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Probiotics are widely accepted to be beneficial for the maintenance of the
gut homeostasis – the dynamic and healthy interactions between host and
gut microorganisms. In addition, emerging as a key molecule of inter-domain
communication, microRNAs (miRNAs) can also mediate the host–microbe interactions.
However, a comprehensive description and summary of the association between
miRNAs and probiotics have not been reported yet. In this review, we have discussed
the roles of probiotics and miRNAs in host–microbe interactions and proposed the
association of probiotics with altered miRNAs in various intestinal diseases and potential
molecular mechanisms underlying the action of probiotics. Furthermore, we provided a
perspective of probiotics–miRNA–host/gut microbiota axis applied in search of disease
management highly associated with the gut microbiome, which will potentially prove to
be beneficial for future studies.
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INTRODUCTION

Trillions of microbes exist in the human gastrointestinal tract, and the number of these microbes
greatly exceeds the number of human body cells, which influences the physiological activities of
the host throughout the lifespan (Li D. et al., 2016; Chang and Kao, 2019). This complicated
ecosystem containing bacteria, fungi, viruses, and protists is called the gut microbiota. Intense
exploration for understanding the relationships between host and gut microbiota has never ceased.
In particular, the “dysbiosis” of gut microbiota may lead to the occurrence of various diseases of
the host, ultimately damaging its health (Li D. et al., 2016; Chang and Kao, 2019). Probiotics,
in sufficient doses, can restore the intestinal microecological balance and promote the healthy
growth of the host (Hill et al., 2014). The consumption of probiotics is prevalent because they have
the potential to become an important intervention strategy to prevent and treat various diseases
(Balakrishnan and Floch, 2012; Suez et al., 2019; Yousefi et al., 2019). Although probiotics have
great prospects, concerns about security and doubts about their effectiveness are always present.
It is important to explain the exact molecular mechanism describing probiotics’ influence on
host–microbe interactions, which remains largely unknown so far. MicroRNAs (miRNAs) are
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considered to be important regulators in the host gene expression
process, and some are found to be significantly related to the
microbial community or specific bacteria (Hasan and Yang,
2019). Recent studies have proposed the functional role of
miRNAs played in shaping gut microbiota (Moloney et al., 2019;
Behrouzi et al., 2020). These host-derived miRNAs were able
to enter bacterial cells to cultivate or inhibit specific bacteria
(Liu et al., 2016; Spinler et al., 2019). These effects on host–
microbe interactions suggested that miRNAs may be important
participants in the molecular mechanism of probiotics action.

In this review, we first summarized the interactions between
host and gut microbiota and presented a brief overview
of probiotic functions and their impact on host–microbe
interactions. Then, we highlighted the importance of miRNAs
to host gastrointestinal function and described the correlation
between miRNA expression levels and gut microbiota profiles.
Next, we discussed the current understanding of the host’s
use of fecal miRNA and plant-derived miRNA in maintaining
gut homeostasis. Finally, we proposed the potential molecular
mechanism underlying how probiotics maintain gut homeostasis
and proposed the concept of probiotics–miRNA–host/gut
microbiota axis that can serve as a new direction for
future exploration.

INTERACTIONS BETWEEN HOST AND
GUT MICROBIOTA

Genes encoded by the gut microbiota are 150 times larger than
the human genome, which includes an extremely rich enzyme
repository (El Kaoutari et al., 2013; Rooks and Garrett, 2016;
Rowland et al., 2018; Zimmermann et al., 2019). Most members
of gut microbiota exert harmless or beneficial effects on the host.
They provide uncoded human enzymes, participate in human
metabolism, and also maintain immune homeostasis through
their interactions with host cells (Rooks and Garrett, 2016;
Rowland et al., 2018). For example, the bacterial fermentation
products of carbohydrates are short-chain fatty acids (SCFAs)
that are important energy sources for bacteria itself and host
cells (Rowland et al., 2018). SCFAs also have varying regulatory
functions on the host, including the enhancement of epithelial
barrier function and maintenance of mucosal immunity (Rooks
and Garrett, 2016; Rowland et al., 2018). Additionally, bile acids
are classical examples of the interactions between host and gut
microbiota. The gut microbes modified the bile acids synthesized
in the liver into secondary bile acids that modulate multiple
host metabolic processes and immune homeostasis (Long et al.,
2017; Parasar et al., 2019). In contrast, bile acids are capable of
influencing the growth of bacteria, resulting in changes in the
structure of the microbial community. The gut microbiota is
essential for host metabolism and immune homeostasis, and their
components contribute considerably to shaping the host immune
system, such as lipopolysaccharide, flagellin, peptidoglycan, etc.
(Rooks and Garrett, 2016).

Interactions between the host and gut microbiota promote
the establishment of a symbiotic relationship during host
development. The optimal operation of a symbiotic relationship

is vital to host health. But, the performance of gut microbiota
is affected by various factors, including diet, lifestyle, illness,
environment, hygiene, genetics, and antibiotic exposure (Li D.
et al., 2016; Cristofori et al., 2018; Celiker and Kalkan, 2020).
Although the composition of specific flora may change due to
the stimulation of internal and external factors, the structure of
the intestinal microbial community remains dynamic and stable
(Coyte et al., 2015). Differences in the types of microorganisms
are carried by different individuals, but the composition and
function of the “core microbiome” are similar and remain
relatively stable over time (Lozupone et al., 2012; Coyte et al.,
2015; Milani et al., 2017; Gentile and Weir, 2018). This microbial
stability is considered to play a critical role in the health of the
host. It is worth mentioning that it is regarded as a sign of host
intestinal health. Disruption of microbial stability often leads to
“dysbiosis,” whichinduces a range of diseases (Lozupone et al.,
2012; Coyte et al., 2015; Li D. et al., 2016; Milani et al., 2017).
Moreover, gut microbiota have the ability to trigger responses
from a distance by producing metabolites (Agus et al., 2018;
Allaire et al., 2018; Gentile and Weir, 2018). The crosstalk
between host and gut microbes can be linked to the health
status of other body organs (Gresse et al., 2017; Agus et al.,
2018; Allaire et al., 2018; Gentile and Weir, 2018; Adak and
Khan, 2019; Maslowski, 2019; Zhang et al., 2019). Another
aspect of the crosstalk includes the detailed mechanism of host
manipulation of the bacterial community that has also received
extensive attention (Figure 1). The traditional pathways are
mainly dominated by bile acids, antibacterial peptides, and IgA
(Brown et al., 2013; Chu and Mazmanian, 2013; Liu, 2016; Parker
et al., 2018). Additionally, compelling evidences supported that
genetic and environmental factors contributed greatly to the
occurrence of dysbiosis, which in turn promoted many diseases,
such as obesity and inflammatory bowel disease (IBD; Zhou
M. et al., 2017; Cuevas-Sierra et al., 2019; Celiker and Kalkan,
2020). Recent studies have proposed a novel mechanism that the
host specifically controls the gut microbiota by promoting the
liberation of miRNAs (Liu et al., 2016). Diet and probiotics are
also valuable tools available to alter the gut microbiota (Forgie
et al., 2019; Tang, 2019).

PROBIOTICS AND THEIR IMPLICATIONS
FOR HOST–MICROBE INTERACTIONS

Probiotics are commercial food supplements that are widely
used all over the world. It has been generally accepted that they
are able to restore the disruption of gut microorganisms. In
2002, probiotics were defined by WHO as live microorganisms
that confer a health benefit when administered in adequate
amounts (Hill et al., 2014). At present, as shown in Figure 2,
various methods, including metagenomics, transcriptomics,
and metabolomics, have already been applied to describe the
mechanisms of the effects of probiotics on the host–microbe
interactions (Bermudez-Brito et al., 2019; Kiousi et al., 2019;
Yadav and Pratyoosh, 2019; Quigley and Gajula, 2020; Sehrawat
et al., 2020). The most commonly beneficial effect of the
probiotic administration route is to stabilize the bacterial
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FIGURE 1 | Probiotics and miRNA, as well as their implications for host–microbe interactions. The traditional pathways involving in host–microbe interactions are
mainly dominated by bile acids, antibacterial peptide, and IgA. In addition, the traditional pathways also include dietary, environmental, and genetic factors.
Moreover, the host regulates bacterial gene expression via fecal miRNA and plant-derived miRNA to shape gut microbiota. Gut microbiota regulate cell gene
expression via host miRNA to alleviate various gastrointestinal diseases. Probiotics have impacts on these host–microbe interactions. The dotted line represents the
lack of conclusive evidence in the relationship at present.

community and restore the “signature” of gut microbiota. It
mainly stems from their ability to produce bacteriocins, lower
pH, and compete with pathogens for space and nutrients
(Balakrishnan and Floch, 2012; Cremon et al., 2018; Suez et al.,
2019). Competitive exclusion by probiotics is based on the
competition for available nutrients and adhesion sites. It has
been demonstrated that purified surface adhesion proteins of
probiotics can exclude pathogens. Surface adhesins of pathogens
and probiotic strains are implicated in mediating the binding of
microbes to the host (Du et al., 2010). Probiotics can also change
the environment to gain a more favorable competitive advantage.
Studies on lactobacilli and bifidobacteria have shown that these
two probiotic strains could produce organic acids to lower
intestinal pH. Both organic acids and bacteriocins produced by
bacteria enable the inhibition of pathogen growth (Dobson et al.,
2012). On the other hand, probiotic bacteria (e.g., Lactobacillus
and Bifidobacterium) have been revealed to improve barrier
function. The ability of probiotics to upregulate expression levels
of mucus-secretion genes may be one of the mechanisms of
improving barrier function and excluding pathogens (Khoruts,
2018; Bermudez-Brito et al., 2019; Sanders et al., 2019; Yan and
Polk, 2020). Furthermore, probiotic strains have been reported

to directly exert immune and anti-inflammatory effects on the
host. Probiotics may affect the immune system by changing
the levels of metabolites, components, and DNA. They have
been shown to activate immune cells, increase the production
of immunoglobulins, and regulate cytokines (Khoruts, 2018;
Sanders et al., 2019; Liwinski and Elinav, 2020; Yan and Polk,
2020). Several studies have demonstrated that these probiotic-
derived factors can suppress intestinal inflammation via targeting
toll-like receptor (TLR) signaling (Gómez-Llorente et al., 2010).
Additionally, probiotics could also alter energy metabolism
and impact intestinal physiology by releasing metabolites
including the SCFAs, oligosaccharides, vitamins, amino acids,
and secondary bile acids (Gura, 2014; Lee et al., 2018; Bermudez-
Brito et al., 2019; Kiousi et al., 2019; Quigley and Gajula,
2020; Sehrawat et al., 2020). For instance, a recent study
found that the SCFAs produced by Lactobacillus casei and
Bifidobacterium breve could potentially be an essential regulatory
effector of intestinal epithelial cell (IEC) proliferation (Matsuki
et al., 2013). Currently, nutritional programs have received
increasing attention; probiotic administration manipulates the
gut microbiota to prevent or attenuate metabolic-related diseases
(e.g., hypertension and hyperglycemia) (LeBlanc et al., 2017).
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FIGURE 2 | Effects of probiotics on the host–microbe interactions. Probiotics support the stability of the bacterial community and restore the “signature” of gut
microbiota through competitive exclusion, pH control, and production of antimicrobial substances. On the other hand, probiotics promote health benefits for the host
through improvement of barrier function, immunomodulation, affection of intestinal physiology, and alteration of energy metabolism.

As probiotics can prevent and/or treat various diseases, their
consumption is becoming more and more common all over
the world. The growing industry shows that probiotics have
a huge market prospect and the global market is expected
to reach $65 billion by 2024 (Abid and Koh, 2019). Of
note, both current research and application have found some
limitations of probiotics. The action level of probiotics depends
on different conditions, including the strains, individuals, types
of administration, or location within the intestines (Markowiak
and Śliżewska, 2017; Kothari et al., 2019; Langella and Chatel,
2019; Salvucci, 2019; Wan et al., 2019). Although compelling
evidence has been obtained in clinical trials, the exact molecular
mechanism of probiotics that confer beneficial effects on the
host remains unclear. Of late, new possibilities have been
observed in different studies exploring the interaction between
miRNA and microbiota and the responses of miRNA to
probiotic intervention.

WHAT IS miRNA?

MicroRNAs are endogenous, small, non-coding RNAs that are
19–25 nucleotides in length (Yu et al., 2016). They are first

synthesized in the nucleus, transported into the cytoplasm, and
processed into mature miRNAs (Yu et al., 2016; Bartel, 2018).
Mature miRNAs are loaded onto the miRNA-induced silencing
complex (miRISC) and bound to the 3’ untranslated region (3’
UTR) of mRNA to mediate post-transcriptional gene silencing
(Yu et al., 2016; Bartel, 2018).

Despite complexity was added in terms of gene regulation,
interest has surged in the function of miRNA molecules to
mediate gene silencing to repress protein synthesis. Since the
first miRNA, lin-4, was discovered in the 90s in Caenorhabditis
elegans, hundreds of different miRNAs were found to play
critical roles in healthy and pathological cell processes, including
cellular differentiation, proliferation, signal transduction, and
apoptosis (Fischer, 2015; Mohr and Mott, 2015; Yu et al., 2016;
Rupaimoole and Slack, 2017; Bartel, 2018). Insights into the
ability of miRNAs had made them into promising therapeutic
tools (miRNA mimics) or targets (miRNA inhibitors) in cancer
and other diseases (Link et al., 2010; Kalla et al., 2015;
Rupaimoole and Slack, 2017; Tili et al., 2017; Hossian et al., 2019;
Chen et al., 2020).

An early encouraging work demonstrated that miRNAs could
be isolated from circulating body fluids (Weber et al., 2010;
Lu and Rothenberg, 2018; Lee, 2019). They exist and transfer
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stably outside the cell and in feces through vesicles. Exosomes
(30–100 nm nanosized vesicles) derived from multiple cell
types are capable of encapsulating protein and RNA molecules
(Turchinovich et al., 2011; Celluzzi and Masotti, 2016; Yu
et al., 2016; Bartel, 2018; Moloney et al., 2019). miRNA
molecules have been observed to complete the intercellular
communication in this way while preventing endogenous
degradation (Turchinovich et al., 2011; Celluzzi and Masotti,
2016; Yu et al., 2016; Bartel, 2018; Moloney et al., 2019). miRNAs
dysregulation observed in tissues and serum associated with
disease activity was considered as a potential biomarker for
clinical diagnosis (Link et al., 2010; Kalla et al., 2015; Rupaimoole
and Slack, 2017; Tili et al., 2017; Hossian et al., 2019; Chen
et al., 2020), but several issues have impeded the application
of circulating miRNAs in clinical diagnosis (Wang et al., 2018;
Saliminejad et al., 2019). In the host’s gastrointestinal tract, fecal
miRNA can be influenced by the alteration of gut microbial
composition, which provides a new perspective to identify
intestinal and microbiota healthiness (Carter et al., 2017; Horne
et al., 2019; Tarallo et al., 2019; Sarshar et al., 2020).

THE IMPLICATIONS OF miRNA FOR THE
HOST

MicroRNAs play an important role in the host’s gastrointestinal
function. Numerous studies have revealed that miRNAs can
participate in many aspects of intestinal functions, including
proliferation and differentiation of cells, architecture, and
barrier function of the host intestines (Zou et al., 2018; Ding
et al., 2019). In 2010, McKenna et al. (2010) determined
the complete miRNA transcriptome of the mouse intestinal
epithelium cells. They found that miR-192 and let-7 presented
high expression levels and observed reduction in goblet
cells, increased apoptosis, and intestinal inflammation in
the mice deficient of all miRNAs in the intestine. Part
of the reason for the proliferation and differentiation of
IECs is the precise regulation of key transcription factors,
such as SOX9 (Peck et al., 2016). miR-30 could indirectly
regulate SOX9 protein and thus mediate IEC homeostasis
(Suez et al., 2019). Recent study showed that miR-381-
3p directly suppressed nuclear receptor-related protein 1
(nurr1) translation (Liu et al., 2018). By inhibiting miR-
381-3p, nurr1-mediated IEC proliferation and barrier
function were enhanced.

With the increasing recognition of the importance of miRNAs
in the host’s gastrointestinal tract function, the association
between miRNAs and a wide variety of intestinal diseases have
received more and more attention (Tables 1, 2). For example,
colorectal cancer (CRC) is one of the most common malignant
tumors. Multiple signaling pathways (WNT, EGFR, TGF-β, etc.)
in CRC are regulated by miRNAs (Balacescu et al., 2018).
They have been identified as oncomiRs and tumor suppressor
miRNAs (Yamamoto and Mori, 2016; Balacescu et al., 2018;
Shirafkan et al., 2018). Their deregulation contributes to the
development, progression, and metastasis of CRC (Yamamoto
and Mori, 2016; Balacescu et al., 2018; Shirafkan et al., 2018; To

et al., 2018). Natural endogenous and stability make numerous
of them therapeutic targets and potential biomarkers for CRC
(Yamamoto and Mori, 2016; Shirafkan et al., 2018; To et al.,
2018). The exploitation of favorable miRNAs delivery systems is
likely to expand the options for CRC treatment. Similarly, many
miRNAs could interfere in the pathogenesis of IBDs by regulating
multiple pathways (Cao et al., 2017; Schönauen et al., 2018;
Boros and Nagy, 2019; Feng et al., 2019). They were observed
to play important roles in inflammation, fibrosis, autophagy,
and cellular proliferation (Yamamoto and Mori, 2016; Balacescu
et al., 2018; Shirafkan et al., 2018; To et al., 2018; Feng et al.,
2019). According to Tian et al. (2019), miRNA 31 (miR31)
expression was altered in inflamed mucosa of IBD patients via
the NF-kB and STAT3 signaling pathways. This miRNA has the
function of relieving inflammation and promoting epithelial cell
regeneration. A microsphere delivery system has been developed
based on this characteristic of miR31, which provided a new
proposal for the treatment of IBD.

Notably, microbiota-derived extracellular vesicles (EVs) also
play a major role in intercellular communication and signal
transduction between gut microbiota and host cells. EVs included
outer membrane vesicles (OMVs) and membrane vesicles (MVs)
that are, respectively, liberated by Gram-negative and Gram-
positive bacteria. Various RNA species (e.g., mRNAs, miRNAs,
tRNAs) are biologically active components of EVs, which may
impact gene expression when being delivered to host cells
(Ahmadi Badi et al., 2017; Felli et al., 2017; Macia et al., 2019;
Sarshar et al., 2020). In a fascinating study, Fábrega et al.
confirmed the role of OMVs in signal transduction between
gut microbiota and host. OMVs produced by the probiotic
Escherichia coli strain Nissle (EcN) 1917 induced the expression
and secretion of several cytokines and chemokines in the ex vivo
model (Fábrega et al., 2016). Overall, intestinal bacteria utilized
OMVs as a significant strategy to communicate with the host and
influence host responses.

THE CORRELATION BETWEEN HOST
MIRNA EXPRESSION LEVELS AND GUT
MICROBIOTA PROFILES

In addition to participating in the regulation of intestinal
function, the close relationship between miRNAs and gut
microbiota has also been confirmed (Masotti, 2012; Belcheva,
2017; Hoban et al., 2017; Yuan et al., 2018). A potential
mechanism by which gut microbiota affect host physiology is
to modulate host gene expression through miRNAs. Dalmasso
et al. (2011) demonstrated that nine miRNAs were differently
expressed in the colonized mice relative to germ-free mice.
They confirmed that the potential targets of miRNAs overlapped
with the dysregulated host genes during microbial colonization.
Commensal bacteria might affect more host genes at the
post-transcriptional level than expected. Singh et al. (2012)
investigated the influence of endogenous microbiota on the
overall expression of cecal miRNA in vivo by using germ-free
and conventional mice. The result supported that cecal miRNA
expression levels were modified by endogenous microbiota. The
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TABLE 1 | Circulating miRNAs and their possible/identified targets in different gastrointestinal disorders.

Circulating
miRNAs

Diseases Up/down Potential/identified
target genes

Roles References

miR-25-3p CRC Up KLF2, KLF4 Promoting CRC vascular permeability and angiogenesis Zeng et al., 2018

miR-106b-3p CRC Up DLC-1 Promoting CRC metastasis Liu et al., 2020

miR-1229 CRC Up HIPK2 Promoting CRC angiogenesis Hu et al., 2019

miR-590-5p CRC Down NF90 Inhibiting CRC angiogenesis and metastasis Zhou Q. et al., 2016

miR-622 CRC Down CXCR4, K-Ras Inhibiting CRC angiogenesis and metastasis Fang et al., 2016, 2019

miR-382 CRC Down NR2F2 Inhibiting CRC cell growth and invasion Zhou B. et al., 2016

miR-409-3p CRC Down Beclin-1 Inhibiting autophagy Tan et al., 2016

miR-223 IBD Up CLDN8 Dysfunction of the intestinal epithelial barrier Wang et al., 2016

miR-21 IBD Up RhoB Dysfunction of the intestinal epithelial barrier Yang et al., 2013

miR-320 IBD Down NOD2 Disruption of immune homeostasis Pierdomenico et al., 2016

miR-31 IBD Up IL6st, IL7r, IL17ra Suppressing inflammation Tian et al., 2019

Up and down indicate upregulated and downregulated circulating miRNA expression levels in diseased tissues compared with normal tissues, respectively. Roles, roles
of miRNAs in the pathogenesis of gastrointestinal disorders; CRC, colorectal cancer; IBD, inflammatory bowel disease.

TABLE 2 | Fecal miRNAs and bacteria correlated with them in different gastrointestinal disorders.

Fecal miRNAs Diseases Up/down Correlated microbiome taxa References

miRNA-135b CRC Up – Wu et al., 2014

miR-21 CRC Up – Link et al., 2010

miR-106a CRC Up – Link et al., 2010

miR-182 CRC Up Blautia Yuan et al., 2018

miR-139 CRC Down Blautia Yuan et al., 2018

miR-155 IBD Up – Schönauen et al., 2018

miR-223 IBD Up – Schönauen et al., 2018

miR-199a IBD Up – Ji et al., 2018

miR-223-3p IBD Up – Ji et al., 2018

miR-1226 IBD Down – Ji et al., 2018

miR-515-5p IBD Down – Ji et al., 2018

Up and down indicate upregulated and downregulated fecal miRNA expression levels in diseased tissues compared with normal tissues, respectively. Correlated
microbiome taxa, bacteria significantly correlated with fecal miRNAs; CRC, colorectal cancer; IBD, inflammatory bowel disease.

authors also discovered the proteins encoded by 34 putative
miRNA targets involved in controlling intestinal barrier and
immune regulation. Also, Xue et al. (2011) reported a study
focusing on the roles of commensal bacteria in the regulation of
intestinal gene expression. They found that commensal bacteria
downregulated dendritic cell miR-10a expression via TLR–TLR
ligand interactions through a MyD88-dependent pathway. IL-
12/IL-23p40, a key molecule for innate immune responses to
commensal bacteria, was identified as a target gene for miR-
10a. Compared with the control mice, colitis mice have higher
levels of IL-12/IL-23p40 and lower levels of intestinal miR-
10a. Surprisingly, gut microbiota are also reported to influence
host miRNA expression in other tissues and organs (Zhou G.
et al., 2017; Allegra et al., 2020). Both the two studies have
identified the effects of gut microbiota on the miRNA expression
in the hippocampus and white adipocytes in mice, respectively
(Chen J.J. et al., 2017; Virtue et al., 2019). An additional
researcher claimed that after viral infection, the expression of
miRNAs in the lungs of antibiotic-treated mice was altered,
resulting in a reduction in host antiviral immunity (Pang et al.,
2018). Accordingly, the aforementioned findings indicated that

miRNA could impact the host through participating in signal
transmission, maintaining intestinal homeostasis.

INTERACTIONS BETWEEN HOST
miRNAS AND BACTERIAL PATHOGENS

miRNAs have also been recognized for their important role in
the interactions between host and bacterial pathogens, either as
an indispensable part of the host response to fight infection or
as a molecular strategy utilized by bacterial pathogens to cause
the dysregulation of host miRNA expression for their own benefit
(Aguilar et al., 2019a,b). For example, miR-301b is involved in
the augmentation of pro-inflammatory response during infection
by Pseudomonas aeruginosa (Li X. et al., 2016). A target of
miR-301b is c-Myb that can increase the expression of anti-
inflammatory cytokines IL-4 and TGF-β1. miR-301b suppresses
anti-inflammatory response by targeting c-Myb in response to
P. aeruginosa infection. Wang et al. (2017) observed that miR-
143-3p expression was significantly upregulated in Helicobacter
pylori-positive gastric cancer tissues. miR-143-3p targets AKT2,

Frontiers in Microbiology | www.frontiersin.org 6 January 2021 | Volume 11 | Article 604462

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-11-604462 January 6, 2021 Time: 16:54 # 7

Zhao et al. Probiotics and MicroRNA

which induced cell apoptosis and negatively regulated tumor
growth, migration, and invasion. Bacterial pathogens have
evolved the ability to regulate host miRNAs to resist autophagy,
thereby promoting the survival and reproduction of bacteria.
miR-23a-5p was shown to facilitate bacterial survival and inhibit
Mycobacterium tuberculosis-induced autophagy in macrophages
by impacting the TLR2/MyD88/NF-κB pathway (Gu et al.,
2017). miRNAs hav emerged as important participants in
the interactions between host and bacterial pathogens, which
suggests an underlying mechanism that miRNAs are transmitted
between host and bacteria.

FECAL miRNA AND PLANT-DERIVED
miRNA AS USEFUL TOOLS FOR
MAINTAINING GUT HOMEOSTASIS

Actually, a bidirectional relationship exists between gut
microbiome and miRNAs. An analysis of miRNA sequencing in
human CRC tumor and normal tissues identified 76 differentially
expressed miRNAs that are correlated with the abundance
of microbes in the tumor microenvironment, including
Firmicutes, Bacteroidetes, and Proteobacteria (Yuan et al.,
2018). Moloney et al. (2018) proved that the expression of
murine miRNAs produced by IECs in feces was influenced by
the gut microbiota (Gu et al., 2017). They discovered that the
relative abundance of the phyla Bacteroidetes and Firmicutes
was significantly correlated with the level of miR-141-3p and
phyla Actinobacteria, Bacteroidetes, Cyanobacteria, Firmicutes,
and Proteobacteria were significantly correlated with the
level of miR-200a-3p. As a valuable tool, host miRNAs play
significant roles in maintaining intestinal homeostasis (Link
et al., 2010; Moloney et al., 2018; Yuan et al., 2018). Recent
studies have illustrated the mechanism by which the host
could foster favorable microbiota via fecal miRNA (Liu et al.,
2016; Jiayi et al., 2019). An important work from Liu et al.
introduced that fecal miRNAs are mainly derived from IECs
and Hopx+ cells (Liu et al., 2016). miRNAs present in the
feces have the ability to enter bacterial cells and specifically
regulate gene transcripts, thereby affecting the growth of
bacteria. miRNA mimics synthesized for oral administration
could act on gut bacteria. Moreover, they found that IEC
miRNA-deficient mice suffered from dysbiosis and that the
fecal miRNA transplantation from wild-type mice restored the
intestinal bacterial community. Recently, Liu and Weiner (2016)
also reported that fecal miR-30d upregulated the expression of a
lactase in Akkermansia muciniphila and increased this bacterial
abundance in the gut, which suppressed multiple sclerosis
in mouse model through the expansion of regulatory T cells
(Liu and Weiner, 2016).

Dietary intervention is widely known as an important
means for the host to maintain intestinal homeostasis (Liu
et al., 2019). Another source of miRNAs that the host can
utilize is plant-derived miRNAs. These miRNAs from food
can also enter bacteria and regulate gene expression. Teng
et al. revealed that miRNAs encapsulated in plant-derived
exosome-like nanoparticles (ELNs) were taken up by gut

bacteria, subsequently bound to bacterial mRNAs, and modified
the composition of gut microbiota (Nagai et al., 2016). The
priority for specific gut bacteria to absorb plant-derived ELNs
depended on the lipid type of the outer membrane of ELNs.
More importantly, miRNAs within ginger ELNs could enter
Lactobacillus rhamnosus GG (LGG) and induce the IL-22
expression via the activation of the AHR pathway to enhance
LGG-mediated inhibition of mouse colitis (Spinler et al., 2019).
This result indicated that probiotics may be manipulated by
miRNA originating from the host or diet.

In summary, these data demonstrated that the fecal miRNA
and plant-derived miRNA contribute to the modification of
the gut microbiome.

EXPLORATION OF miRNA-BASED
MOLECULAR MECHANISM OF
PROBIOTICS ACTION

Host–microbiota interactions play a vital role in intestinal
homeostasis, and miRNAs have been considered to be key
molecular regulators for mediating such interactions (Behrouzi
et al., 2020). The addition of probiotics can also interfere with
these interactions and influence the expression of miRNAs
(Teng et al., 2018). For instance, miRNAs involved in the
alleviation of cecal inflammation are induced by probiotic
Lactobacillus plantarum Z01 (Rodríguez-Nogales et al., 2018a).
In IBD, probiotic EcN 1917 was reported to have the ability to
regulate the miRNA expression levels that participated in the
inflammatory response in colitic mice (Chen Q. et al., 2017).
Similarly, Bacillus coagulans R11 may alter the structure of
the bacterial community by influencing the host fecal miRNAs
(Rodríguez-Nogales et al., 2018b). The ability to regulate miRNA
expression by probiotics is of great significance for maintaining
the intestinal microenvironment homeostasis. Notably, there is
a highly complex relationship between miRNAs and intestinal
diseases. However, few reports are available about the roles
of miRNAs in shaping the gut microbiota as a therapy of
diseases. Moreover, the capacity of the host to regulate gut
microbiota in a miRNA-dependent manner remains poorly
understood and may even be restricted. Considering that a
health benefit was delivered to the host via the ingestion of
probiotics, the effects of miRNAs may be strengthened by these
beneficial microorganisms.

As mentioned above, miRNAs have emerged as important
mediators of interactions between host and gut microbiota.
Furthermore, probiotics have the ability to modulate miRNA
expression levels, and we speculated that the potential
mechanism of probiotics acting on the host may be associated
with the modification of miRNAs (Figures 1, 3). Probiotics drive
intestinal cells to produce miRNAs with important regulatory
functions (such as intestinal anti-inflammatory effects) to
act on host cells. On the other hand, probiotics impact the
releases of fecal miRNAs from IECs, thereby prompting fecal
miRNAs to penetrate into specific bacteria and regulate gene
expression, with consequences for restoring the “signature”
of gut microbiota.
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FIGURE 3 | Potential miRNA-based molecular mechanism of probiotics action. Probiotics can influence host miRNA expression, thereby favoring numerous host
functions. On the other hand, host cells foster specific bacteria to control intestinal homeostasis and exert beneficial effects on the host itself via fecal miRNA and
plant-derived miRNA. The dotted line represents the lack of conclusive evidence in the relationship at present.

Additionally, side effects of probiotics should not be ignored.
Although probiotics are widely used and have considerable
potential as preventive or therapeutic options against various
gastrointestinal disorders, there are still a few reports indicating
the potentially negative effects of probiotics. In fact, the reason
for these conflicting clinical results is that the health benefits
provided by probiotics to the host depend on many factors,
including the strains, individuals, types of administration, or
location within the intestines. At present, there is no sufficient
and convincing evidence to demonstrate the mechanism of
probiotics resulting in negative consequences in the host. The
exact mechanisms of both positive and negative effects of
probiotics should be further investigated and perfected. Here,
this review aimed to open up a new direction for studying
the molecular pathways involved in the probiotic mode of

action. More explorations and evidence for the research about
elucidating the probiotic mechanisms of action are desirable.

FUTURE PERSPECTIVES

In recent years, significant breakthroughs have been made
in miRNA-based research field, especially in regard to the
applications that provided opportunities for the treatment of
numerous gastrointestinal diseases including CRC, IBD, etc.
(Soroosh et al., 2018; Konno et al., 2019; Tian et al., 2019; Xing
et al., 2019). Notably, a single miRNA can target multiple mRNAs,
and one mRNA can become the target of numerous miRNAs.
A wide range of miRNAs from mammalian cells constitute a
complex regulatory network. In this context, it is particularly
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important to clarify the real targets with therapeutic effects.
They will be valuable tools for the treatment and intervention
of patients with various diseases. miRNA-based therapeutics
are able to deliver miRNA mimics or anti-miRs to target
tissues and target cells through advanced technologies. Several
pathways have shown promise to enable this strategy to become
a clinical reality. Simultaneously, the administration of fecal
miRNA mimics or anti-miRs in vivo makes manipulation
of the gut microbiota feasible. However, this concept is still
relatively novel in the field, and the investigation of manipulating
bacterial communities has just begun. Growing valuable
insights will promote the cross-kingdom communication
between host and gut microorganism to become a subject of
intense exploration.

To date, accumulating evidence supported that miRNAs play
central roles in mediating host–microbe interactions and can
be used as biomarkers of intestinal and microbiota healthiness.
Considering that probiotics are likely to be the regulators
or amplifiers of miRNA expression levels, we believe that
miRNA may be an important part of the molecular mechanism
underlying how probiotics maintain gut homeostasis. In this
point, the probiotics–miRNA–host/gut microbiota axis can
serve as a new direction for the next phase of research but

with the caveat that this molecular mechanism of probiotics
remains to be fully understood. Further work is needed to
delineate the precise mechanism of how probiotics control
miRNA expression levels and to obtain more knowledge about
subsequently how these prominently expressed miRNAs mediate
host–microbe interactions.
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