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There are many examples of apparent manipulation of host phenotype by

parasites, yet few examples of hypermanipulation—where a phenotype-

manipulating parasite is itself manipulated by a parasite. Moreover, few

studies confirm manipulation is occurring by quantifying whether the host’s

changed phenotype increases parasite fitness. Here we describe a novel

case of hypermanipulation, in which the crypt gall wasp Bassettia pallida
(a phenotypic manipulator of its tree host) is manipulated by the parasitoid

crypt-keeper wasp Euderus set, and show that the host’s changed behaviour

increases parasitoid fitness. Bassettia pallida parasitizes sand live oaks and

induces the formation of a ‘crypt’ within developing stems. When parasitized

by E. set, B. pallida adults excavate an emergence hole in the crypt wall, plug

the hole with their head and die. We show experimentally that this pheno-

menon benefits E. set, as E. set that need to excavate an emergence hole

themselves are about three times more likely to die trapped in the crypt.

In addition, we discuss museum and field data to explore the distribution of

the crypt-keeping phenomena.
1. Introduction
Many animals are infected by parasites that modify host phenotype in ways

that benefit the parasites while harming the host [1–4]. This phenomenon is

known as parasite manipulation, and when manipulation is occurring the

host phenotype is an extended phenotype of the parasite [5]. Examples include

parasites that change host behaviour or appearance in ways that increase the

host’s risk of being eaten by the next host in the parasite’s life cycle [6–8],

and parasitoids that induce their insect hosts to commit ‘suicide’ by jumping

into water so the parasitoid can find mates and complete the aquatic phase

of its life cycle [9,10]. These parasites can have important ecological impli-

cations [11,12], and by understanding how parasites induce complex changes

in host phenotype, we are exploring novel links between the immune system,

nervous system and behaviour [13].

The observation that the manipulation appears to be fairly widespread may lead

one to wonder—are also the manipulators manipulated? That is, how common is

hypermanipulation? One example of a manipulated manipulator is the fungus

Ophiocordyceps unilateralis, which manipulates its arboreal ant host (Camponotus
leonardi) into leaving its nest in search of a location that is amenable to fungal repro-

duction [14]. Ophiocordyceps unilateralis is itself susceptible to castration by another

fungus [15]. Additionally, the dipteran tree parasite Masakimyia pustulae manip-

ulates its tree host into producing leaf galls, and M. pustulae may be manipulated

by its parasitoid Plastygaster sp. into producing thicker leaf galls that protect the

parasitoid from hyperparasites [16]. Overall, examples of hypermanipulators are

rare, but are important to identify and study as any ecological impacts associated

with parasite manipulation of host phenotype may be modified in the presence of

a hypermanipulator (e.g. [15]).
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Figure 1. The crypt gall wasp Bassettia pallida infects sand live oaks, and induces the formation of ‘crypts’ in which the wasp will undergo development. Bassettia
pallida infected by the crypt-keeper wasp Euderus set excavate small emergence holes that the host plugs with their head capsule prior to death. Euderus set
emerges through the host’s head capsule when it reaches its adult stage. (a) Adult B. pallida, (b) two dissected crypts containing adult B. pallida, (c) E. set
pupa in a crypt made by B. pallida, (d ) adult E. set, (e) emergence holes made by uninfected B. pallida, ( f ) emergence hole plugged by the head capsule
of B. pallida, and (g) head-plugged hole with hole in B. pallida’s head capsule where E. set emerged.
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Many apparent examples of manipulation lack direct

experimental evidence of a fitness benefit to the parasite associ-

ated with the changed host phenotype [8]. Host phenotype

may also change following infection owing to pathology or

host compensation for infection [17], and in some systems

where manipulation appeared to be occurring, it was later deter-

mined that the modified host phenotype did not in fact benefit

the parasite (i.e. the host trait in question was probably not

manipulated) [18]. Here, we both introduce a previously undo-

cumented case of hypermanipulation (figure 1, and for an

artist’s illustration see the electronic supplementary material,

figure S1) and manipulate the system to provide strong support

that the observed changes in host behaviour benefit the parasite.

The host in this system is the asexual stage of the crypt gall

wasp Bassettia pallida, a cynipid wasp found on sand live oaks

(Quercus geminata) and southern live oaks (Quercus virginiana)

in the southeastern USA [19–21]. Gall wasps induce changes
in the morphology of their plant host, and in other gall wasp

systems these morphological changes appear to benefit the

host by protecting it from natural enemies [22,23]. The stem

galls induced by B. pallida are known as crypts, which are

tiny compartments in which B. pallida undergoes development

before it excavates through the stem to emerge as an adult.

While working in this system, we observed that many B. pallida
had excavated emergence holes out of their crypts, but had died

with their head plugging the holes. Dissections of 11 head-

plugged crypts revealed clear evidence of a parasitoid in 10

cases, and one case where indirect evidence of a parasitoid

was present. We never observed the egg stage of the parasitoid.

However, in head-plugged crypts, we observed larval and

pupal stages of the parasitoid residing partly within the crypt

and partly within the host’s body. This suggests that the

manipulation of the host occurred sometime between the ovi-

position event and the larval parasitoid stage. The parasitoid
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appears to infect the adult host stage, as the parasitoid was

never observed in a crypt with a larval or pupal host. The para-

sitoid was a previously undescribed eulophid parasitoid wasp,

which we have named the ‘crypt-keeper wasp’ Euderus set
(named after Set, the Ancient Egyptian God of evil and chaos)

and is described elsewhere [24].

In this paper, we: (i) provide observational data on the timing

of E. set emergence; (ii) quantify the fitness benefit to E. set of

the ‘crypt-keeping’ phenomenon; and (iii) present museum

and field data elucidating the temporal and geographical

distribution of crypt-keeping manipulation.
Proc.R.Soc.B
284:20162365
2. Material and methods
(a) Sample collection
Stems infected by B. pallida were collected from Inlet Beach, Flor-

ida (South Walton Beach County Park: 30.273517, 286.002499)

in early August 2015 and mid-October 2015. Infected stems

were found by visual inspection of sand live oaks (Q. geminata)

within a 2 km radius. Stems were cut off the tree and stored in

a plastic bag for transport to the laboratory.

(b) Identification and natural history of host
and parasite

The asexual generation of B. pallida Ashmead 1896 forms crypt-like

stem galls hidden under the bark of host plants Q. geminata
and Q. virginiana across the southeastern USA (FL, GA, AL, MS,

LA and TX) [20,21]. Asexual generation adults emerge in the

spring and adult emergence timing is synchronized with new leaf

growth on its host plant, where the sexual generation is hypoth-

esized to develop within galls on the midvein of new leaves (S. P.

Egan 2016, unpublished data). The crypt-keeper wasp, E. set, is a

parasitoid that appears to specialize on the asexual generation of

the crypt gall wasp B. pallida on American live oaks in the genus

Quercus and the subsection Virentes [19–21]. This is, to our knowl-

edge, the first documented case of a member of the genus Euderus
in this system [25].

(c) Observational data on emergence timing
Stems collected from the field were brought back to Rice Univer-

sity, Houston, TX, USA, where they were processed under a

dissecting microscope. All visible holes were numbered using a

black marker, and hole status was noted as either ‘B. pallida emer-

gence hole’ (an emergence hole that appeared to lead to an

empty crypt), ‘head-plugged hole’ (an emergence hole plugged

with a B. pallida head) and ‘E. set emergence hole’ (an emergence

hole plugged with a B. pallida head, where the host’s head

capsule contained a hole from which a E. set had emerged)

(figure 1). All hole states were re-examined following dissection

at the end of the experiment (see Crypt dissections section).

Each stem was individually placed in a clear plastic cup, and a

coffee filter secured by a rubber band covered the top of the cup.

This housing allowed sunlight and air to penetrate the cup, but

prevented the escape of insects that emerged from the stems.

Cups were placed in bins and kept on a table in a shaded walkway

exposed to natural conditions, but protected from rain and direct

sunlight. The cups experienced natural daylight cycles and were

exposed to naturally fluctuating temperature and humidity

levels. Coffee filters were removed and the cups were misted

with tap water once in February, and were misted weekly in

March to mimic spring rain along the Gulf coast.

Cups were checked 5 days a week for emergences. Emerged

insects were collected, placed in 96% ethanol and stored at

2808C for future analysis. When an emergence occurred, the
stem was placed under a dissecting scope to look for new emer-

gence holes or changes in the status of previous holes. The

emergent insect was classified as E. set, B. pallida, or was ident-

ified as an inquiline or other parasitoid of B. pallida. These data

provide us a first look at the timing of emergence for B. pallida,

E. set, and the community of other parasitoids and inquilines

associated with the asexual phase of this cynipid wasp.

We also observed differences in the diameters of emergence

holes excavated by infected and uninfected B. pallida, which we

discuss in the electronic supplementary material, Emergence

hole analysis section.

(d) Does the crypt-keeping phenomenon benefit
Euderus set?

We hypothesized that the crypt-keeping phenomenon was an adap-

tive manipulation of B. pallida by E. set, and increased E. set fitness

through one or two routes: (i) E. set benefits from B. pallida excavation

of the emergence hole through the wood and bark of the tree as the

parasitoid is less able or unable to excavate its own hole, and (ii) the

B. pallida head-plug continues to seal the crypt from external abiotic

conditions that may prohibit E. set development.

If E. set is able to manipulate B. pallida to create and sub-

sequently plug an emergence hole, then E. set would only need

to cut through or move aside the head of B. pallida to emerge. To

test this hypothesis, we created a ‘reseal’ treatment where we

resealed a subset of the head-plugged holes with bark, which

would require E. set to excavate through both B. pallida’s head cap-

sule and the bark to emerge as an adult. Euderus set emerging

completely independent of host manipulation would need to

chew through gall-associated plant material, typical woody

tissue and bark to emerge. As chewing through the host’s head

capsule is probably less difficult than chewing through wood,

this treatment may underestimate the difficulty E. set would

experience if forced to emerge independently. Bark came from

freshly harvested Q. virginiana stems on Rice University campus.

A thin piece of bark was removed using a razorblade, and bark

was soaked in tap water to make it pliable. Bark was placed over

the head-plugged hole and secured using thin strips of standard

laboratory labelling tape. The tape was placed so it held the bark

over the hole without covering the hole. This hypothesis is specific

to the adult stages of E. set, as only this stage would need to exca-

vate an emergence hole. We predicted that survival would be

highest for adult E. set in the ‘control’ treatment, and lower in

the ‘reseal’ treatment, as E. set adults would need to emerge

through B. pallida’s head capsule and bark in this treatment.

One hypothesized function of galls is to provide favourable

abiotic conditions for the gall-former residing within [22,26].

To test this hypothesis, we identified a subset of head-plugged

holes and created a ‘breach’ treatment by using an insect pin to

poke a hole in the top of B. pallida’s head. This breached the

crypts and probably exposed the crypt contents to external con-

ditions. However, this method could result in E. set mortality

through two routes: by changing abiotic conditions, or because

poking an insect pin into a crypt damaged E. set. To isolate the

effect of mortality caused by poking an insect pin into a crypt

with a developing parasitoid, we created a ‘breach & reseal’ treat-

ment by covering a subset of the breach treatments with bark

using the methods we described previously. We predicted that

breaching the crypt would reduce the survival of all life stages

of E. set, and E. set survival would be equal in control and

breach & reseal treatments.

Manipulations were performed over two sessions. Head-

plugged holes on stems collected during the August harvest

session received treatments over five consecutive days in late

August and early September, while stems harvested in October

were treated over six consecutive days in early November. Survi-

val status of E. set was determined by daily checks for E. set
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emergence as described earlier, and through dissections (see

Crypt dissections section).
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(e) Temporal and geographical observational data on
the crypt-keeping phenomenon

We encountered additional evidence of the crypt-keeping

phenomenon in preserved specimens from the cynipid collections

in the Smithsonian (US National Museum) and the American

Museum of Natural History, as well as in the field. For museum

specimens, we examined preserved Bassettia infested branches

and quantified emergence holes that appeared to be a Bassettia
emergence hole, a head-plugged hole or a Euderus emergence

hole. Observations on museum specimens could not be confirmed

with dissections. For field-collected specimens from other

localities, holes were categorized, and hole status was confirmed

by dissection (see Crypt dissections section).
4:20162365
( f ) Crypt dissections
We examined crypt contents during dissections by running a

razorblade across the top of the stem until the inner crypt was

revealed. As described previously, each crypt was categorized

along a continuum as B. pallida emergence hole, head-plugged

hole or E. set emergence hole. When E. set emerges or sometime

after, the exoskeleton of B. pallida (including its head capsule) can

fall back into the depths of the crypt, as many parasitoids will

consume their host from the inside out leaving only the exoske-

leton behind [27]. For this reason, any instance of an emergence

hole containing B. pallida exoskeleton with no evidence of E. set
remaining was deemed an E. set emergence hole. At this time,

we also determined the fate of E. set. If remains of E. set were

found in a crypt, then we recorded whether the remains were

of the larval, pupal or adult stage. If we found an empty crypt

containing B. pallida host remains, we determined that an adult

E. set had emerged.
(g) Statistical analyses
We performed all statistical analyses in RSTUDIO v. 0.99.489 [28] run-

ning R v. 3.2.2 [29]. Models were created using the glmer function in

the lme4 package [30]. Model comparisons were achieved using

Akaike information criterion corrected (AICc) for small sample

sizes [31], and model-averaged beta coefficients with 95% confi-

dence intervals were obtained using the AICmodavg package [32].

We competed generalized linear mixed models (GLMMs)

specifying a logit link function to examine how E. set survival

was impacted by the treatments. All models contained a

random intercept for stem ID. We competed four models to

explore how our treatments impacted survival across all life

stages: one null model (containing only the random intercept),

one model containing a predictor for manipulation treatment

(i.e. control, reseal, breach & reseal or breach), one model con-

taining a predictor for stem harvest session, and one containing

predictors for both manipulation treatment and stem harvest ses-

sion. We did not include models with an interaction term, as

sample sizes in August were low and we had no a priori reason

to expect an interaction. We ran these models twice. The

models were first run on a dataset restricted to only instances

in which E. set had survived to adulthood, which allowed us

to test our first hypothesis that E. set may have reduced survival

when adults have to excavate their own emergence hole. We then

ran the models looking at survival across all E. set life stages

(i.e. including E. set that died as a larva, pupa or adult, as well

as E. set that successfully emerged as adults), which allowed us

to test our second hypothesis that breaching a crypt creates abio-

tic conditions unfavourable to E. set survival. Model-averaged
predictor estimates and 95% confidence intervals were obtained

using the modavg function.
3. Results
(a) Observational data on emergence timing
From our Inlet Beach (FL) stems, 150 E. set emerged over the

course of the project. While sporadic emergences occurred

from mid-August through to late March, the main pulse of

emergence (75% of emergences) occurred from mid-February

through to mid-March. Some of these emergences occurred

through crypts from which the head-plugging phenomenon

was not observed, revealing that E. set is rarely able to emerge

from crypts from which hosts have not excavated complete

emergence holes. Two B. pallida emerged, with one emergence

in mid-November and the other in mid-December. The rarity of

B. pallida was not surprising, as adults should emerge in the

spring synchronized with new leaf growth of their host plants

[20]. Based on our observations, it appears that E. set undergoes

development in the crypt during the time when the sexual stage

of B. pallida resides in leaf galls, suggesting E. set only infects the

asexual, crypt-making host stage.

A total of 39 other natural enemies (parasitoids or inqui-

lines) emerged from the branches. Their emergences occurred

throughout the duration of the experiment, and comprised

20% of the emergences we observed. These organisms were

never associated with the crypt-keeping phenomenon, and

all appeared to emerge from the crypts by creating their

own emergence holes. The parasitoids included three species

from the genus Sycophila, two species from genus Ormyrus,

one each from the genera Eurytoma, Acaenacis and Brasema,

and a platygastrid from the subfamily Platygastrinae. The

inquilines included a species from the genus Synergus and

another from the genus Ceroptres.

(b) Does the crypt-keeping phenomenon benefit
Euderus set?

A total of 172 head-plugged holes were included in this exper-

iment. The initial treatment sizes were 59, 37, 38 and 38 for the

control, breach, reseal and breach & reseal treatments, respect-

ively. Eight samples were removed from the analysis because

the state of the crypt could not be determined unambiguously.

The final sample size for analysis was 56, 35, 36 and 37 for con-

trol, breach, reseal and breach & reseal treatments, respectively.

When the data were restricted to include only instances where

E. set survived to adulthood, the sample sizes became 26, 12, 13

and 14 for the control, breach, breach & reseal and reseal treat-

ments, respectively. Mortality was present across experimental

treatments, including only 39% of all E. set surviving in the con-

trol group (figure 2), however, plant-mediated gall former

death greater than 50% is common [33–35].

When we restricted our analysis to include only E. set that

had survived to adulthood, we found that the model contain-

ing predictors for manipulation treatment and harvest date

had the best fit and highest AICc weight (residual d.f.¼ 59;

DAICc ¼ 0, AICc weight ¼ 0.8). The model containing only

manipulation treatment received the rest of the AICc weight

(residual d.f. ¼ 60; DAICc ¼ 2.83, AICc weight ¼ 0.2). Breach-

ing the crypts did not appear to reduce survival, while the

breach & reseal and reseal treatments were associated with

reliably negative log-likelihoods and thus reduced survival
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Figure 2. Proportion of Euderus set that survived or died in the control, breach, breach & reseal and reseal treatments of the manipulation experiment. (a) Euderus
set survival restricted to instances where E. set survived to adulthood and (b) E. set survival across all life stages. Relative sample size is indicated by the width of
each column, and absolute sample size is noted at the top of each column.

Table 1. Model-averaged log-likelihoods and 95% confidence intervals (95% CI) for predictors of E. set adult survival, or survival across all life stages. (Treatments
indicate whether head-plugged holes received no treatment (control), were breached to allow in ambient air (breach), were breached and then covered with a thin
piece of bark (breach & reseal), or were covered with a thin piece of bark (reseal). Stems were collected during October and August harvest sessions.)

predictor

survived to adult stage all life stages

estimate 95% CI estimate 95% CI

intercept 2.67 0.82 to 4.52 0.78 20.51 to 2.07

treatment: breach 20.49 22.23 to 1.26 21.08 22.29 to 0.13

treatment: breach & reseal 22.78 24.56 to -0.99 22.28 23.79 to 20.78

treatment: reseal 23.4 25.42 to 21.39 22.95 24.6 to 21.3

harvest session: October 21.66 23.31 to 0 21.98 23.33 to 20.62
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(table 1). The log-likelihood for the October harvest session was

negative, but the 95% confidence interval included zero. Bring-

ing stems into the laboratory later in the season either slightly

reduced or did not impact the survival of adult E. set. While we

did not look for interactions specifically, we note that running

GLMMs to look for differences between the control and reseal

treatments on the August and October datasets separately

yielded qualitatively similar results.

The model that best predicted the survival of E. set across

all life stages included terms for manipulation treatment

and harvest session (residual d.f. ¼ 158; DAICc ¼ 0, AICc

weight ¼ 0.96). The model-averaged log-likelihoods for survi-

val (table 1) were negative for breach & reseal and reseal

treatments, and did not overlap with zero. The log-likelihood

for the breach treatment was negative, but the 95% confidence

interval overlapped with zero and so we are unable to say with

certainty whether or not allowing ambient air into a crypt

reduced E. set survival. The log-likelihood for the October

session was negative, suggesting that E. set residing in stems

collected at a later date were less likely to survive than those

collected in August. While we did not look for interactions

specifically, we note that running GLMMs to look for differ-

ences between the control, breach, and breach and reseal

treatments on the August and October datasets separately

yielded qualitatively similar results.

(c) Temporal and geographical observational data on
the crypt-keeping phenomenon

In addition to Inlet Beach (FL), we encountered evidence of

the crypt-keeping phenomena on Q. virginiana and Q. geminata
at four additional field sites across Florida, Mississippi and

Texas (electronic supplementary material, table S1). In

addition, we found historical samples in the cynipid collection

at the Smithsonian, which suggests that this phenomenon has

been ongoing since at least 1983 in this system involving live

oaks, B. pallida and E. set.
In addition to observations in this specific system, we made

observations of the crypt-keeping phenomenon outside of the

live oak–B. pallida–E. set interaction. We observed branches

with Bassettia emergence holes plugged with a Bassettia head

capsule and Bassettia head capsules with Euderus-like emer-

gence holes from field-collected samples on Quercus nigra in

Houston, TX, USA, and on Quercus lobata and Quercus douglasii
galled tissue from the cynpid collections at the American

Museum of Natural History (electronic supplementary material,

figure S2). This suggests that other members of the genus Basset-
tia may be manipulated by other species of Euderus across its

range.
4. Discussion
The manipulation of host behaviour by parasites excites

scientists across the spectrum, including neurobiologists, evol-

utionary biologists, physiologists and ecologists, as well as the

general public [1,11,13,36–38], but few of these documented

interactions provide a clear test of the fitness benefits for the

parasite arising from parasite-associated host phenotypic

changes [8]. In this study, we found that the crypt gall wasp

B. pallida is infected by a previously undescribed parasitoid

in the genus Euderus. Infection by E. set is associated with the
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host excavating a small emergence hole (figure 1 and see the

electronic supplementary material, figure S1), and then plug-

ging this hole with their head. This host behaviour benefits

E. set, as E. set adults that had to excavate through bark them-

selves were about three times more likely to die trapped in the

crypt relative to E. set that only needed to emerge through the

host’s head capsule (table 1 and figure 2). As parasitoids exca-

vating through a breached host’s head had similar survival to

parasitoids that had to breach the host’s head on their own

(95% CIs for the breach & reseal treatment and the reseal treat-

ment overlapped considerably), our experimental results

suggest that the major cost of emergence is cutting through

the bark. Euderus set emerging independently would need to

cut through gall tissue of plant origin, typical woody tissue

and bark, so our treatment (where E. set emerge through host

cuticle and bark) may have underestimated the difficultly of

emergence without host assistance. This system adds to a

small, but growing set of examples of host–parasitoid systems

where manipulation of host behaviour increases parasitoid

fitness [9,14,39–42].

We provided clear evidence that E. set benefits from the

crypt-keeping phenomenon. While this result strongly

suggests that the manipulation is occurring, identifying the

mechanism through which manipulation is induced would

provide additional support. Energy drain is a common

strategy used by parasites to manipulate their hosts [43],

and E. set may have induced the crypt-keeping behaviour

by draining enough energy that the host subsequently

created a smaller excavation hole and died plugging the

hole. Alternatively, injection of compounds into the host by

the ovipositing E. set or secretion of compounds by the devel-

oping parasitoid may have induced the manipulation [13,44].

Teasing apart the specific induction methods beyond the

presence of E. set is the next step, thus, we carefully con-

sidered alternative explanations to manipulation. One

possible alternative is that this behavioural phenotype is cir-

cumstantial, in that the parasitoid is simply benefiting from a

pre-existing host behaviour. During our dissections, we

noticed instances where adult E. set had died trapped in a

crypt in which B. pallida had not excavated an emergence

hole, or had excavated a partial emergence hole that did

not extend to the stem surface. This observation suggests

there is variability in the ability of E. set to manipulate its

host. However, the parasitoid could rather be searching out

this behaviour and benefit from instances when its host

engages in head-plugging behaviour. We think the ‘imperfect

manipulation’ option is more likely for three critical reasons.

First, traits of either host or parasite may influence the ability

of the parasite to manipulate host phenotype [17,45,46],

making variation in the expression of the manipulated phe-

notype likely (i.e. making it unsurprising that we observed

55 cases of what may be failed or incomplete manipulation).

Second, the crypt-keeping phenomenon is tightly correlated

with the presence of the parasitoid. In the 168 head-plugged

holes in the experiment for which we were able to clearly exam-

ine crypt contents, in only four cases (i.e. 2% of cases) did we

not find clear evidence of E. set. Additionally, dissections

done in 2014 and 2015 found clear evidence of E. set in head-

plugged holes in 37 of 39 instances and 10 of 11 instances,

respectively. In cases where we did not find direct evidence

of E. set, the parasitoid still may have been present, yet died

at an early stage (e.g. when still an egg), decayed and left no

trace. Given the high congruence between the crypt-keeping
phenomenon and the presence of E. set, in order for the parasi-

toid to be benefiting from a pre-existing host behaviour rather

than inducing the behaviour itself the ovipositing E. set would

need to deposit her eggs in crypts where B. pallida was in the

process of excavating an emergence hole, and the host would

need to be paralysed or killed while excavating. When excavat-

ing B. pallida were unavailable, ovipositing E. set would instead

oviposit in less desirable crypts in which B. pallida had not

begun to excavate an emergence hole. We suspect this is not

occurring because we would not expect to see a difference in

emergence hole size between crypts containing E. set and

those that do not (as described in the electronic supplementary

material, Emergence hole analysis section) if B. pallida is simply

being stopped in its tracks at some point in the excavation pro-

cess. Additionally, we expect that E. set would be less tightly

coupled with the crypt-keeping phenomenon if E. set were con-

strained to finding hosts in the process of emerging (rather than

hosts simply residing in their crypts), but mechanistic work or

observations during the E. set ovipositing period would be

necessary to confirm. Finally, if taking advantage of pre-exist-

ing stuck gall wasps was a regular phenomenon, then we

should see it in other gall-forming species in our live oak

system—but we do not. In over 10 years of sampling, six differ-

ent gall wasps species on live oaks (ranging from south Florida

to Texas), we rarely see cynpids getting stuck (S. P. Egan 2006–

2016 personal observation). When they do get stuck, it is

usually between their head and thorax, and sometimes they

get stuck completely intact and still in their gall. We never

see the same head plug just below the surface of the bark

with the head facing out, as we see when E. set infects B. pallida.

Conservatively, our knowledge of this phenomenon in other

gall-forming species arises from detailed observation of over

100 000 galls. In the rare instances we see non-B. pallida gall

wasps get stuck in the gall or between their head and their

larger thorax or abdomen, we have dissected these galls and

never seen Euderus in its abdomen.

We found no evidence of reduced E. set survival in our

breach treatment, despite our predictions that breaching the

head-plugged crypts would result in reduced E. set survival

owing to less than optimal abiotic conditions within breached

crypts. This suggests that the head-plugging part of the crypt-

keeping phenomena may not directly benefit E. set, and may

simply arise because B. pallida manipulated into excavating

small emergence holes get stuck. Alternatively, the benefit

of head plugging may simply be that this behaviour prevents

the host from emerging completely (which is critical as the

parasitoid has not yet completed consuming the host), or

the benefit may be something that we failed to measure.

While keeping the cups outdoors allowed for semi-natural

light and humidity conditions, maintaining the cups in this

way may have excluded some ecologically relevant stressors.

For example, in a previous year we observed a fairy wasp

(Mymaridae, Chalcidoidea and Hymenoptera) emerge from

infected stems, and fairy wasps have been reported to be

hyperparasitoids of other Eulophid wasps (e.g. [47]). The

hyperparasitoid may be an additionally important source of

E. set mortality, but our experimental design did not allow

for possible exposure to fairy wasps or other natural enemies

of E. set. Manipulation to reduce hyperparasitism has been

observed in other systems [16,39], and it is possible that

head plugging makes it more difficult for hyperparasitoids

to access the crypt (relative to breached or completely open

crypts) and infect E. set. Alternatively, the presence of the
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head plug may actually provide to the fairy wasp an obvious

visual cue to the presence of a developing E. set. Increased

risk of encounters with natural enemies owing to manipu-

lation has been observed in other systems [48–50], and

increased hyperparasitoid infection rates due to the head-

plugging phenomenon may constitute an indirect cost of

manipulation.

The host plants for B. pallida (Q. geminata and Q. virginiana)

are found in the southeastern USA, and it is likely that

manipulation by E. set occurs throughout this range as our

field excursions identified the crypt-keeping phenomenon

occurring in Florida, Texas and Mississippi (electronic sup-

plementary material, table S1). This phenomenon was also

observed in museum samples from 1920 to 1948 on two differ-

ent oak species found in California that harbour different

Bassettia species (electronic supplementary material, figure S2).

Parasitoids are often highly host specific [51], and E. set also

appears to be host specific as it has not been observed infecting

other gall wasp species found on Q. geminata or Q. virginiana,

despite extensive work done on the gall formers of these oak

trees [21,52]. We found no evidence of the crypt-keeping

phenomenon in the literature or any similar manipulation of

other gall wasps by their parasitoids, suggesting that the

Bassettia species in California may be manipulated by a closely

related species of Euderus. The undiscovered phenomenon in

museum samples and field observations suggest it may be

worth surveying the Bassettia throughout their range to

explore the extent to which this gall wasp genus is manipu-

lated by Euderus parasitoids. Further exploration of the

extent to which Euderus manipulates its host may reveal

instances in which this parasitoid could be useful as a form

of biocontrol, as Bassettia infection can be associated with

declines in their host tree (e.g. [53]), and other Euderus species

infect insects known to be agricultural pests [25].
5. Conclusion
Few examples of hypermanipulation—where a phenotype-

manipulating parasite is itself manipulated by a parasite—have
been documented. Moreover, few studies confirm whether the

host’s changed behaviour increases parasite fitness, which is

critical for a changed host behaviour to qualify as manipulation.

Herein, we have described a novel case of hypermanipulation, in

which the crypt gall wasp B. pallida, a phenotypic manipulator of

its host plant, is manipulated by the Eulophid parasitoid, the

crypt-keeper wasp E. set, and clearly demonstrate that the

host’s changed behaviour increases parasitoid fitness. Moreover,

using museum specimens, literature review and observational

data from the field, we have highlighted a possible undocumen-

ted complex interaction that may be continental in scale (close to

600 Eulophid species in North America; [54]). This previously

undocumented phenomenon may prove economically impor-

tant, as many Eulophid parasitoids attack and(or) serve as

biocontrol agents for major agricultural pests, including apple

leafminers, Colorado potato beetle, asparagus beetle, fruit tree

leafrollers and western flower thrips [54].
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