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Abstract

Acute respiratory distress syndrome (ARDS) remains to pose a high morbidity and mortality 

without any targeted therapies. Sedation, usually given intravenously, is an important part of 

clinical practice in intensive care unit (ICU), and the effect of sedatives on patients’ outcomes has 

been studied intensively. Although volatile anesthetics are not routine sedatives in ICU, preclinical 

and clinical studies suggested their potential benefit in pulmonary pathophysiology. This review 

will summarize the current knowledge of ARDS and the role of volatile anesthetic sedation in this 

setting from both clinical and mechanistic standpoints. In addition, we will review the 

infrastructure to use volatile anesthetics.

Current Status of Acute Respiratory Distress Syndrome

The respiratory-distress syndrome of tachypnea, refractory hypoxemia, and diffuse opacities 

on Chest X-ray was first described in 1967 [1]. This was later called acute respiratory 

distress syndrome (ARDS), and its diagnosis criteria was defined in 1994 by the North 

American European Consensus Conference (NAECC), as 1) Acute and sudden onset of 

severe respiratory distress, 2)Bilateral infiltrates on Chest X-ray, 3) The absence of left atrial 

hypertension, and 4) Severe hypoxemia (PaO2/ FiO2 <= 200 mmHg) [2]. Flooding of the 

distal airspaces with protein-rich edema fluid is largely responsible for hypoxemia [3]. The 

term “Acute lung injury (ALI)” was defined as an entity that meets 1) - 3) above and has less 

severe hypoxemia (PaO2/FiO2 <= 300 mmHg). However, a number of issues were raised 
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regarding the NAECC definition. The ARDS Definition Task Force redefined ARDS in 2012 

(as follows) and the term ‘ALI’ was eliminated; 1) Onset within 7 days after a known 

clinical insult or new or worsening respiratory symptoms, 2) Bilateral opacities on chest 

radiograph, and 3) Hypoxemia (PaO2/FiO2 <= 300 mmHg) in the presence of a minimum 

positive end-expiratory pressure (PEEP) of 5 cm H2O (‘Berlin definition’) [4]. Left atrial 

hypertension was no longer included because the usage of pulmonary artery catheters had 

been declining and ARDS could co-exist with high left atrial pressure. However, it was 

clearly stated that hydrostastic edema could not be the primary cause of ARDS. If risk 

factors were not identified for ARDS, this new definition mandated to exclude hydrostatic 

edema as a cause of respiratory failure. The risk factors for ARDS are listed in [5,6]. Among 

them, pneumonia (59.4%), extrapulmonary sepsis (16.0%) and aspiration (14.2%) were the 

major risk factors of ARDS in the recent study [7]. ARDS was categorized based on the 

degree of hypoxemia as follows; mild - PaO2/FiO2 200–300 mmHg, moderate- PaO2/FiO2 

101–200 mmHg, and severe - PaO2/FiO2 <= 100 mmHg.

In an international study involving 50 countries, ARDS, diagnosed using the Berlin 

definition, was observed in 10% of all the patients who admitted to ICU and in 23% of 

mechanically ventilated patients [7]. The estimated annual incidence of ARDS using data 

from 1999 to 2000 was 190,600 cases in the U.S. (Of note, in this study, onset criteria and 

PEEP requirement mandated in the Berlin definition was not used for ARDS diagnosis) [8]. 

The mortality of patients with severe ARDS was extremely high (46%) in the 

aforementioned international study [7]. This result was consistent with the mortality of 

Berlin definition validation cohort (mortality of mild, moderate and severe ARDS was 27%, 

32% and 45%, respectively) [4]. Many of patients with ARDS also develop non-pulmonary 

organ failure [6]. Survivors may suffer from neuromuscular dysfunction (neuropathy, 

myopathy), neurocognitive dysfunction (abnormality in memory, attention, concentration), 

and neuropsychological dysfunction (depression, anxiety), which could leave long-term 

consequences [8]. Thus, reducing the incidence and attenuating the disease progression is 

warranted [9].

However, currently there is no specific therapy against ARDS. The mainstay of ARDS 

management is to identify and treat the underlying causes of ARDS. For example, treatment 

for pneumonia should be the priority if this is an inciting disease. For ARDS itself, 

supportive management is used to limit further lung injury. Supportive management 

associated with the improvement of ARDS outcome includes limiting of tidal volume and 

plateau pressure, use of neuromuscular blockade, use of prone position and conservative 

fluid administration [10–13]. Some of the groundbreaking work are introduced here; In a 

groundbreaking trial comparing low-tidal volume (6 mL/Kg) versus high tidal volume (12 

mL/Kg) ventilation testing all the severity of ARDS patients, the mortality during the first 

180 days was 31.0% in the low tidal volume group and 39.8% in the high tidal volume group 

[10]. Using conservative fluid administration over liberal fluid administration to this 

population shortened the duration of mechanical ventilation, but did not show survival 

benefit [13]. Prone position and neuromuscular blockade was tested in moderate-to-severe 

ARDS (PaO2/FiO2 < 150 mmHg). Patients with only deep sedation group (control group) 

were compared with patients with deep sedation who received cis-atracurium for 48 hours 

(muscle relaxant group) [12]. The 28-day mortality was 23.7% in the muscle relaxant group 
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and 33.3% in the control group, and the 90-day mortality was 31.6% and 40.7%, 

respectively. The 28-day mortality was 16.0% in the prone group and 32.8% in the supine 

group, and the 90-day mortality was 23.6% in the prone group and 41.0% in the supine 

group [11]. The American Thoracic Society, European Society of Intensive Care Medicine 

and Society of Critical Care Medicine proposed clinical practice guideline for mechanical 

ventilation based on a number of clinical trials [14]. In addition, sedation regimen and 

neuromuscular blockade have been reviewed and their clinical guideline was suggested [15–

17]. Current recommendation for ARDS management is summarized.

A number of pharmacological interventions for ARDS have been attempted without success 

[18]. While the development of specific pharmacological therapy is necessary and continues 

to be explored, a body of research has suggested that sedative choice, particularly use of 

non-authentic sedative volatile anesthetics could benefit the outcome of ARDS [19–23]. 

Here we will review the current knowledge of sedatives in ARDS and the role of volatile 

anesthetics.

Volatile Anesthetics as Sedatives in Patients with ARDS

The goal of sedation and its role in the outcome

In patients with ARDS, sedation is used to improve tolerance of mechanical ventilation, 

reduce discomfort, and improve patient-ventilator synchrony [16]. Inadequate sedation can 

cause agitation, accidental extubation, or hemodynamic instability. With the introduction of 

electronic flow triggering [24], synchronization became a less important indication. Because 

of adverse effects on clinical outcomes posed by stress and anxiety [25], judicious sedation 

was often provided to mitigate exposure to psychological disturbance [26].

As a result, over-sedation was commonly observed (40–60% of patients) [16,27,28]. The 

contribution of over-sedation to adverse outcomes was pointed out by a number of studies 

[29–32]. The depth of sedation was independently associated with the duration of 

mechanical ventilation (MV), in-hospital mortality, and rate of death [27,31,33,34]. 

Surprisingly, lighter sedation was not associated with psychological adverse outcomes [35–

37]. In addition, delirium was less frequent under lighter sedation [16]. Although not all, a 

significant portion of patients examined in these studies had ARDS [29–32], suggesting that 

these results were relevant to patients with ARDS [16]. The 2018 Pain, Agitation/sedation, 

Delirium, Immobility (rehabilitation/mobilization), and Sleep (disruption) (PADIS) 

guideline recommends light sedation over deep sedation for ICU patients [38]. Although 

patients with severe ARDS are often ventilated with low tidal volume and high PEEP, deep 

sedation is not necessarily required for this purpose [39–43]. However, deep sedation is 

required for patients on neuromuscular blockade, and possibly for prone position and ECMO 

use [44–46].

The majority of sedatives and analgesics are given intravenously [47]. Midazolam, 

lorazepam, diazepam, dexmedetomidine, ketamine, remifentanil, fentanyl, morphine and 

hydromorphone are the mainstay for sedation. Benzodiazepines and propofol are used in 

60% and 20% of cases, respectively [27]. Because sedatives are often given continuously, 

the context-sensitive half-time (CSHT) rather than the terminal elimination half- lifeis 
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proposed as a more clinically relevant measure[48]. The CSHT describes the time required 

for the plasma drug concentration to decline by 50% after terminating an infusion. It 

depends on both distribution and metabolism of a given drug,and predicts recovery from 

infusion more accurately [49]. Decreased hepatic and renal blood flow leads to change in 

metabolism and clearance [50]. CSHT usually increases as the duration of infusion goes 

longer. Midazolam, lorazepam, diazepam, propofol, ketamine, fentanyl, morphine and 

hydromorphone, for example, can have longer CSHTs due to slow metabolism and clearance 

in critically ill patients. Remifentanil, metabolized by plasma and tissue esterases has an 

extremely short CSHT (2.45 min after 3-hour infusion [48]), but can cause acute 

development of withdrawal and tolerance [51]. Dexmedetomidine with CSHT of one hour 

[52] is increasingly in use. Protocol-directed sedation protocol, daily interruption of 

continuous sedation, and spontaneous breathing trial have been used with good effect and 

recommended in the PADIS guideline [29,31,38,53]. Validated sedation scales and protocols 

should be used to titrate sedation [49].

The PADIS guideline also described preference of propofol or dexmedetomidine over 

benzodiazepines [38]. Benzodiazepine was associated with an increased mortality over 

propofol or dexmedetomidine [54].

The ideal sedative should have a rapid onset and offset of action, and allow precise titration 

of sedation without accumulation after long-term use [55]. However, currently intravenous 

sedatives do not meet these criteria perfectly. As alternatives, volatile anesthetics (VAs) have 

been introduced as sedatives in ICU in Europe and Canada [56], and some countries list 

them as alternative sedatives in the sedation guideline [57]. Currently they are not in a part 

of the PADIS guideline. Isoflurane, sevoflurane and desflurane are commonly used VAs. 

They are promiscuous, small molecules that interact with several receptors in the central 

nervous system such as GABAa receptor, N-methyl-D-asparate (NMDA) receptor and tandem 

pore domain potassium channel (K2P). Their CSHTs are comparable and do not increase 

with the duration of administration (CSHT of < 10 min) [58]. In the meta-analysis, VA 

sedation did not increase short-term adverse events, and was associated with a reduction in 

time to extubation [59]. The majority of reports are based on short-term use, and the 

assessment of long-term use is in progress.

Benefits of volatile anesthetics in ARDS settings

As mentioned above, VAs have favorable CSHT profile. So far there is no study examining 

the effect of VAs on delirium in ICU setting. Isoflurane, sevoflurane and desflurane 

demonstrated a trend in the reduction of post extubation agitation, delusion, negative 

feelings and factual ICU memory over midazolam or propofol sedation in some studies [60–

62].

VAs may have favorable features on non-sedative aspects including lung pathology. The 

retrospective study by Bellgardt, et al. examined the mortality of patients on ventilator under 

isoflurane or propofol/ midazolam [63]. Isoflurane arm (0.3–0.8%) had a significantly lower 

mortality than propofol/midazolam arm. Isoflurane arm also had shorter ventilator-support, 

in line with other studies that VA group experienced earlier extubation (sevoflurane 0.5–

1.0%, isoflurane 0.1–0.6%) [60,64–66]. Early extubation may potentially reduce ventilator-
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associated complications such as atelectasis, volutrauma and pneumonia. The effect of 

sedation onpulmonary function such as gas exchange was not examined in this study. The 

study by Jabaudon, et al. suggested that VA might offer direct benefit to pulmonary function. 

They prospectively compared PaO2/FiO2 of ARDS patients who received sevoflurane (mean 

0.6–0.7%) or midazolam sedation for 48 hours [22], and found that sevoflurane arm showed 

higher PaO2/FiO2.

With the limited number of studies available in ICU settings, the studies in operating room 

settings can present additional insight. In the meta-analysis by Uhlig, et al., general 

anesthesia with VAs was associated with reduced mortality and lower incidence of 

pulmonary complications over intravenous anesthetics (lAs) after cardiac surgery [67]. The 

outcome did not differ between the two groups undergoing non-cardiac surgery, but this may 

be due to significant heterogeneity in cases enrolled. In the prospective study by Grabitz, et 

al., higher VA doses were associated with less pulmonary complications, lower 30-day 

mortality and lower cost in non-cardiac surgeries [68]. Higher doses were beneficial only in 

patients without prolonged intraoperative hypotension, suggesting tissue injury via impaired 

perfusion needs to be avoided. In the prospective study by De Conno, et al. sevoflurane 

anesthesia showed lower pro-inflammatory mediator levels along with less postoperative 

(mostly lung related) complications than propofol anesthesia in surgery requiring one- lung 

ventilation [69]. One-lung ventilation and use of hyperoxia involves a number of 

physiological changes, and the data need to be interpreted with caution. The effect of 

different VAs and doses should be examined in diverse patient population in the future. 

Additional feature of VAs is that it can induce muscle relaxation. In severe ARDS, muscle 

relaxation can be used as mentioned above. Thus, the property of muscle relaxation by VAs 

potentially work in favor.

Mechanism of volatile anesthetics-induced modulation of ARDS

The findings that VAs might work favorably for lung pathophysiology including ARDS are 

exciting, but it is important to understand the underlying mechanism. At the alveolar level, 

oxygen and carbon dioxide need to diffuse efficiently across the alveolar-capillary 

membrane. As the lung as a whole, alveolar ventilation (V) and pulmonary circulation (Q) 

needs to be matched. In healthy volunteers, VAs worsen V/Q matching [70], which does not 

explain the aforementioned favorable pulmonary effects. Of note, similar study has not been 

done using IAs or patients with lung injury. The carbon monoxide diffusion capacity (DLco) 

is the most sensitive measurement of alveolar-capillary gas transfer [71]. This has not been 

tested in human subjects under different sedatives. Its measurement in rodents is possible 

[72], but has not been done under different sedatives. In general, the mechanism was 

limitedly analyzed in clinical studies. Preclinical studies are insightful to address the 

mechanism of lung injury and the effect of different sedatives. Thus, we will go over the 

molecular mechanism of ARDS and the proposed mechanism of VA-induced ARDS 

modulation illustrated in preclinical studies in the followings.

Lung injury in ARDS

ARDS can be categorized into three phases (acute, subacute, and chronic) [73]. In the acute 

phase, interstitial and alveolar edema with accumulation of neutrophils, macrophages, and 

Koutsogiannaki et al. Page 5

Transl Perioper Pain Med. Author manuscript; available in PMC 2019 May 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



red blood cells in the alveoli is seen. Often denuded alveolar epitheliums and hyaline 

membranes are observed. As a result of tissue injury, lung develops significant permeability. 

Non-cardiogenic pulmonary edema is a signature of ARDS, and develops because of an 

increase in fluid influx from the vasculature into the alveolar airspaces, and a reduction in 

normal capacity of the alveolar epithelium to remove edema fluid from the airspaces 

(alveolar fluid clearance) [3,74]. In the subacute phase, some of the edema is reabsorbed 

with sign of repair including proliferation of alveolar epithelial type (AT) II cells. In the 

chronic phase, there is a resolution of the acute neutrophilic infiltrate and fibrosis with 

ongoing evidence of alveolar epithelial repair.

Activated neutrophils release neutrophil elastase (NE). NE is a serine proteinase stored in 

azurophilic granules, and cleaves key endothelial cell-associated adhesion molecules to 

cause lung damage [75], Neutrophil extracellular traps (NETs) are net-like chromatin fibers 

decorated with neutrophil-derived components such as histones, myeloperoxidase (MPO) 

and NE. Histones and MPO are also cytotoxic to epithelial and endothelial cells. The 

involvement of NETs in lung injury has been shown [76]. The increased permeability of the 

alveolar-capillary barrier [76] and the impaired fluid clearance are responsible for early lung 

injury as described above. Fluid clearance is controlled by epithelial Na+ and Cl− ion 

transport (Figure 1). Na+ transport is largely undertaken by the Na+/K+-ATPase and the 

epithelial sodium channel (ENaC). Increased transforming growth factor (TG- F)-β levels 

are observed in lung fluids from patients with ALI/ARDS [77,78]. Alveolar epithelial-

restricted integrin avP6 activates TGF-β, stored at high concentrations in the extracellular 

matrix [79]. TGF-β1 acts as a neutrophil chemoattractant, and increases neutrophil 

respiratory burst, phagocytosis and survival [80]. It also facilitates internalization of ENac, 

leading to alveolar flooding [74,81]. TGF-β also directly increases the permeability of 

pulmonary endothelial monolayers and alveolar epithelial monolayers [81]. TGF-β also 

induces the genes expressing the extracellular matrix and inhibits metal-loprotease to seal 

off inflammation and facilitate tissue repair. The receptor for advanced glycation end-

products (RAGE) is a membrane receptor in AT-1 epithelial cells [82]. RAGE is highly 

expressed in lung, and plays a significant role in pulmonary homeostasis, particularly cell 

spreading and growth. AT-1 cells occupy 95% of the lung epithelial cells, while AT-2 cells 

occupy 5%. RAGE is a pro-inflammatory molecule and increases its expression in 

inflammation. Soluble RAGE, produced by alternative splicing or truncation of membrane 

RAGE, acts as a decoy to bind to its ligands and attenuate further inflammation [83]. High-

mobility group box 1 (HMGB1) is a non-histone chromatin-associated protein actively 

secreted or passively released from necrotic or injured cells, and serves as a ligand for 

RAGE [84]. HMGB-1- RAGE axis activates TGF-β via integrin αvβ6. RAGE is also 

expressed on neutrophils, and HMGB1 recruits neutrophils to the site of necrosis [85].

MV is an indispensable component of advanced life support, but it can damage the lung 

(ventilator-induced lung injury; VILI). VILI is caused by overdistension at high lung 

volumes (volutrauma), collapse/reopening of airway units at low lung volumes 

(atelectrauma) and activation of immune system (biotrauma) [86]. Volutrauma and 

atelectrauma represent mechanical trauma. Atelectrauma causes perforation in the airspaces 

and volutrauma enhance it [87], because atelectatic lesion poses lung at an increased risk of 

local strain for inflation [88]. Cyclic stretch of lung induces the inflammatory reaction and 
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can affect systemic circulation and distal end-organs [89]. Cytokine production, neutrophil 

activation and subsequent tissue injury constitute biotrauma [90]. Neutrophil depletion 

attenuated VILI in rabbits [91]. Blocking interleukin (IL)-1 led to inhibition of neutrophil 

recruitment and less lung injury [92]. Neutrophils can cause VILI via NETosis [93] and 

release of NE [94]. The involvement of HMGB-1-RAGE [95,96] and TGF-β [97] in VILI 

has been described as above.

The mechanism of volatile anesthetics-induced reduction in lung injury

A growing evidence indicates the immunomodulatory effects of VAs [98,99]. The role of 

VAs in lung pathophysiology was tested mostly in lipopolysaccharide (LPS)-induced lung 

injury models. Exposure of isoflurane before and after LPS instillation reduced neutrophil 

recruitmentand lung injury [100,101]. A number of pre-clinical studies identified neutrophils 

as central, cellular mediators of the early, innate immune response, causing damage to the 

lung [102]. Abundant accumulation of neutrophils has been seen in lung in patients with 

ARDS [103]. Thus, the modulation of neutrophil function by isoflurane could play a role in 

lung injury reduction. Similarly, sevoflurane exposure was associated with less lung injury 

and better oxygenation than propofol [104]. The effect of VAs on neutrophil function 

including neutrophil recruitment has been described in vivo. In the study of sepsis model, 

isoflurane attenuated neutrophil recruitment but propofol did not [105]. Neutrophils are 

recruited to organs and tissues via chemoattractants and adhesion molecules. Isoflurane and 

sevoflurane directly inhibit the function of adhesion molecules [105–107]. In addition, VAs 

can reduce proinflammatory levels. Sevoflurane exposure attenuated production of 

proinflammatory mediators in bronchoalveolar lavage (BAL) fluid [108]. This is in line with 

the study of patients with one-lung ventilation that VAs reduced alveolar inflammatory 

response, but propofol did not [109].

In addition to the effect of VAs on neutrophils, they affect alveolar epithelial cells. Isoflurane 

attenuated proinflammatory response by alveolar epithelial cells via atypical type A γ-

aminobutyric acid receptors (GAB- Aa receptors) [110]. Similarly, halothane and enflurane 

reduced proinflammatory response [111]. Sevoflurane also attenuated proinflamatory 

response and attenuated apoptosis of epithelial cells [112]. Sevoflurane might enhance the 

function of ENaC and Na+/K+-ATPase on epithelial cells to mitigate pulmonary edema [23]. 

The benefit of VAs in lung injury was confirmed in another model. In post-hemorrhagic 

shock model, lung injury was attenuated by isoflurane over pentobarbital [21].

Isoflurane and sevoflurane also worked beneficially during MV. In primary VILI model, 

sevoflurane and isoflurane attenuated neutrophil recruitment, activation and VILI more over 

ketamine and desflurane anesthesia [113]. In another study, sevoflurane exposure during MV 

was associated with less oxidative burst and lower proinflammatory mediator levels in BAL 

[114]. Desflurane may not be as potent as isoflurane and sevoflurane, but further 

investigation is warranted to conclude. Isoflurane exposure attenuated VILI by inhibiting 

phos-phoinositide 3-kinase (PI3K)/Akt signaling [19]. The inhibition of PI3K/Akt signal 

exacerbates lung alveolar permeability and inflammation [114]. In the two hit model of LPS 

induced lung injury followed by MV, isoflurane and desflurane exposure maintained the 

integrity of the alveolar-capillary barrier [18]. So far the effect of VAs on RAGE and TGF-β 
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has not been reported. We should also keep in mind that the preclinical studies were largely 

performed using sterile inflammation model [104]. A growing literature suggests that VAs 

pose immunomodulatory effects [97,98]. In fact, prolonged exposure to isoflurane can cause 

neutrophil dysfunction, worsen bacterial loads and outcomes in the setting of sepsis [104]. 

Because patients with ARDS could have impaired immune function, this potential 

immunomodulatory effects by VAs should be kept in mind when VAs will be used for 

patients with sepsis for a long duration.

Practical aspect of volatile anesthesia usage in ICU setting

In general, VAs at one-third of doses for general anesthesia would be adequate to achieve 

sedation [116]. This is illustrated in the studies cited above [22,60,63–66]. However, VAs at 

much higher concentrations are required when deeper sedation is indicated [116]. VAs are 

mainstay drugs for general anesthesia in the operating rooms and administered via 

vaporizers mounted on anesthesia machines with circular circuits. Because ICU ventilators 

uses high-flow, non-rebreathing, non-circular circuits, the vaporizers mounted on anesthesia 

machine are not adequate for use. The development of miniature vaporizers such as the 

Anesthesia Conserving Device (AnaConDa) [117] or MIRUS system simplified the use of 

VAs on ICU ventilators (Figure 2A and Figure 2B) [118]. A couple of technical issues 

should be noted. The AnaConDa or MIRUS system is typically placed between the Y-piece 

and the patient (Figure 2C). AnaConDa can accommodate isoflurane, sevoflurane, but not 

desflurane. The large dead space (100 mL) limits its pediatric use. Some advocate placing 

this in the inspiratory limb to use in children with cost of no recycling of VAs. 90% of VAs 

are absorbed on the activated carbon fibers during expiration and recycled back to patients, 

but 10% of the vaporized gas require scavenging by incorporating an active or passive 

scavenging system to the expiratory outlet of the ventilator [116]. For passive gas 

adsorption, charcoal canisters are used. For active gas adsorption, waste gases are siphoned 

to the main hospital waste gas outlet system. The association of high atmospheric VA levels 

with infertility and spontaneous abortions led to the recommendation that occupational 

atmospheric levels should be maintained below less than 2 parts per million (ppm) in North 

America [116]. Monitoring VA concentration in ICU environment using infrared 

spectroscopy should be performed to ensure that VA level in ICU is below the recommended 

range. The MIRUS system is compatible with desflurane [119,120]. Both are not available in 

the US. VAs have been given patients with status asthmaticus and status epilepticus by 

anesthesia machine in ICU in the US [116,121,122].

The potential problem of VAs should be noted. Malignant hyperthermia can be triggered 

with the use of VAs. One case has been reported in ICU use [123]. This is quite rare with the 

incidence of 1: 5,000–1:50,000–100,000 [124,125]. In contrast, propofol infusion can be 

more frequently seen (about 1:100) [126]. In addition, environmental aspect needs to be 

considered. The effect of VAs on global warming potentials has been reported. Desflurane 

accounts for the largest life cycle greenhouse gas emissions among all the VAs with 15 times 

that of isoflurane and 20 times that of sevoflurane [127]. Due to this concern and the 

potential weaker lung protective property shown in a preclinical study, desflurane may not 

be the priority drug for ICU use in patients with ARDS. Lastly, VA administration is 

currently only trained during anesthesia training. Thus, the presence and/or immediate 
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availability of a board certified anesthesiologist should be also taken into consideration when 

VAs are needed to administered to a patient for sedation.

Future Direction

Although VAs showed favorable profiles in preclinical and clinical studies, larger clinical 

studies need to be performed to potentially facilitate VA-based sedation in ICU setting to 

determine its safety and benefit. Preclinical studies should also supplement further 

knowledge.
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Figure 1: The scheme of alveolus in healthy and injured lung.
In healthy lung, alveolar fluid clearance occurs normally with the help of Na/K ATPase, Na 

channel (ENaC) and aquaporin (AQP5). TGF-β is not activated yet. In injured lung, ENaC is 

internalized and AQP5 expression is reduced, resulting in the impairment of alveolar fluid 

clearance. Integrin αvβ6 activates TGF-β. Also HMGB1 is released from dying cells and 

binds to RAGE on the alveolar epithelial cells. Neutrophils also have RAGE on their surface, 

and HMGB1 acts as a neutrophil chemoattractant.
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Figure 2: The AnaConDa device and its setup.
(A, B) The design of the AnaConDa device. (C) The setup for the AnaConDa device use
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