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Abstract

Summary: In biology, graph layout algorithms can reveal comprehensive biological contexts by visually positioning
graph nodes in their relevant neighborhoods. A layout software algorithm/engine commonly takes a set of nodes
and edges and produces layout coordinates of nodes according to edge constraints. However, current layout
engines normally do not consider node, edge or node-set properties during layout and only curate these properties
after the layout is created. Here, we propose a new layout algorithm, distance-bounded energy-field minimization al-
gorithm (DEMA), to natively consider various biological factors, i.e., the strength of gene-to-gene association, the
gene’s relative contribution weight and the functional groups of genes, to enhance the interpretation of complex net-
work graphs. In DEMA, we introduce a parameterized energy model where nodes are repelled by the network top-
ology and attracted by a few biological factors, i.e., interaction coefficient, effect coefficient and fold change of gene
expression. We generalize these factors as gene weights, protein–protein interaction weights, gene-to-gene correla-
tions and the gene set annotations—four parameterized functional properties used in DEMA. Moreover, DEMA con-
siders further attraction/repulsion/grouping coefficient to enable different preferences in generating network views.
Applying DEMA, we performed two case studies using genetic data in autism spectrum disorder and Alzheimer’s
disease, respectively, for gene candidate discovery. Furthermore, we implement our algorithm as a plugin to
Cytoscape, an open-source software platform for visualizing networks; hence, it is convenient. Our software and
demo can be freely accessed at http://discovery.informatics.uab.edu/dema.

Contact: jakechen@uab.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Network analysis provides a fundamental way to understand the bio-
molecular mechanisms systematically and the dynamics of signaling
events (Koutrouli et al., 2020; Ma’ayan, 2011). When dealing with a
huge, complex biological network, layout algorithms play a vital role
in revealing the underlying structure and sub-structure or functional
associations so that the critical components or modules can be cap-
tured easily. Ideal network layouts are expected to not only present a
global view of items with more space-filling and fewer overlapping
nodes but also highlight specific parts of the views coupling with bio-
logical annotations (Kobourov, 2012; Pinto et al., 2010; You et al.,
2010). Therefore, the mined critical biomarkers and models can fur-
ther assist disease diagnosis (Bock and Ortea, 2020; Drier et al.,
2013; Liu et al., 2016; Livshits et al., 2015; Pian et al., 2021; Zhang
and Chen, 2010), cancer subtyping (Lafferty et al., 2021;
Mallavarapu et al., 2020; Zhang and Chen, 2013) and personalized
medicine (Chen et al., 2007; Hamburg and Collins, 2010; Raghavan

et al., 2017). Various analytical strategies have been applied to bio-
logical network analysis, such as sub-network analysis in MCODE
(Bader and Hogue, 2003), hub gene identification and geneset en-
richment analysis, to extract critical genomic information (Khan
et al., 2020). Many layout algorithms incorporate biological factors,
such as hubs (highly connected nodes) (He and Zhang, 2006), into a
weighted network to generate layouts. Compared with the tradition-
al Fruchterman and Reingold (FR) layout model (Fruchterman and
Reingold, 1991), the recently proposed Force-Directed (FD) algo-
rithm, Organic Layout (OL) algorithm (Cline et al., 2007),
BioLayout (aka. edge-weighted FD layout) (Enright and Ouzounis,
2001) and Forcealtas2 (FA2) (Jacomy et al., 2014) show a protein–
protein interaction (PPI) network’s hubs and overall network modu-
larity clearly. To evaluate the PPI’s strength in a PPI network, differ-
ent statistical methods were developed to capture the PPI score
(Chen et al., 2017; Langfelder and Horvath, 2008; Schaefer et al.,
2012). PPI score is incorporated by edge-weighted FR (EWFR) pro-
vided by Cytoscape (Shannon et al., 2003) to generate a layout where
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the length of the edges reflects the degree of the relation. In addition,
since the gene-set enrichment analysis (Yue et al., 2015) has become
popular, Enrichment Map (EMap), a layout plugin for Cytoscape, is
developed to present relationships among gene sets (Merico et al.,
2010). In EMap, nodes represent gene sets and edges represent the
‘gene overlap’ between gene sets measured by the overlap ‘score’. By
default, the overlap ‘score’ combined an equal-weighted Jaccard co-
efficient (50%) and overlap coefficient (50%), and the cutoff the
overlap ‘score’ is 0.375. Deep learning network provides layouts
using extracted features or embeddings from networks (Grover and
Leskovec, 2016; Muzio et al., 2021; Perozzi et al., 2014; Tang et al.,
2015). However, none of the current layout algorithms integrate dif-
ferent types of biological factors into the layout generation and syn-
thetically present a global view of genomic information.

Based on the above considerations, we propose a new layout al-
gorithm, the distance-bounded energy-field minimization algo-
rithm (DEMA). DEMA aims to incorporate biological network
properties and prior knowledge information of the network to en-
hance network biology explorations and applications. It generates
a layout where network hubs and the functional modules can be
shown visually with controlled parameters including hub shrinking
(HS) and the space filling (SF). A DEMA-optimized network lay-
out may help users identify enriched biological pathways and
enriched gene sets in a network context. In addition, the DEMA
network layout may reveal gene signature patterns derived from
functional genomics analysis using network visualization tools
such as GeneTerrain (You et al., 2010). The essential input of
DEMA is a PPI network that describes the physical or co-
expression relationships between genes. The biological factors
analyzed by computational measures are categorized and defined
in our layout. Interaction coefficient (IC) is defined as a measure
to evaluate the reliability of the edges in the PPI network using
statistical methods (Chen et al., 2017). The IC can be extended to
any biological feature that reflects the edge strength. Effect coeffi-
cient (EC) is defined as a measure to evaluate the correlation be-
tween genes based on gene expressions, such as the Pearson
correlation coefficient (Langfelder and Horvath, 2008). EC can be
substituted for any metric representing any correlation between
the nodes in networks. Fold change (FC) is defined as the fold
change of the gene expressions from case samples to control sam-
ples (Smyth, 2005). FC can be extended to any read-out values
from experiments. DEMA can take one or more of IC, EC and FC
as inputs and produce a layout by using the length of the edge to
present these biological factors. Furthermore, the layout also con-
siders gene-set annotation. By denoting which genes share similar
functions, DEMA can group these genes together, and it can be
extended to any grouping annotation of nodes.

The layout generated by DEMA has four properties:

1. Topological property: The layout generated by DEMA shows

some modularities so that the hubs in the network can be

observed. The layout generated by our method should make sure

that the nodes do not overlap each other and can be seen clearly.

2. Edge-weighted property: If the edge that connects two nodes has

a strong relation (EC or IC), then these two nodes will become

close; otherwise, they are far away from each other.

3. Node-weighted property: Two nodes that share an edge will be-

come close if they both have high node weights (FC) and have a

positive association; otherwise, they are far away from each other.

4. Grouping ability: Gene-set annotation analysis is a popular tech-

nology to functionally analyze the gene sets in the network. Gene

sets are defined as clusters of genes organized by different func-

tionalities. The layout generated by DEMA can present the gene-

set relation by grouping the genes that share similar functions.

Table 1 shows the comparison between DEMA and popular lay-
outs provided by Cytoscape (Shannon et al., 2003) and Gephi
(Bastian et al., 2009) software. DEMA is the only one layout algo-
rithm that includes four kinds of properties.

2 Materials and methods

2.1 Model definition
Energy function-based layout methods are the commonly used meth-
ods for designing a layout. They model a graph layout as a physical
system where nodes are attracted and repelled by different kinds of
forces. We introduce a parameterized energy model where nodes are
repelled by the network topology and attracted by a few biological
factors, i.e., interaction coefficient (IC), effect coefficient (EC) and
fold change (FC) of gene expression. The model is also suitable for a
binary network where FD algorithms are usually applied. In the fol-
lowing sections, we discuss the base model, parameterized energy
model and parameterized energy model with grouping. The base
model corresponds to the DEMA layout with basic topological
property (L0). Parameterized energy model corresponds to the
DEMA layout with additional edge-weighted property (Le) and add-
itional node-weighted property (Ln). Parameterized energy model
with grouping corresponds to the DEMA layout with additional
gene-set grouping ability (Ls).

2.2 Parameterized energy model
The energy function is composed of repulsion energy and attraction
energy, which is defined as follows:

E ¼ KaEa þ KbEb

¼
X

i

X
j

Ka � Ri � Rj

di;j

þ
X

i;j2NET

Kb � FCi � FCj

wi;j�di;j
�Kb � FCi � FCj

wi;j�Di;j

 !
; (1)

where 0 < Di;j � di;j < wi;j and Di;j is an extremely small constant
(10�8 in default) that makes sure any two nodes will not collapse.
Ea denotes the repulsion energy and Eb denotes the attraction en-
ergy. In the above equation, NET denotes the PPI network, Ka, Kb

are control coefficients. When Kb/Ka is large, the attraction influence
is strong to pull the nodes together, while the nodes are pushed
away when Kb/Ka is small. Ri is the RP score of gene i, FCi is the
fold change (FC) of gene i, di, j is the distance between gene i and
gene j, and wi, j is a constraint weight to make the distance di, j is
smaller than wi, j.

Specifically, RP score Ri proposed in Chen et al. (2006) separates
the important nodes. It is defined as follows:

Ri ¼ e
k�lnð

P
j;where i;jð Þ2NET

ICi;jÞ�ln
P

j;where i;jð Þ2NET
1
; (2)

where ICi,j is the interaction coefficient (IC) between gene i and gene
j. k is set to two by default. Here, the PPI score between gene i and
gene j is used as an interaction coefficient. FCi is the fold change
(FC) of gene i expression values between the control samples and the
case samples.

Constraint weight wi, j is defined as

wi;j¼max 1= �log
1�ICi;j

1þICi;j

 !
�log

1�ECi;j

1þECi;j

 !
þKi;j

 !
; Di;jþe

 !
;

(3)

where Ki, j is set to the default of 1 and ECi, j is the effect coefficient
(EC). Here, we use as EC the Pearson correlation of the genes. As
the ranges of IC and EC are both [�1,1], the range of parameter w
is (0, 1] due to the constraint of Di;j þ e.

2.3 Base model
In some situations, we cannot get the FC, IC and EC. When this in-
formation is missing, the default values are set. For the attraction
energy Eb, FC, IC and EC are all set to be 1. Because

1= �log
1�ICi;j

1þICi;j

� �
� log

1�ECi;j

1þECi;j

� �
þ Ki;j

� �
tends to 0 when the IC or EC

tends to 1, wi;j ¼ Di;j þ e.
In the repulsion energy Ea, due to IC equaling 1, the RP score is

defined as
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Ri ¼ e
k�ln
�P

j;where i;jð Þ2NET
1

�
�ln
P

j;where i;jð Þ2NET
1
: (4)

It approximates the degree of the node. In the base model, the
energy function is written as

E ¼
X

i

X
j

Ka � Ri � Rj

di;j
þ

X
i;j2NET

Kb

Di;j þ ��di;j
� Kb

�

� �
: (5)

2.4 Parameterized energy model with grouping
Because gene-set analysis grows in popularity and increases the in-
terpretability of data, we further improve our energy model by com-
bining it with the gene set.

The gene-set energy is added into our model as the third item,
which is defined as follows:

Ec ¼
X

s2gene sets

X
i2s

d2
i;c; (6)

where s is a gene set, and c is the center position of s. Therefore, the
energy function is

E ¼ KaEa þKbEb þ KcEc: (7)

2.5 Complete model of DEMA
The complete model of DEMA is

E ¼ KaEa þ KbEb þ KcEc

¼
X

i

X
j

Ka � Ri � Rj

di;j

þ
X

i;j2NET

Kb � FCi � FCj

wi;j�di;j
�Kb � FCi � FCj

wi;j�Di;j

 !

þKc

X
s2gene sets

X
i2s

d2
i;c: (8)

2.6 Relation between parameter w and IC as well as EC
When IC or EC increases, the parameter w decreases
(Supplementary Fig. S1), such that it can decrease the maximum dis-
tance between them. It is because of the constraint that the distance
d between two genes should be smaller than their corresponding w.
If a pair of genes have high IC and EC, which denote a strong rela-
tion, the pair should be close to each other.

2.7 Relation between the small energy system and

parameter w
Assume that there are just two genes forming a small energy system
composed of the repulsion energy and the attraction energy. If the
other parameters in the energy system are fixed except for parameter
w, when the distance is increasing, the repulsion energy decreases
while the attraction energy increases. This results in an optimal dis-
tance between genes such that the total energy is minimized.
Meanwhile, w will influence the optimal distance. When w is small,
the optimal distance shrinks (Supplementary Fig. S2).

2.8 Relation between the group energy and distances

from nodes to their center
For each group, when the distance between the node and the center
increases, the group energy will increase. Minimizing the group en-
ergy pulls the nodes in the group close together and attracts each
node close to the center of the group (Supplementary Fig. S3).

2.9 Finding a greedy solution
2.9.1 Solution for parameterized energy model

Given the coordinates of a gene i in the 2D Euclidean plane by
pi ¼ (xi, yi), the distance di, j between gene i and j is written as
follows

di;j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpi � pjÞ2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi � xjð Þ2 þ ðyi � yjÞ2

q
: (9)

The goal of the algorithm is to find values for the coordinates of
each node i to minimize the energy function E(p1, p2,. . .,pm). It is a
constrained optimization problem; however, because the force is the
derivative of potential energy (Kobourov, 2012), we can calculate
the force exerted on one node and move it at a time to solve this
problem. With respect to the position of one node i, we compute the
gradient of the energy function and calculate the force exerted by
other nodes.

For each gene i, the strength of the repulsion force exerted by
node j is

f a
i;j ¼

Ka � Ri � Rj

d2
i;j

: (10)

And the direction is -(pj-pi). While the strength of the attraction
force exerted by node j is

f b
i;j ¼

Kb � FCi � FCj

ðwi;j � di;jÞ2
: (11)

And the direction is pj-pi. Therefore, the total force is

f ¼ �
X

i

X
j

f a
i;j pj � pið Þ þ

X
i;jð Þ2NET

f b
i;j pj � pið Þ: (12)

After we get the direction of the node i moved by the force, the
step length is to reduce the total energy. The step length is chosen to
be 0.001 from a set L ranged from 0.001 to 1 in the greedy algo-
rithm, which means to choose the maximum element l 2 L such that
the constraint will not be violated and the total energy will decrease
after moving the point i with such a step length. The greedy
algorithm can be implemented by binary search, resulting in a fast
algorithm to find the result with O(log jLj).

2.9.2 Solution for parameterized energy model with grouping

To solve the above model, we use the EM (expectation and maxi-
mization) algorithm to find the local optimal solution iteratively.

In the expectation stage, we fix the positions of the genes and de-
termine the position of the center of the gene set according to the
mean value of the positions of the corresponding genes, which
makes the energy of the gene-set minimal.

Table 1. The comparison of different layout algorithms

Layout Topological property Node-weighted property Edge-weighted property Gene-set grouping property

OL (Cytoscape) � � � �

FA2 (Gephi) � � � �

FR (Gephi) � � � �

FD (Cytoscape) � � � �

EWFR (Cytoscape) � � � �

EMap (Cytoscape) � � � �

DEMA � � � �
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In the maximization stage, we also move each gene according to
the force exerted on it. For each gene i, the strength of the gene-set
force exerted by its gene set(s) is

f c
i ¼ Kc

X
s2S

2di;c; (13)

where S is a set composed of the gene set containing gene i and c is
the center of the gene set.

And the direction is pc � pi. Therefore, the total force is

f ¼ �
X

i

X
j

f a
i;j pj � pið Þ þ

X
i;jð Þ2NET

f b
i;j pj � pið Þ þ

X
i

f c
i pc � pið Þ

(14)

After we get the direction of the point i to move on by the force,
the step length is set to reduce the total energy. The step length is
chosen to be 0.001 from a set L range from 0.001 to 1 in the greedy
algorithm.

2.10 Heuristic start
To further converge the energy function to a minimum fast, a heuris-
tic start is proposed. First, we construct the initial network by con-
necting each pair of nodes that share an edge.

Two kinds of energy compose the small energy system of each
pair of nodes that share an edge in the formula (1).

From the derivation, we can find the optimal distance to minim-
ize the energy system is

d ¼
w

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ka � Ri�Rj

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kb � FCi � FCj þKa � Ri � Rj

p (15)

Then, we use the shortest path to connect all of the nodes to
build a complete network.

After we define the distances between any pair of nodes, the for-
mulation is transformed into the Kamada–Kawai (KK) model
(Kamada and Kawai, 1989; Khoury et al., 2012), and we can solve
it according to the stress majorization algorithms (Gansner et al.,
2004; Khoury et al., 2012). It is proved that it needs a few iterations
to achieve an appealing layout by using the stress majorization.
However, the layout cannot guarantee that the empirical distance
between the nodes which share an edge is smaller than the edge
weight since the empirical distance is sometimes larger than the ideal
distance. To make the initial layout satisfy this constraint, we con-
stantly replace KB by 2 * KB so that the optimal distance becomes
smaller until the empirical distance between the nodes which share
an edge is smaller than the edge weight. The layout generated by the
heuristic start (HS) can be used as an initial layout for DEMA.
Compared with random start (RS), DEMA with HS can show a lay-
out with fewer iterations (Supplementary Fig. S4).

2.11 Network generation
The random networks are generated by NetworkX package (avail-
able from https://networkx.github.io/) in Python. They satisfy the
scale-free property. The distribution of the degrees of the 100 nodes,
500 nodes and 1000 nodes are shown in Supplementary Figure S5,
respectively.

3 Results

DEMA is a layout algorithm implemented as an easily operated
Cytoscape plugin (download at http://discovery.informatics.uab.
edu/dema). The input to DEMA consists of two files: the edge file
that describes the attributes of the edges connecting the nodes and
the node file that describes the properties of the nodes. As depicted
in Figure 1, there are four properties of DEMA corresponding to
four parts (A, B, C, D) of inputs, respectively. Part A is a PPI net-
work and the necessary input to DEMA. Other parts are optional.
The four properties will be introduced one by one. A case study is
given at the end.

3.1 Topological property
As depicted in Figure 1, by importing the PPI network that uses
edges to describe the network, DEMA can generate a layout with
topological modularity (L0).

The comparison between DEMA and other layouts with a ran-
dom network of 100 nodes satisfying scale-free property (Barabási,
2009) is shown in Figure 2. Cytoscape and Gephi provided the best-
performed layout with their default parameters that we adopted in
the comparison. Figure 2(a–d) is generated by DEMA with different
values of control the parameter Kb/Ka. Figure 2(e–h) are the popular
layouts provided by software Cytoscape and Gephi. They are FR
model (Fruchterman and Reingold, 1991), FD layout (http://www.
prefuse.org), Organic layout (OL) (Cline et al., 2007) and
ForceAtlas2 (FA2) (Jacomy et al., 2014), respectively. From
Figure 2(a–d), we can see that when Kb/Ka becomes large, the modu-
larity in the layout is more obvious. However, the distance between
the nodes surrounding the hubs and the hubs becomes small, which
makes it difficult to observe the surrounding nodes. Compared with
other layouts, we can see that (e) subfigure roughly corresponds to
(a), and the hubs in the layouts are both not obvious. (f) roughly cor-
responds to (b), while there is no hierarchy in the hub and its neigh-
borhood in (f). In Figure 2b, we can see that the edge between the
small hub and the big hub is longer than the edges between other
nodes and the big hub in the crop regions in the red rectangle
frames. In contrast, in Figure 2f, the edge between the small hub and
the big hub is the same length as the edges between other nodes and
the big hub. (g) roughly corresponds to (c), while some edges cross
in (g). (h) roughly corresponds to (d). Both of them clearly show the
hubs, but the nodes cannot be observed clearly.

To choose a proper parameter Kb/Ka for DEMA, we access the
network modularity by evaluating visual clarity and network modu-
larity. With a proper parameter Kb/Ka, DEMA can clearly observe
the hubs and the nodes. We use space filling (SF) to evaluate the vis-
ual clarity and hub shrinking (HS) to evaluate the structural modu-
larity. First, we normalize the nodes’ coordinates at [0, 1] for each

Fig. 1. Illustration of DEMA. There are two files (node file and edge file) and four

parts of them. Part A describes the PPI network. Part B describes the attributes of

the edges. Part C describes the attributes of the nodes. Part D annotates the sets that

the nodes belong to. Among them, Part A is the essential input and combines with

other parts to perform additional corresponding functional properties
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axis. Then, we build a grid and see what percentage of the small
squares in the grid are occupied by the nodes; it is the SF measure.
The larger the percentage, the more dispersed the nodes are. For the
HS measure, the coordinates of the nodes are also normalized at
first. We then calculate the interaction arithmetic mean of square
distance between each pair of nodes that share an edge. Obviously,
the smaller the HS value, the more the nodes shrink to the hubs. The
networks with 50 nodes, 100 nodes, 500 nodes and 1000 nodes are
randomly generated. Each kind of network is generated 100 times.
SF and HS are calculated and shown in Figure 3a and b. For SF, the

number of the small squares in a grid is almost twice the number of
the nodes. Although there are some unstable situations, HS and SF
generally decrease as Kb/Ka increases. SF stabilizes after it reaches a
valley, while HS bounces up after Kb/Ka crosses a threshold. The
reason that HS bounces up is that the distance between the hubs
increases, and it affects HS more than the distance between the hub
and the peripheral nodes does. To achieve a balance between SF and
HS, we calculate HS/SF. The result is shown in Figure 3c. From the
figure, we can see that the best parameter for the smallest HS/SF is
usually close to the number of nodes. Also, from Figure 3d, we can

Fig. 2. A comparison of different network layouts with network graph node size n¼100. (a–d) The layouts drawn by DEMA with different parameters Kb/Ka are described.

(e–h) The layouts drawn by different layout algorithms

Fig. 3. Effects of layout by varying network sizes and DEMA Kb/Ka parameters. #N denotes the number of the nodes. #E denotes the number of the edges. (a) Space-filling (SF)

is used to evaluate visual clarity. The larger, the better. (b) Hub shrinking (HS) is used to evaluate structural modularity. The smaller, the better. (c) and (d) use HS/SF to

achieve a balance between the visual clarity and the structural modularity. The smaller, the better. The round dots in (c) indicate the optimal Kb/Ka values with the lowest of

HS/FS ratio. The round dots in (d) indicate the optimal choice for Kb/Ka determined by the input node size

Modeling the biomolecular networks with quantitative features i363



observe that given 100 nodes with different numbers of edges, the
best parameter for the smallest HS/SF is still close to the number of
nodes. Therefore, the default value of Kb/Ka is the number of nodes.

The HS/SF values for the layouts shown in Figure 2 are calcu-
lated in Table 2. From the results, we can see that DEMA achieves
the lowest value and produces the best balance between the hub
shrinking (HS) and the space-filling (SF).

3.2 Edge-weighted property
In Figure 1, Part B of the edge file includes the two computational
biological factors, interaction coefficient and effect coefficient, as
the attributes of the edges. Interaction coefficient (IC) is defined as a
measure to evaluate the reliability of the edges in the PPI network
using statistical methods [11]. Effect coefficient (EC) is defined as a
measure to evaluate the correlation between genes based on gene
expressions, such as the Pearson correlation coefficient [12]. By
importing the PPI network and these biological factors represented
as the edge weights, the layout in the figure not only shows the net-
work modularity but also reflects the relationship between the nodes
by the length of the edge (Le). If any two nodes that share an edge
have a strong IC or EC, they are close to each other; otherwise, they
are far away from each other.

We use the P-value to show that the length of the edge can dem-
onstrate the degree of the relationship. For IC and EC, the edges are
sorted according to their values from largest to smallest. We select
as top edges the top p percent of the total edges and calculate the
average length of the top edges. Then, we randomly select p percent
of the edges and check whether the average length of the selected
edges is smaller than the average length of the top edges. The selec-
tion is repeated 10 000 times. The P-value is calculated as the prob-
ability that the average length of the randomly selected edges is
smaller than the average length of the top edges. We generate six
kinds of random networks, and the IC and EC values of the net-
works are randomly generated 100 times. These six kinds of random
networks are network 1 (100 nodes and 99 edges), network 2 (100
nodes and 196 edges), network 3 (100 nodes and 291 edges), net-
work 4 (500 nodes and 499 edges), network 5 (500 nodes and 996
edges) and network 6 (500 nodes and 1491 edges). From
Supplementary Figures S6 and S7, we see that the P-values of EC
and IC are below 0.05 for the network with 100 nodes and 500
nodes. They are significant. It means that our parameterized layout
not only has network modularity but also reflects the relationship
between any two nodes that share an edge by the length of the edge.

3.3 Node-weighted property
In Figure 1, Part C of the node file includes fold change, a biological
factor, as the attribute of the node. Fold change (FC) is defined as
the fold change of the gene expressions from case samples to control
samples (Smyth, 2005). By importing the PPI network and the FC of
nodes, the layout in the figure not only shows the network modular-
ity but also reflects the relation between the nodes by the length of
the edge (Ln). If any two nodes that share an edge both have the
high FC, they are close to each other.

We also use the P-value to show that the length of the edge can
demonstrate the degree of the relationship. If two nodes that share
an edge both have a high FC value, they should be close to each
other; otherwise, they are far away from each other. The value of
the edge is defined as the product of the values of the two nodes that
the edge connects. The edges are then sorted from largest to smallest.

We select as top edges the top p percent of the total edges and calcu-
late the average length of the top edges. Then, we randomly select
the p percent of the edges and check whether the average length of
the selected edges is smaller than the average length of the top edges.
The selection is repeated 10 000 times. The P-value is calculated as
the probability that the average length of the randomly selected
edges is smaller than the average length of the top edges. We gener-
ate a random network, and the values of FC for the networks are
randomly generated 100 times. From Supplementary Figure S8, we
see that the P-values of FC are all below 0.08 no matter for the net-
work with 100 nodes or 500 nodes. They are significant.

3.4 Gene-set grouping ability
In Figure 1, Part D of the node file includes gene-set annotation,
denoting what gene sets each gene is from. By importing the PPI net-
work and the gene-set annotation, the layout can show the additional
grouping ability (Ls). From the figure, one can see that in some rows
of the set column, multiple sets are denoted and separated by commas.
Some genes may belong to multiple sets. DEMA will group the genes
in the same set. In DEMA, there is a parameter Kc to control the de-
gree to which the genes in the same set are grouped. As described in
Figure 4, the genes in the set will become closer as Kc increases.

To evaluate the grouping performance, we define two measures,
the inside mean value of the squared distance (IMSD) and space fill-
ing (SF). IMSD is defined as the mean value of the squared distance
between any two genes in the set divided by the mean value of the
pairwise squared distance among all the input genes. SF is defined in
the above part, which is used to evaluate visual clarity. We generate
10 random networks with 100 nodes and calculate the IMSD and SF
for four gene sets. They include gene subsets (5, 10, 25 and 50%)
randomly selected from all the genes, respectively. The averaged
results are shown in Figure 5a and b. From Figure 5a, we can see
that IMSD becomes smaller as Kc increases, which shows that the
nodes in the group become closer. From Figure 5b, we can see that
SF is almost the same before Kc is equal to 40 000. When Kc is larger
than 40 000, SF declines rapidly, which means that some nodes
overlap. We generate 10 random networks with 500 nodes and cal-
culate the IMSD and SF for four gene sets. The averaged results are
shown in Figure 5c and d. In Figure 5c, IMSD also becomes smaller
as Kc increases. And in Figure 5d, SF is almost the same before Kc is
equal to 150000. When Kc is larger than 150 000, SF also declines
rapidly. Therefore, the default Kc value is defined as 300 times as
the number of nodes to make a balance between the visual clarity
and the grouping degree.

3.5 Case study of autism spectrum disorder
Autism spectrum disorder (ASD) is analyzed by DEMA as a case
study. Autism is a complex disease, and it is still difficult to

Table 2. HS/SF for different layouts

FR FD OL FA2 DEMA (Kb/Ka 5 100)

HS 0.026 0.010 0.015 0.008 0.008

SF 0.210 0.418 0.382 0.219 0.352

HS/SF 0.052 0.025 0.040 0.036 0.023

The bold value indicates the DEMA performed the best (the lowest value in

the HS/SF metric).

Fig. 4. Effects of DEMA layout by varying Kc. The solid nodes represent the nodes

in the set
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determine its etiology. In the paper Li et al. (2014), a human PPI net-
work is built and decomposed into 817 topological modules based
on the human protein interactome from BioGrid (Stark et al., 2011)
(Supplementary File S1). Among these modules, Module #13 shows
significant enrichment related to ASD and includes 199 genes. In
this module, the SFARI reference ASD genes and de novo CNVs are
denoted (Supplementary File S1). We took the cluster #13’s genes
and extracted the subset of the PPIs associated to those genes in the
cluster #13 directly from the supplemental of the paper (Stark et al.,
2011). This module is used to draw a layout by DEMA, organic lay-
out (OL), FD, edge-weighted force-directed (EWFD), Forcealtas2
(FA2) and Fruchterman and Reingold (FR) layout (Fig. 6), respect-
ively. The nodes in red are SFARI reference genes, and the nodes in
blue are de novo CNVs. The other layouts only show which genes
are connected to the related genes. However, the layout by DEMA
can group the related genes together and observe the hubs that con-
nect to these related genes. DEMA performances the best in both
SFARI and de novo gene groupings measured by IMSD scores
(Supplementary Table S1). Three candidate genes are denoted by the
arrows, which will be further analyzed in the following. One can see
that DEMA can group the genes in the same set together. By zoom-
ing in DEMA, in Figure 6a, DLG2 (Jiangxie et al., 2014), DLG3
(Kantojärvi et al., 2011) and DLGAP1 (Egger et al., 2014) are highly
connected to the ASD-related genes, which are also related to ASD
according to the literature. These genes are considered to be new
candidate genes related to ASD.

3.6 Case study of Alzheimer’s disease
To illustrate the biologically functional gene groups in a heteroge-
neous disease like Alzheimer’s disease (AD), an important parameter
Kc in DEMA has been designed to group and visualize the
acknowledged-based gene sets in disease gene networks. In our
study, 680 candidate genes in view of genetic risk were collected
from the AlzGene database (https://www.alzforum.org/alzgene). To
construct the gene network, the PPI were retrieved from the HAPPI-
2 database (Chen et al., 2017) using the quality more than or equal
to 4-star (PPI score � 0.75), and the PPI scores were used as IC
scores (Supplementary File S2). There were 558 genes connected by
3459 PPIs. With the aim of highlighting the important genes in the
network. After proceeding with the gene enrichment analysis using
PAGER 2.0 database (Yue et al., 2015, 2018), we found 6 highly

relevant pathways using the false discovery rate (FDR) � 0.05, over-
laps � 15 and similarity score � 0.1. The similarity scores were cal-
culated using the methods in (Huang et al., 2012) (Table 3). After
setting the parameters Kb/Ka ¼ 558 and Kc ¼ 150 000 suggested by
the DEMA, the AD gene network was visualized as well as the cru-
cial genes in pathways were grouped with clear functional patterns
in Figure 7a compared to the organic layout in Figure 7b. Several
key genes with high-genetic risk were revealed by overlapping four
or five pathways in Figure 7, Supplementary Table S2 and File S2.
For instance, APOA1, APOB, LDLR, APOE and ABCA1 involve in
at least four pathways, ‘Vitamin B12 metabolism’, ‘Folate metabol-
ism’, ‘Plasma lipoprotein assembly, remodeling, and clearance’,
‘Statin inhibition of cholesterol production’ and ‘Retinoid metabol-
ism and transport’. In DEMA, these genes were grouped coherently.
TNF, IL6, IL1B, CCL2 and ICAM1 are located near each other, and
these genes are involved in the three pathways, ‘Vitamin B12 metab-
olism’, ‘Folate metabolism’ and ‘Interleukin-10 signaling’. ALB
locates near APOE, and it shares three identical pathways with
APOE. APOA2, APOC3, APOA4 and APOC2 locate near to each
other. These genes share the three pathways ‘Plasma lipoprotein as-
sembly, remodeling, and clearance’, ‘Statin inhibition of cholesterol
production’ and ‘Retinoid metabolism and transport’. SCARB1
locates at the intersection of the pathway group, ‘Vitamin B12 me-
tabolism’, ‘Folate metabolism’ and ‘Plasma lipoprotein assembly,
remodeling, and clearance’. In all, DEMA has successfully
highlighted and grouped the functional genes together with gene-set-
based information, which possessed considerable application poten-
tial for further investigation.

4 Conclusion and discussion

DEMA introduced a parameterized energy model to integrate the
critical biological factors, the biological network analysis, the
strength of PPIs, the gene-to-gene correlations, the gene strength and
the functional gene groups. To find a local optimal solution itera-
tively, we applied EM (expectation and maximization) algorithm.
Thus, DEMA delivers sub-optimal solutions to the global problem,
and the local-field energy needs to be minimized using the stacked
forces to continue the search beyond local optimality. To search for
the shortest paths in the heuristic start, we applied the stress majori-
zation algorithms, and it is faster than the random start to get the

Fig. 5. DEMA gene-set grouping ability with varying Kc. In (a) and (c), (IMSD) is defined to measure the distance between the nodes in the set. In (b) and (d), SF is defined to

measure the space filling for all the nodes. The legend represents the gene subsets (5, 10, 25 and 50%) randomly selected from all the genes, respectively
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initial coordinates. Additionally, to evaluate the structure modality
in comparing DEMA to the other layout algorithms, we introduced
space filling (SF) and hub shrinking (HS). DEMA takes the lead in
balancing between the HS and SF. We statically validated the node,
edge, and grouping properties in the synthetic networks. DEMA can
be extended the adaptivity in substituting the designed biological
factors (IC, EC, FC and geneset grouping) to any equivalent feature
in other Omics, such as metabolomics network, drug–drug

interaction network and hybrid networks across different biological
domains. Further, we performed two real-world case studies using
biological networks. Since DEMA adapts the energy-based algo-
rithm, the basic model using an unweighted network may produce a
layout similar to the organic layout. However, given the biologically
functional annotations, DEMA makes a big difference by revealing
biological groupings and those surrounding candidates intuitively.
We expect DEMA to be a major tool in network analytics.

Fig. 6. Biological interpretability for ASD (autism spectrum disorders). The blue nodes indicate the genes from de novo CNVs and the red nodes indicate the gene from SFARI

reference. DLG2, DLG3 and DLGAP1 are highly connected to the ASD-related genes. (a) Organic layout, (b) DEMA layout, (c) Force-directed (FD) layout, (d) Edge-weighted

force-directed (EWFD) layout, (e) Force atlas 2 (FA2) layout and (f) Frutchterman and Reingold (FR) layout (A color version of this figure appears in the online version of this

article)

Table 3. The information of enriched PAGs from wiki-pathway in Alzheimer’s disease

ID Name Size Overlap Similarity Adj.P Color

WAG002004 Vitamin B12 metabolism (WP1533) 53 29 0.142 3.84E�38 Red

WAG002021 Folate metabolism (WP176) 72 30 0.116 7.30E�35 Orange

WAG002786 Plasma lipoprotein assembly, remodeling and

clearance (WP4129)

67 25 0.102 2.64E�28 Yellow

WAG002857 Statin inhibition of cholesterol production

(WP430)

31 19 0.144 1.92E�26 Green

WAG002729 Interleukin-10 signaling (WP4063) 46 20 0.109 3.08E�24 Blue

WAG002606 Retinoid metabolism and transport 32 15 0.11 7.05E�19 Purple

Note: The ‘ID’ represents the PAG ID, in which the details of PAG can be retrieved using the url http://discovery.informatics.uab.edu/PAGER/index.php/gene

set/view/[PAG_ID]. The ‘Overlap’ represents the number of overlapped genes between the queried gene list and the PAG gene members. The ‘similarity’ is calcu-

lated based on the combination of overlap coefficient and Jaccard index. The ‘Adj.P’ represents the adjusted P-values.
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