced that the incorporation of the phenolic substances into the chitosan led
to the presence of a new absorption band appearing at 1707 cm−1 [273] (1715 cm−1 [267]), or 1660
cm−1 [267], which became more pronounced by increasing the extract content [207] and was attributed
to an ester linkage [267,274] (C=O stretching [273]).

For the chitosan purple-fleshed sweet potato extract (PSPE) films, the band around 3290 cm−1

broadened, while the band of N-H bending (1553 cm−1) gradually decreased with the increase of
PSPE amount [220]. The absorptions at 3500–3000 cm−1 reflecting the stretching vibration of hydrogen
bonds between the lattice hydroxyls and organic groups were stronger in pure chitosan film compared
to those incorporated with pomegranate rind powder extract (PRP) [273] and was shifted to lower
frequencies in chitosan/pomegranate rind powder extract (PRP) blended films [273]. The peaks at
1561 cm−1 (N–H band) and 1422 cm−1 (C–H band) (characteristic peaks of chitosan) flattened with
incorporating PRP [273]. Other authors reported a gradual decrease of the 1553 cm−1 band (N–H
bending) with the increase in PSPE amount [220].

All these observations suggest interactions [273] between the amine groups of chitosan
(hydroxyl/amino groups [220]) and the acid groups (e.g., hydroxyl groups [220]) of the phenolic
compounds [267].

Similarly, the color data regarding the films with different concentrations of phenolic compounds
measured at different times proved that there are interactions between the chitosan and the phenolic
compounds present in the extract [267].

The beneficial effects of the interactions (crosslinking) of phenolic substances with the
chitosan/starch/alginate matrices are 1) delaying/controlling the release of the active substances:
The incorporation of tannic acid as crosslinking agent into chitosan films delayed the thyme extract
polyphenols release rate in water and ethanol aqueous solutions, and also reduced the average water
content of chitosan–starch films without affecting their solubility [253]; 2) enhancing the mechanical
behavior: When mixed with chitosan, the polyphenols from thyme extract interacted with the chitosan
chains, acting as crosslinkers and enhancing the tensile behavior of the films. The opposite effect was
observed when incorporated into the starch matrix [244]. The supplemental addition of tannic acid to
the chitosan-based films also produced a further significant increase in the elastic modulus, tensile
strength, and lower elongation at break due to the crosslinking effect [244].

Similar improvements were reported for chitosan films incorporating murta leaf extracts, rich
in polyphenolic compounds [275]. Higher tensile strength as compared to plain chitosan film were
found in chitosan green tea extract [276]. However other authors reported that the tensile strength of
chitosan films containing anthocyanin-rich purple-fleshed sweet potato extract (PSPE) was not very
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different from those of pure chitosan films but decreased the elongation at break [220,252]. However,
a significant reduction in the tensile strength was detected when PSPE amount increased to 10 wt
% [220]. The incorporation of PSPE also caused significant decreases in the diffraction peak intensities
of chitosan with the increase in PSPE amount due to newly formed intermolecular hydrogen bonds
between the chitosan chains and anthocyanins in PSPE [220].

3) Decreased water barrier properties (decreased water vapor permeability (WVP)): Tannic acid
(TA) was reported to decrease water vapor permeability (WVP) due to the same crosslinking effect
for chitosan [271]. However, other authors evidenced the water plasticization effect on the polymeric
matrix which seems to mitigate the crosslinking effect of TA, as pure chitosan and chitosan: TA films
had greater values of water vapor WVP and oxygen permeabilities than the starch films while the
chitosan:starch films exhibited intermediate behavior [244].

In addition to the mentioned crosslinking effect, other authors attribute the enhanced water vapor
barrier property of chitosan films incorporating black soybean seed coat extract (BSSCE) to the bulky
aromatic and pyrylium rings in the skeleton of anthocyanins that could obstruct the inner networks of
chitosan–black soybean seed coat extract (BSSCE) films and reduce water vapor affinity of films [205].

The lower WVP of the films incorporated with different plant extracts may be also due to the
hydrogen and covalent interactions between the chitosan network and polyphenolic compounds,
which reduce the availability of the hydrophilic groups [277] and lead subsequently to a decrease in the
affinity of chitosan film towards water molecules [252]. Similar decrease in WVP values were reported
when chitosan film was incorporated with apple polyphenol. [250]. However, when the amount of the
plant is too high (for example 15 wt % for purple-fleshed sweet potato extract (PSPE)), the dispersion
of the extract destroyed the dense and compact structure of film, resulting in the increase of WVP [220].

4) Increased stability under different pH in aqueous media: The stability under different pH in
aqueous media is an important requirement for the applicability of the edible coated films. The water
uptake of chitosan was remarkably reduced by the presence of chokeberry pomace extract (AEX): the
modified chitosan films were stable and did not break apart during the swelling tests even under acidic
pH due to the interactions between chitosan network and polyphenolic compounds which reduce the
availability of the hydrophilic groups [209].

5) Decreased moisture content: Due to this interaction, which greatly limited water–chitosan
intermolecular interactions, the moisture contents in the chitosan films decreased with the addition
of the polyphenols from plants extract. [220]. Similarly, chitosan–black soybean seed coat extract
(BSSCE) films [205] or chitosan/aqueous hibiscus extract films [204] presented lower moisture contents
in comparison to pure chitosan film. The opposite effect was observed for starch and gelatin films: The
addition of the aqueous hibiscus extract promoted a significant increase in water content [204].

3. Conclusions

Plants provide materials which can be used as additives into polymeric materials, such as
lignocellulosic fibers, nano-cellulose, or lignin, as well as plant extracts containing bioactive phenolic
and flavonoid compounds used in the food packaging area. The lignocellulosic materials, lignin and
nano-cellulose, can be used as reinforcements in various polymer matrices. As active ingredients
in food packaging materials, based on chitosan/starch/alginate, the plant extracts can decrease the
respiration rate and can delay the declining of the total phenolic content, flavonoids, anthocyanin
content, and antioxidant activity in various fruits, as well as provide UV protection and can act as
crosslinkers for the chitosan/starch/alginate matrices.
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