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Abstract

The analysis of the network structure of the functional connectivity data constructed from

fMRI images provides basic information about functions and features of the brain activity.

We focus on the two features which are considered as relevant to the brain activity, the criti-

cality and the constraint regarding energy consumptions. Within a wide variety of complex

systems, the critical state occurs associated with a phase transition between distinct

phases, random one and order one. Although the hypothesis that human brain activity is

also in a state of criticality is supported by some experimental results, it still remains contro-

versial. One issue is that experimental distributions exhibit deviations from the power law

predicted by the criticality. Based on the assumption that constraints on brain from the bio-

logical costs cause these deviations, we derive a distribution model. The evaluation using

the information criteria indicates an advantage of this model in fitting to experimental data

compared to other representative distribution models, the truncated power law and the

power law. Our findings also suggest that the mechanism underlying this model is closely

related to the cost effective behavior in human brain with maximizing the network efficiency

for the given network cost.

Introduction

Understanding the brain activity is one of most challenging problem which attracts interdisci-

plinary interests. Specifically, to understand how the brain processes information with the neu-

ron activities, which underlies various brain functions including motion, perception and

cognition, is one of fundamental problems [1–5]. In order to understand functions and fea-

tures of the brain, it provides a useful approach to investigate network descriptions of the

human brain. Advances in neuroimaging techniques have allowed us to obtain the functional

and the structural network descriptions referred to as the connectome [6–26]. They are the

functional connectivity measured by the temporal correlation in different regions which may

reflect the brain activity [9–15] and the neuroanatomical connectivity such as their fiber tracts

between distinct brain regions [16–18].
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Regarding the brain activity, there is an argument that the criticality, which characterizes

wide variety of complex systems [27, 28], is one of relevant features [29–39]. According to the

criticality hypothesis, in a phase transition between distinct phases such as randomness and

order, the critical state appears [27, 28]. Assuming that the neuronal dynamics operate at the

state between the highly correlated synchronization state and the weakly correlated state leads

the critical hypothesis of the brain activity [29–34]. Because no characteristic scale appears for

the measured variable within a critical state, a single universal scaling function, the power law,

will become dominant [27, 28]. Then the emergence of the power law gives an evidence of the

criticality of a system. In general the network endowed with the power law degree distribution

is called as the scale-free network, which can be observed within various networks including

biological, sociological and technological ones [40, 41]. Compared to the random graph or the

ordered ones, the scale-free network contains a relatively large number of hubs, highly con-

nected nodes. Networks with the abundant existence of hubs have much advantage with

respect to many aspects, such as function, performance, and robustness [40–46]. Then it is

expected that the criticality causes high efficiency in processing of the brain [23–26].

Evidences supporting the hypothesis of the brain criticality covers the range from the indi-

vidual neuron level to the whole-brain cortical level. At the neuronal level the cascade of events

called as neuronal avalanche is known to be generated by the neuronal interactions spontane-

ously. The distribution of avalanche sizes observed in the shape of the power law suggests that

neuronal interactions may also operate near a critical point [30, 37]. At the macro-scale, the

emergence of the power-law scaling has been found also within the long-term spatiotemporal

correlations in the brain. Spontaneous oscillations arising from correlated activity of a large

number of neurons have been recorded with using the functional magnetic resonance imaging

(fMRI), magnetoencephalography (MEG), and electroencephalogram (EEG) [29–34]. Also,

besides the avalanche sizes, power law behavior can be observed with respect to various mea-

surements, the macroscopic avalanche size [38] the cluster size of activated voxels [38], the

intervals of phase-locking [32], and the degree [12].

However the argument for the criticality of the connectome is still controversial especially

with respect to the degree distribution of the connectome [11, 16, 47–49]. In many cases apply-

ing the power law distribution to the experimental data, the deviation is not negligible. For

example, the degree distribution appears in the truncated shape with the cut-off tail and the

truncated power law is selected as the better fitting model instead of the power law [11, 16].

One possible assumption is that the truncated shape implies the existence of constraints limit-

ing the number of connections. Within the realistic brain which is spatially limited in the

brain volume, constraints from the biological costs, the metabolic costs such as oxygen or glu-

cose consumptions, are required for the network forming and the neuron activities [50–53].

Then relevant statistical models of the brain would be given by those which reflect the features

described as above, the criticality and the constrained network. Because one simple description

of the network cost is the total number of the connections [10, 43], we introduce a distribution

model, on which the constraint on the upper limit degree is imposed. Then based on these fea-

tures of the brain activity, the criticality and the constraints on the energy consumption, we

derive a model [54] and evaluate it numerically [55, 56] for the functional connectome data

[9, 15].

Methods

Statistical features of brain activity and a distribution model

Brain activity and connectome. The brain consists of tens of billions of neurons, interac-

tions of which maintain the brain functions. The neuronal interactions through a network of

The degree and the node strength distribution model of functional connectome

PLOS ONE | https://doi.org/10.1371/journal.pone.0177446 May 17, 2017 2 / 19

https://doi.org/10.1371/journal.pone.0177446


axons, synapses, and dendrites spontaneously generate spreading activities of firing propaga-

tions [30, 31, 37]. Through the long-scale cortical connectivity between specialized regions seg-

mented on the cortex of the brain, these interactions of individual neurons induce the macro-

scale brain activity [29, 32–36, 38, 39].

The neuroimaging technique permits mapping these macro-scale pathways in the brain

noninvasively and extracting functional networks connectivity between brain sites [29, 32–36,

38, 39]. With using devices such as fMRI, which can assess the blood oxygenation level depen-

dent (BOLD) intensity, the correlation coefficient for the time series data measures the func-

tional connectivity [9–15, 32–34, 36, 38, 39]. On the other hand, the anatomical connections

between cortical regions can be determined by the devices such as the diffusion spectrum

imaging (DSI), which allows to depict the cortical long-range network in the human cerebral

cortex [17, 18]. These functional and structural connectome have the close relation, especially

in the restring-state functional connectivity, which reflects structural connectivity [19–22]

Network structure and measurements. The strength of the connection between nodes

provides a basic measurement, which can be used in analyzing the network structures [7, 13,

26]. Within the network analysis, the connection strength between the two nodes, the weight

wij, describes the network structure with the connectivity matrix, the (i, j) matrix cell of which

stores the weight wij. For the functional connectome, the weight, wij, is evaluated by the corre-

lation coefficient, where each node, i or j, corresponds to the single region segmented on the

brain, and it is usually given with symmetric elements wij = wji [10, 11, 13, 26].

Another description of the network, which is used frequently in the network analysis, is the

topological one defined with the adjacency matrix [7, 8, 13, 22, 25, 26]. In this matrix, each ele-

ment aij is assigned the binarized value, 0 or 1, according to the absence or the presence of the

connection between nodes i and j. This topological description is usually contrasted from the

weighted network with the threshold value. Introducing the threshold rc for the connection

weight wij, the adjacency matrix takes aij = 1 for |wij|> rc and aij = 0 otherwise.

In general, the complex system shows some significant statistical features compared to

those such as the random ones or the regular ones. The small-world and the power law distri-

butions are examples of those features, which can be observed commonly in various types of

complex systems [40, 42]. The network endowed with the power law degree distribution is

called as the scale-free network [40]. Within the scale-free network due to the heavy tail of its

distribution shape, the network hub, to which relatively large number of links are connected,

appears with high frequency. The existences of the hub provides advantages for the scale-free

network regarding their functions such as robustness and efficiency [40–45].

Constraints on the brain activity. Despite of the evidences supporting the brain critical-

ity, experimental degree distributions exhibit deviations from the power law [11, 16, 47–49].

In the analysis of the connectome, one common shape is a power law with the cut-off tail, to

which an exponentially truncated power law gives a better fit than the power law [11, 16]. On

the other hand, if we refer to studies of general complex networks, we find that simulation

based analyses suggests that the power law decay is induced by some factors such as the cost of

long-range connections [53] or an upper limit on the number of connections [46]. Then the

decay from the power law implies the existence of some constraints imposed on the brain

dynamics [20].

Since neurons and their connections are spatially limited in the brain volume, it is natural

to assume that constraints from the biological costs are required to network forming and their

activities [18, 50–52]. It is biological cost consuming with oxygen or glucose consumptions to

maintain the activity of brain and also the upper limit of the metabolic costs also affects the

network architecture of the brain [50, 51]. Because these biological costs are high for hubs

The degree and the node strength distribution model of functional connectome
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[18], the constraint on the energy consumption would be one of key factors which determine

the efficiency of the brain network.

Model description. Let us consider the statistical model endowed with two features, the

criticality and the energy constraint, the relevant features of the brain activity. Reflecting the

fact that the constraint is imposed, we require our distribution model to satisfy the condition

that the variable is restricted to the finite range. In general cases, when we adapt the power law

to the variable which has restricted regions, deviations from a unique scaling exponent are

observed due to these restrictions. In order to avoid such deviations, one general approach is

taken with splitting into two or three regions and adapting the power law with a different scal-

ing exponent to each region [57, 58]. For the connectome data, the truncated power law, the

modified representation of the power law, is usually taken [11, 16]. On the other hand, our

model of the restricted power law requires that the unique law, the criticality, rules the behav-

ior in the whole range.

If we denote the variable as x, it is assumed to take its values in the finite range

x 2 [xmin, xmax]. Another assumption of the criticality requires that the distribution is deter-

mined independent to the details of the system. Then this system is scale invariant and the dis-

tribution P(x) behaves as

ln �x= lnPð�xÞ � g ð1Þ

with a scaling constant γ, where, in accordance with the finite range, the variable can be writ-

ten as

�x ¼ x � xmin; �x ¼ xmax � x: ð2Þ

Compared to the usual scaling exponent expression at the critical point, the second expres-

sion of Eq (2), �x ¼ xmax � x, is added to the candidate set. In this paper we take the following

expression as the representation of the distribution, which is given by

PðxÞ / ðxmax � xÞg ð3Þ

with the fixed constants, xmax and the scaling γ. Applying the normalization condition,
R xmax

xmin
dxPðxÞ ¼ 1, it is given in the normalized expression

PðxÞ ¼
ðgþ 1Þ

ðxmax � xminÞ

xmax � x
xmax � xmin

� �g

ð4Þ

including the fixed constants, xmin, xmax, and γ [54].

Statistical methods

Distribution models: Power law and truncated power law. There is a consensus that the

network structure of the functional connectome is significant and non-trivial compared to the

random network and the regular one. The scale-free model based on the power law distribu-

tion is an attractive model for the brain connectome. However there are some arguments that

the truncated power law has the numerical advantage based on information criteria such as

Akaike’s information criterion (AIC) [11, 32, 55, 56].

Then we compare our model to two representative distribution models, the truncated

power law and the power law. The exponentially truncated power law is described as

PðxÞ / xa� 1ex=xc ð5Þ

where α is a constant exponent and xc is the truncation value, the cut-off [11]. On the other

The degree and the node strength distribution model of functional connectome

PLOS ONE | https://doi.org/10.1371/journal.pone.0177446 May 17, 2017 4 / 19

https://doi.org/10.1371/journal.pone.0177446


hand, the power law is expressed as

PðxÞ / x� g ð6Þ

with a scaling exponent γ.

For each model of P(x), fitting is given by the maximum likelihood method and the set of

parameter values is determined accordingly. If we denote the observations as x1, . . .xN and the

parameters as θ1, . . .θK, the performance of the prediction is quantified by the likelihood func-

tion

Lðx1; . . . ; xN jy1; . . . ; yKÞ ¼ PiPðxijyÞ ð7Þ

and maximizing L determines the set of the parameter values of the maximum likelihood, ŷ.

Model selection. For the comparison of the candidate models, we use AIC, which is esti-

mated as

AIC ¼ � 2LðŷÞ þ 2K þ 2KðK þ 1Þ=ðN � K � 1Þ ð8Þ

where LðŷÞ is the maximized likelihood function defined as Eq (7) and K is the number of

parameters in this model. The final term, 2K(K + 1)/(N − K − 1), is called as the correction

term, a correction for finite sample size N. This term converges to 0 for N!1, but it is not

negligible for the small N. According to this criterion, the best fitting model has the smallest

AIC within the candidates [55, 56].

In the following calculations we use the R and its packages (http://cran.r-project.org/). Esti-

mation for the power law distribution is given with the expression

PðxÞ ¼
a � 1

xmin

x
xmin

� �� a

ð9Þ

varying according to xmin, if the minimum value of the variable is not 1, xmin 6¼ 1 [41]. The

maximum likelihood and the corresponding AIC of the truncated power law is estimated with

using the R-package brainwaver (http://cran.r-project.org/web/packages/brainwaver) [11].

The AIC estimation for our model is given by the same method adapted the expression, Eq (4).

In this calculation, we estimate the parameter set with using the non-liner minimalizing func-

tion of R, where xmax is taken from max[x1, . . .xN]< xmax. While the normalization constant is

calculated approximately with substituting xmin = min[x1, . . .xN].

Functional connectome dataset. Using the datasets of the functional connectome of

“1000 connectome project” [9], we analyze the network structure of the functional connec-

tome constructed from fMRI. This project collects the data obtained by imaging the brain dur-

ing rest with Resting-state functional MRI (R-fMRI). They reveal that connectome datasets

share a common architecture, while individual differences can be observed [9]. Some pro-

cessed datasets of the connectivity matrix are directly available at the UCLA Multimodal Con-

nectivity Database [15] from the web page (http://umcd.humanconnectomeproject.org/),

which contains 986 connectivity matrix files of 1000 connectome project. Each matrix data has

177 × 177 elements (wij), which correspond to the connection weights between 177 brain

regions.

In the following analysis of the network structure, we evaluate the connection strength of

each node with two different variables, the degree ki and the node strength si. These two vari-

ables are representative in describing the connection strength of each node, where the degree

is used for the topological network description and the node strength gives the corresponding

representation of the weighted ones. As we noted in the above, introducing the threshold rc

for the connection weight wij, we measure the degree ki with counting the number of elements

The degree and the node strength distribution model of functional connectome
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|wij|> rc [12, 26]. The corresponding value of the node strength is given by si = ∑i 6¼ j|wij|, the

elements in which satisfy the same condition |wij|> rc.

Results

Basic statistics of connectivity datasets

At first, we evaluate the distribution of the connectivity weight with varying the threshold val-

ues, rc. Fig 1A indicates the ratio of the number of weights which exceed this value rc. In the

graph B, we plot the average values of the node strength, which is the total sum of |wij|> rc for

each i. Because it is considered that the connectivity matrix of each individual has much vari-

ety, we calculate the average of each connectivity matrix at first and then take the average and

the standard deviation between whole datasets. In the graph B, we found that the standard

deviation values for the node strength exhibit large. Then we asses each connectivity matrix

separately and then take averages in the following analysis, instead of integrating whole data-

sets before assessment.

Topological network structure

The network structure of the given matrix depends on the threshold value rc which is applied

to each connectivity weight wij. For the threshold at rc = 0, the topological structure becomes

trivial with an almost fully connected network. For lower threshold values, it is considered that

the network graph is dense and the noises and the artifacts are not negligible [15, 26]. On the

other hand, the fragmented network is obtained for higher threhold values with disconnected

components and isolated nodes. Then the appropriate threshold, which reflects the network

structure correctly, is given in the intermediate range [15, 26].

We measure the size of the largest connected components in the network (Fig 2) with using

R-package igraph [45]. The discontinuous profile of this value indicates that the phase

Fig 1. Connectivity weight and node strength. A Connectivity weight. For the connectivity matrices (wij), where i and j correspond to 177

brain regions, the ratio of the number of the weights, which satisfy wij > rc for the threshold rc, are estimated for each data set. The average

and the standard deviation indicated by error bars are taken for whole datasets, 986 functional connectome datasets [9, 15]. This value is

equivalent to the total number of connections and proportional to the average degree. B Node strength. The node strength, the total sum of |

wij| > rc for each i, is calculated for each connectivity matrix. The plot shows the average of the node strength with the standard deviation with

the same datasets.

https://doi.org/10.1371/journal.pone.0177446.g001
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transition occurs around rc * 0.6. At this point, the network changes its state from the con-

nected one to the fragmented one as we expect. Then the relevant range of the threshold is esti-

mated as rc� 0.6. Though the lower limit cannot be specified only with this graph.

Clustering coefficient and minimum path length. In order to assess the network struc-

ture, we evaluate the clustering coefficient C and the average of the minimum path length

<L>, basic measurements for the complex network. Under the topological network descrip-

tion, the clustering coefficient C equivalently called as transitivity, measures the probability

that the adjacent vertices of a vertex are connected [42]. On the other hand the minimum path

length for the i and j nodes, Lij, is the minimum number of edges that must be traversed

between regions i and j [10, 42, 43]. These basic quantities are frequently used in order to char-

acterize the complex network. For example, the small-world network, one of the typical com-

plex networks, indicates a small average minimum path length and a large clustering

coefficient [42]. It is considered that the small-world architecture is relevant to understand the

function of the brain [20]. In Fig 3 we measure the average of the minimum path length and

the clustering coefficient with R-package igraph [45].

In Fig 3A, the discontinuous change is observed around rc * 0.5, which reflects the net-

work fragmentation into the disconnected components (Fig 2). On the other hand, the profile

of the clustering coefficient (Fig 3B) implies that a stable phase appears in the intermediate

Fig 2. Largest component size. With the topological description at each rc, we estimate the largest component size as the ratio to the total

number of nodes. For the component size s, it is divided by 177. We measure this value for each individual matrix data and take the average

with the datasets same to the case of Fig 1. The value 1 indicates that the network is fully connected, all of the nodes is connected, and the

value 0 is totally fragmented state with no connections.

https://doi.org/10.1371/journal.pone.0177446.g002
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range, where gradual changes can be recognized. The profile of ΔC (Fig 3C) specifies this inter-

mediate region as 0.3� rc� 0.6. In this stable region, the network preserves its characteristics

with relatively small minimum path lengths and large clustering coefficients, the features

which characterizes the small-world network.

Referred to the studies in [15, 26], sparse graphs with�* 25% of edges connected can be

considered to have higher signal to noise ratio. In our estimation given in Fig 1A, this ratio

corresponds to the point rc = 0.3 with 24.1% of connected edges. It agrees to Fig 3C, in which

we can separate the phases around this point. Then the lower threshold values for rc < 0.3, the

network is considered to be almost full of connected edges indistinguishable from noise.

Network efficiency. We also assess the cost performance to the efficiency as the indicator

of the effectiveness of the brain. We measure the global network efficiency, which is defined as

E ¼ 1

NðN� 1Þ

P
i6¼j1=Lij, where Lij is the minimum path length [43]. According to the decreases of

the length Lij, the network efficiency for the information transmission is increased. With using

the efficiency E, one expression of the effectiveness is given as the network efficiency per the

network cost, E/Cost. We evaluate the network cost with the total number of the connections

Cost = (∑i 6¼ j aij)/2, because the number of the connections is a simple expression of the cost

[10, 43].

We show the global network efficiency E and the network cost Cost in Fig 4A, where Cost is

normalized as Cost/Max(Cost). As shown in Fig 4B, the network efficiency per cost takes its

peaks around rc = 0.5 * 0.6. This position coincides with the critical point observed in the

above figures (Figs 2 and 3). It indicate that this peak appears accompanied with the phase

transition at the critical point, which is caused by the network fragmentation induced by

increasing of rc (Fig 2).

Summarizing the above analyses of the network structure, the relevant region of the thresh-

old is specified into the range 0.3� rc� 0.6. In this region, the network structures preserves

features of the small-world architecture and the network efficiency per cost indicates high per-

formance. Also there exists a phase transition within this range around rc = 0.5 * 0.6 from the

connected network to the fragmented one. Under this critical point, the intermediate state

Fig 3. Minimum path length and the clustering coefficient. We estimate the average of the minimum path length and the clustering

coefficient for threshold values rc. The topological network structure is obtained by the condition aij = 1 if |wij| > rc for each matrix data.

Then the average is taken for whole datasets, 986 functional connectome datasets [9, 15]. A The Average of the minimum path length. For

Lij the minimum path length between i and j nodes, we estimate the average< L >¼ 1

NðN� 1Þ

P
i6¼jLij with all pairs of nodes in each graph. For

unconnected node pairs, which have no connected path, Lij are substituted by the total number of nodes. B The clustering coefficient. The

clustering coefficient measures the probability that the adjacent vertices of a vertex are connected. C Changes of the clustering coefficient.

We show the changes of the clustering coefficient along the threshold with ΔC = C(i) −C(i + 1), where i indicates the value

at rc = 0.1 × i threshold.

https://doi.org/10.1371/journal.pone.0177446.g003
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exists across 0.3� rc� 0.6, in which the noise will increase with descending rc. It reaches to

the lower threshold range rc� 0.2, where nodes are almost fully connected and networks con-

tain much noise. Then, in the following analysis, we focus on the intermediate range 0.3� rc

� 0.6.

Model comparison

For the datasets of the connectivity matrix of the functional connectome, we assess the quality

of our model as the distribution model of the degree and the node strength. We compare our

model described as Eq (3) to the truncated power law and the power law, based on the AIC cri-

terion. For the distributions constructed from each connectivity matrix with taking the thresh-

old rc, each model is fitted by the maximum likelihood method, Eq (7), and corresponding

AIC values, Eq (8), determine the best fitting model. The selection ratio for each model is

obtained by dividing the number of datasets which select the corresponding model by the total

number of the datasets, 986. Also the averages of AIC values allow the direct comparison

under this criterion.

At fist we adapt our model to the degree distribution k, comparing to the models, the trun-

cated power law and the power law. The selection ratio for each model is shown in Fig 5A and

AIC differences from the minimum AIC model is shown in the panel B. In the result shown in

Fig 5A, we can recognize three phases according to the threshold value rc. For the higher

threshold with rc = 0.7, 87% of datasets are judged as the power law distribution. On the other

hand, at the lower threshold rc = 0.2, 83% data sets are best fitted by the truncated power law.

While in the intermediate values, our model shows the highest selection ratio compared to

these two models.

In order to confirm this tendency, we show ΔAIC, the differences from the minimum AIC

value within the three models in Fig 5B. In this evaluation, the 0 value indicates that the

Fig 4. Network efficiency and cost. We estimate the global network efficiency, the network cost, and the global network efficiency per cost

for threshold values rc. The datasets and the method to obtain the topological network structure are same to the case of Fig 3. A Network

efficiency and the normalized network cost. The global network efficiency E is defined as the average of 1/Lij, E ¼ 1

NðN� 1Þ

P
i 6¼j1=Lij and the

network cost is estimated with the total number of connections, ∑i 6¼ j aij. The global network cost is calculated with R-package brainwaver

[11]. The network cost is normalized with dividing by its maximum value Cost!Cost/Max(Cost). B Network efficiency per cost. We show

the value of E/Cost.

https://doi.org/10.1371/journal.pone.0177446.g004
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corresponding model is the best fitting one. This result agrees to Fig 5A, where the best

selected model has the minimum average AIC and three different phases can be recognized

again. In addition, compared to the truncated power law and the power law, we can find that

our model is relatively robust with preserving small differences from the minimum AIC model

across this rc range.

In Fig 5C and 5D, we show the results with the node strength for the same datasets. Com-

pared to the upper panel, the results with the degree k in Fig 5A and 5B, the numerical differ-

ences are small. Then we can recognize the same tendency that there appear three phases

across the threshold range. Then the network descriptions in topological and weighted graphs

are substantially the same.

Fig 5. Model selection for degree and strength distribution. With using the information criterion, AIC, the best fitting model is selected

from three models, our model, the truncated power law and the power law. The selection ratio is shown in A and C. The AIC value for

each model is averaged with whole 986 datasets and the minimum AIC is taken for each threshold rc. Then we calculate the difference of

AIC from the minimum AIC and show in B and D. A Model selection ratio for degree. The degree distribution is taken with the threshold 0.2�

rc� 0.7 for each connectivity matrix from 986 datasets. B Δ AIC for degree. For the degree distribution, the average of AIC is taken with each

model and AIC difference from the minimum AIC is calculated for the datasets corresponding to A. C Model selection ratio for strength.

Using the method and the datasets same to A, the selection ratio for the node strength distribution is obtained. D Δ AIC for strength. For the

strength distribution, AIC difference from the minimum AIC is estimated. The calculation method is same to the case of B.

https://doi.org/10.1371/journal.pone.0177446.g005
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An example of model fitting is depicted in Fig 6, where the predicted curves of these three

models for a single dataset are plotted. At the lower threshold at rc = 0.3, the best fitting model

is given by the truncated power law. While the example of the power law fitting is given at the

higher threshold rc = 0.7. With increasing the threshold value, the distribution plot is gradually

close to straight line which indicates the power law. Yet differences from the experimental data

are still large in the both cases. Compared to these two cases, our model shows a good fitting to

the intermediate state at rc = 0.5.

Data sampling and noise reduction

As shown in Fig 5, our model is dominant as the distribution model of the degree and the

node strength within the target range of 0.3� rc� 0.6. The power law is excluded from the

candidate models, because it is effective only in the range of the higher threshold values, out of

our target range. However the numerical differences from the truncated power law decrease

from the peak at rc = 0.5 to the lower threshold region, rc * 0.3. It is considered that this is

caused by the noise, which is not negligible for the lower threshold values. In order to clarify

the difference of these two models, we reduce the noise with sampling the data, another noise

reduction method besides taking the threshold.

We take a simple method, in which we extract n data points from the node strength raw data

according to the cumulative distribution. At first we order the N point raw data set, s1, . . ., sN,

into a sequence s(1), . . .s(N) according to its absolute value, so as to satisfy s(i)� s(j) if i> j.
Then we extract s(i0) data points, where i0 is taken with rounding

d=2þ d � i ð10Þ

for i = 1, . . .n with the fixed step d = N/(n + 1). For example at the case of n = 10, it corresponds

to extracting s(i0) data at Pc(s) = 0.05, 0.15, . . ., 0.95, with Pc(s), the cumulative distribution of s.
For the sampling data with n = 50, 100, we obtain the selection ratio in Fig 7A. Compared

to the raw data, the selection ratio of our model increases with decreasing the number of the

sampling data. This tendency is robust across the threshold range rc� 0.4.

Fig 6. Cumulative distribution of the degree k with fitting distributions. The fitting curves of the truncated power law, the power law,

and our model, are shown on the double log plot of log(k) versus logarithmic of the cumulative distribution. We show a result for a single

connectivity matrix data at ID = 1555 from the site http://umcd.humanconnectomeproject.org/ [15], extracting from 1000 connectome project

datasets [9]. The open circles indicate the experimental data. We plotted the connected nodes with k > 0. The red solid line is the predicted

curve of our model and the dashed line and the dotted line in green are those of the truncated power law and the power law respectively. The

parameters of each model are optimized to maximize the likelihood function, Eq (7).

https://doi.org/10.1371/journal.pone.0177446.g006
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We can confirm this result with the difference of the truncated power law AIC from that

of our model, in Fig 7B. The positive value of this difference indicates that our model is

suitable to describe the distribution. In addition, we show the fitting curves in Fig 8, where the

results for the sampling number of 50 and 100 are compared to that for the original raw data

at rc = 0.3. It shows that the performance of the fitting is improved in accordance with the

noise reduction level. This agrees to the result, Fig 5, in which the selection ratios of our

model are increased by the noise reduction with increasing the threshold in the target range

of 0.3� rc� 0.6. Thus we can confirm that the distribution converges to our model with

reducing the noise. Conversely the distribution, which obeys our model at the critical point

rc = 0.5 * 0.6, decays with increasing noise.

Fig 7. Model selection for sampling data of strength distribution. A Model selection ratio. For the sampling data with the size of 50 (red

lines) and 100 (green lines), we compare our model to the truncated power law and the power law with the selection ratio of our model. We

extract data from the raw data according to the order of their values. These results are obtained by the fitting and evaluating method same to

Fig 5. B AIC difference of truncated power law from our model. The AIC difference of the truncated power law from our model is measured

for the same datasets.

https://doi.org/10.1371/journal.pone.0177446.g007

Fig 8. Fitting distributions for sampling data. The fitting curves for the cumulative distributions of the node strength s at the threshold

rc = 0.3 are shown. We compare the result of the original raw data fitting to those of the sampling data with the sampling size of 100 and 50.

The curves of the truncated power law, the power law, and our model, are shown on a plot of log(s) versus logarithmic of the cumulative

distribution of s. The calculation method and the connectivity matrix sample is same to Fig 6.

https://doi.org/10.1371/journal.pone.0177446.g008
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Network cost and stability

We consider the condition regarding the energy consumption, the constraint required in our

model. For this aim, we evaluate the expected cost of our model and the truncated power law.

We provide simulation results for the network cost, in which predictions are made following

these two models. Then these estimates clarify the difference between these two models.

At first the profile of our model is depicted compared to that of the truncated power law on

Fig 9A. We simulate node strength values from the cumulative distribution Pc(s) according to

the parameter sets estimated for rc = 0.4 data in Fig 5C and 5D. In these profiles, differences

are relatively small except for their tails. For the region of Pc(s)> 0.1, the profiles are similar

and then about 90% of whole data is expected to have small differences in this example. On the

other hand, their differences become significant in their tails. These deviations are caused by

the xmax term in Eq (3), the maximum condition introduced to our model, which works to

suppress the divergence and induce the condensation near the maximum value. While the tail

of the truncated power law shows gradual changes compared to our model and has no explicit

upper limit.

As we have mentioned, the total number of connections or the total strength is one indica-

tor of the network cost [10, 43]. We simulate the node strength averages< s> and show the

differences from the experimental data in Fig 9B. In this graph, simulation of our model results

in a stable and accurate prediction to the experimental data, compared to the case of the trun-

cated power law. These differences are explained by those of the profiles prominent in their

tails Fig 9A.

Also the simulations of the truncated power law show large deviations especially for lower

threshold values. Although under the criterion of AIC, the numerical difference between these

Fig 9. Simulation results of our model and truncated power law. For each simulation, we generate a random sequence r1, . . ., rN (ri 2

[0, 1]) and corresponding strength values s1, . . .sN are determined with using the cumulative distribution ri = Pc(si), where N is equivalent to

the number of nodes in the experiment. A Profile of the cumulative distribution. The cumulative distributions, which follow our model and the

truncated power law, are shown. The parameter sets are fitting results of the rc = 0.4 for the raw data (Fig 5C and 5D). They are γ = 2.22,

xmax = 33.5, and xmin = 0.546 for our model and α = 2.17 and xc = 5.67 for the truncated power law. B Δ < s >, simulation differences from the

experimental data. The simulation results of the average, < s >, are compared to the experimental data with taking the difference, Δ < s > =

< s >simulation − < s >experiment. We use the parameter sets determined by the maximum likelihood method applied to the raw data and the

sampling data with n = 50, 100 for each threshold rc (Fig 7). Then we repeat 986 times, the number of experimental datasets, and take the

average < s > of these simulation results for each condition.

https://doi.org/10.1371/journal.pone.0177446.g009
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models are small especially in the lower threshold range. This result implies another advantage

of our model that it shows the good agreement regarding the average strength< s> with

avoiding the divergence.

Besides the numerical advantages of AIC, this result is also relevant for the brain activity

model. Under the constraint that the strict condition of the energy consumption is required,

the stability of the network cost indicated by this simulation has its importance to maintain the

brain activity. Because the brain is an adapting system, which fluctuates constantly in response

to varying environments.

Discussion

Distribution model and numerical evaluation

We have analyzed the network structure of the functional connectome with using the connec-

tivity matrix constructed from the fMRI datasets. We have considered the issue that deviations

are observed in the experimental data from the power law, the distribution shape predicted

from the criticality. We evaluate numerically and compare the three models, the power law,

the exponentially truncated power law, and our model. For these models, the numerical evalu-

ation based on the information criteria indicates that our model has a numerical advantage as

a distribution model compared to the power law and the truncated power law. Because our

model is introduced in order to apply the power law to the distribution, the variable of which

is restricted to the finite range due to the constraint. This result suggests that the experimental

deviation from the power law is caused by the energy constraint imposed on the brain activity.

Analysis method and threshold. In our analyses the degree distribution is used as a basic

information to characterize the network structure. While the connectivity matrix contains the

noise and the artifacts and, then, the noise reduction procedures are required, in order to

depict the network structure accurately. In usual analyses, these factors are removed by apply-

ing the threshold value, in which connections with the small connectivity weights are removed

(Fig 1) and the network is constructed by the residual connections. Thus our analyses of the

network structure have been examined across a range of the threshold with varying its value.

It is expected that varying the threshold produces three different phases. The first one with

the lower threshold gives the network which is almost fully connected and contains much

noise. On the other hand, for higher threshold values, the network becomes to be fragmented

with less connections and disconnected components are dominant (Fig 2). Then the appropri-

ate network description for the brain functional connectome would be obtained in the inter-

mediate state between these two phases.

Numerical validation of the model. In applying the model to experimental data, we take

the power law as the candidate of the distribution model, based on the hypothesis of the brain

criticality. However the straightforward adaptation of the power law distribution causes wide

deviations from the experimental data (Fig 6) and modifications are required for the original

expression of the power law. One such modification is given by the truncated power law with

the exponential decay, which is given in Eq (5). We also take another one given by our model,

Eq (3), which is obtained by restricting the variable range.

With the maximum likelihood fitting and the numerical evaluation based on AIC, a infor-

mation criteria, we evaluated the fitting performance of each candidate model. Our model is

selected as the best fitting model in the intermediate region of the threshold (Fig 5). In the

higher threshold range, the distribution allows the fitting of the simple power law. However

the fragmented networks with disconnected components does not reflect the basic brain prop-

erties such as integrated information processes. Then the higher range is eliminated. In the

lower threshold region, further analysis shows that this model decays with increasing of noises

The degree and the node strength distribution model of functional connectome

PLOS ONE | https://doi.org/10.1371/journal.pone.0177446 May 17, 2017 14 / 19

https://doi.org/10.1371/journal.pone.0177446


and the truncated power law becomes to be dominant due to these noises (Figs 7 and 8).

This is confirmed directly by Fig 7, in which the selection ratio of our model is raised by

reducing the noises with sampling the data. In addition, compared to the truncated power

law, our model has an advantage that it contributes the stability regarding the network cost

(Fig 9).

Therefore our model would be selected as the relevant distribution model of the network

structure in the functional connectome. In addition these results tell us that the major factor

which characterizes the shape of the degree distribution is the restricted variable range. More

specifically, it is suggested that the upper limit of the number of connections, which would be

required from the biological constraint, deforms the distribution shape and causes the devia-

tion from the power law.

Criticality and energy constraints

We introduced our model, based on the two hypotheses regarding the brain features, the criti-

cality and the constraint on the biological energy consumptions. We examine the validity of

them and discuss how these features affect the network structure.

Criticality. Despite the numerical accuracy of our model, the power law based model can-

not be related directly to the criticality. Because we can find examples of non-critical systems

which can generate the power law [32, 49]. Then we will discuss the evidence that our model

reflects the criticality of the brain.

In Fig 2, the profile of the largest component size indicates that the network transits from

the connected network to the fragmented one. At this point, the network structure also change

its characteristics, which are described by the network quantities, the minimum path length

and the clustering coefficient (Fig 3). The discontinuous changes of them around the same

point imply the occurrence of the phase transition at this point.

On the other hand, the selection ratio of our model takes its maximum peak at this point

and the distribution numerically converges to our model at the same point as we have dis-

cussed (Fig 5). They suggest that our distribution model is closely related to the phase transi-

tion of the network structure around this critical point. Then these results supports the

proposition that our model, which is based on the assumption of the criticality, consistently

reflects the critical state of the brain. Because the number of the connections is one indicator

of the network energy cost [10, 43], this critical phase would emerge according to changes of

the energy state of the brain.

Energy constraints. Another assumption we used to derive our expression Eq (3) is the

constraint regarding the energy consumption. Under this constraint, it can be expected that

the brain activity is imposed to reduce the communication cost. While this constraint works as

limiting the number of connections in the network, excess limitation will cause the isolation of

the disconnected components and disrupt the integrated communication in the brain. Then,

there would exist a critical point, at which the network consists of the minimum connections

sufficient to preserve the efficient communication.

As shown in Figs 3 and 4, increasing of the disconnected components causes the increasing

of the minimum path length (Fig 3) and it decreases the network efficiency (Fig 4A). On the

other hand, the efficiency and the cost have different decreasing ratios (Fig 4A). If we estimate

the efficiency per cost, the network efficiency E divided by the cost Cost (Fig 4B), then there

exists a trade-off point, at which E/Cost takes its maximum value and the efficiency and the

cost are balanced. As we have expected, this point coincides to the critical point, we have speci-

fied in above. Then it is suggested that the network structure of the brain is optimized with

respect to its efficiency under the constraint of the energy consumption.
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In this mechanism, the criticality would contribute to this feature, because the power law

allows the abundant existence of the network hub. Due to these hubs, the loss of the network

efficiency with losing the connections is expected to be suppressed at relatively low level com-

pared to the cost reduction. Then it results in the emergence of the critical point, at which

E/Cost has its maximum value. According to our results, the conditions, the criticality and the

energy constraint, have essential roles in realizing the cost effective network structure in the

brain.

Concluding remarks

In summarizing the discussion above, our results support the assumption that the economical

trade-off between the network cost minimization and the loss of the network efficiency is real-

ized in the brain [50]. The mechanism underlying the network structure in the brain, which is

suggested by our results, can be described as follows. At first, due to the energy constraint on

the brain, the total number of links and the strength of the connectivity between regions are

restricted. On the other hand, the network is required to maintain connections sufficient to

preserve the integrated communication between regions. Then the brain operates in the criti-

cal state between the connected network and the fragmented one. Around this state, the net-

work efficiency can be preserved at relatively high level compared to the cost reduction,

because the power law in the critical state allows the abundant existence of the network hub.

Thus the brain achieves the cost effective network structure with reducing the costs.
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