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Polyglutamine (PolyQ) diseases are neurodegenerative disorders caused by the CAG
repeat expansion mutation in affected genes resulting in toxic proteins containing
a long chain of glutamines. There are nine PolyQ diseases: Huntington’s disease
(HD), spinocerebellar ataxias (types 1, 2, 3, 6, 7, and 17), dentatorubral-pallidoluysian
atrophy (DRPLA), and spinal bulbar muscular atrophy (SBMA). In general, longer
CAG expansions and longer glutamine tracts lead to earlier disease presentations in
PolyQ patients. Rarely, cases of extremely long expansions are identified for PolyQ
diseases, and they consistently lead to juvenile or sometimes very severe infantile-
onset polyQ syndromes. In apparent contrast to the very long CAG tracts, shorter
CAGs and PolyQs in proteins seems to be the evolutionary factor enhancing human
cognition. Therefore, polyQ tracts in proteins can be modifiers of brain development
and disease drivers, which contribute neurodevelopmental phenotypes in juvenile-
and adult-onset PolyQ diseases. Therefore we performed a bioinformatics review
of published RNAseq polyQ expression data resulting from the presence of polyQ
genes in search of neurodevelopmental expression patterns and comparison between
diseases. The expression data were collected from cell types reflecting stages of
development such as iPSC, neuronal stem cell, neurons, but also the adult patients and
models for PolyQ disease. In addition, we extended our bioinformatic transcriptomic
analysis by proteomics data. We identified a group of 13 commonly downregulated
genes and proteins in HD mouse models. Our comparative bioinformatic review
highlighted several (neuro)developmental pathways and genes identified within PolyQ
diseases and mouse models responsible for neural growth, synaptogenesis, and
synaptic plasticity.
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EARLY BRAIN DEVELOPMENT IN
HEALTH AND POLYQ DISEASE

Normal brain development consists of cellular processes such
as cell division, cell migration, cell differentiation, maturation,
synaptogenesis, and apoptosis, which are precisely orchestrated
by a molecular network of signaling pathways. Such orchestration
is crucial for the correct generation of cellular layers, specialized
neural regions, and the generation of complex neuronal wiring
between brain structures. In brief, during the formation of the
neural tube (neurulation) in the embryo, the neuroepithelial cells
(NECs) perform symmetric cell divisions producing progenitors
of different brain regions (Paridaen and Huttner, 2014). Pax6 and
Emx2 signaling molecules expressed in opposing gradients from
the anterior to posterior regions of the proliferative zone function
as a primitive blueprint for the dividing NECs to give rise to
the early structures of the forebrain, midbrain, and hindbrain
(Stiles and Jernigan, 2010; Gibb and Kolb, 2018). Among others,
neurulation gives rise to neural progenitors, neural crest, sensory
placodes, and epidermis, all ectodermal derivatives (Haremaki
et al., 2019). The appearance of these four lineages results
from complex morphogenetic processes and several signaling
activities, such as TGF-β inhibition and BMP4, Wnt, and FGF
signaling pathways. The signaling molecules are represented
already in non-linage committed iPSC from Huntington’s disease
juvenile patients and mouse models, which show a range of
molecular phenotypes such as MAPK, Wnt, and p53 pathways
(Szlachcic et al., 2015, 2017).

Early human neurulation can be recapitulated in vitro by
self-organizing neuruloids, containing cell populations present
at the stage of neural tube closure in human development (days
21–25 post-fertilization; Haremaki et al., 2019). Interestingly
such neuruloids generated from Huntington’s disease hESC
demonstrated impaired neurogenesis resulting in aberrant rosette
formation. In detail, HD 56Q neuruloids showed altered levels
of Wnt/PCP pathway downregulation (for example, WNT5B,
and RSPO3 specific in neuroepithelium) and RHOB and
RAB5C in the neural crest. In addition, decreased expression
of cytoskeleton-associated genes and actin-myosin contraction
(EVL, MID1, RHOQ, and TMEM47) could be observed and hint
toward an impairment in the actin-mediated tissue organization
mechanism during neurulation (Haremaki et al., 2019). In
another recent study, one-third of gene changes in RNA-
seq analysis on HD patient-derived iPSCs were involved in
pathways regulating neuronal development and maturation.
When these dysregulated genes were mapped to stages of
mouse striatal development, the profiles aligned mainly with
earlier embryonic stages of neuronal differentiation (The HD
iPSC Consortium, 2017). Moreover, sensory-motor network
connectivity changes can be observed in the brains of HD
patients, hinting at an effect of this PolyQ disease on brain
connectivity (Pini et al., 2020).

During brain development, in a process called interkinetic
nuclear migration coupled to the cell cycle, neural progenitors
keep the balance between the cell renewal of progenitors and
their differentiation. Their role is to control when and how
many apical progenitor nuclei are exposed to proliferative versus

neurogenic signals. Apical progenitors maintain their polarity
through endocytosis and trafficking of glycans from the Golgi
apparatus to the plasma membrane at the apical endfeet (Arai
and Taverna, 2017). Interestingly, mislocalized expression of
mHTT hinders both endosomal trafficking in apical progenitors,
as well as the normal progression of cell cycle stages. Leading
to a shift toward more neural differentiation and away from
proliferation (Barnat et al., 2020). Afterward, neuroepithelial cells
start expressing glial genes and thereby begin a differentiation
process into radial glial cells (RGCs). At this stage, cell migration
starts to play a decisive role. Neuronal cells originating from the
ventricular and subventricular zones start migrating outward in
a radial fashion, using the RGCs as guideposts. Some subsets
of RDGs eventually differentiate into intermediate, immature,
and finally into mature neurons or astrocytes (Franco and
Müller, 2013; Gibb and Kolb, 2018). Other cell populations
migrate to the cortex during later developmental stages and
include the microglia, which mostly use vessels for guidance
into the forebrain. Recent reports point toward glia, particularly
microglia, as essential players for cortical morphogenesis via
regulation of brain wiring and interneuronal migration in the
cortical wall (Silva et al., 2019).

Over time, successive layers of the cortical mantle form, and
the progenitor cells are becoming more restricted in the cell types
that they can construct. Furthermore, in this cellular maturation
process, neural cells start to extend dendrites and an axon to form
connections with other cells and become an integral part of a
communication network (Gibb and Kolb, 2018).

In the prenatal stage of life, the further development of
the brain also starts to depend on degenerative processes
such as programmed cell death or apoptosis. These processes
are initiated to remove the brain cells which have failed to
make connections or have underutilized connections (Chan
et al., 2002). Also, the underused synapses are eliminated in
a process called synaptic pruning. In these stages of brain
development, a transcriptional repressor complex of Ataxin1
and Capicua (ATXN1-CIC) regulates cell lineage specification
and is involved in the regulation of cell proliferation (Ahmad
et al., 2019). Loss of the ATXN1-CIC complex may have
severe neurodevelopmental consequences. Conditional knockout
of either Atxn1-Atxn1l or Cic in mice leads to a decrease
of cortical thickness, hyperactivity and memory deficits (Lu
et al., 2017). Indeed, loss or reduction of functional ATXN1 has
been observed in patients with autism spectrum disorder and
attention-deficit/hyperactivity disorder (Celestino-Soper et al.,
2012; Di Benedetto et al., 2013), suggesting that loss of ATXN1-
CIC complexes causes a spectrum of neurobehavioral phenotypes
(Lu et al., 2017). Expanded CAG tracts in ATXN1 have been
shown to stimulate the proliferation of postnatal cerebellar stem
cells in SCA1 mice, which tend to differentiate into GABAergic
inhibitory interneurons rather than astrocytes (Edamakanti et al.,
2018). These hyperproliferating cells lead to a significantly
increased number of GABAergic inhibitory interneuron synaptic
connections, which in turn disrupt the proper cerebellar Purkinje
cell function (Edamakanti et al., 2018). On the other hand, SCA2
patient fibroblast cells exhibit higher levels of caspase-8- and
caspase-9-mediated apoptotic activation than those of healthy
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controls, which contributes to the pathophysiology of SCA2
(Wardman et al., 2020). Also, the normal function of atrophin-1
and atrophin-2 proteins are related to the development and may
be associated with regulation of cell polarity and transcriptional
control of progenitors, which was reviewed previously (Shen
and Peterson, 2009; Mannervik, 2014). Knockdown of Atn1 in
neuronal progenitor cells (NPCs) in a rat led to severe aberrations
in brain development. The study also highlighted ATN1 role
as a direct target of the lysine-specific histone demethylase 1A
(LSD1). LSD1 is known to have crucial developmental roles
such as cortical neuronal migration or adult NPC proliferation
(Zhang et al., 2014). Similarly, TATA Binding protein as part of
the TFIID complexes may control promoter elements that can
regulate developmental transcription (Ohler and Wassarman,
2010). As a general transcription factor, TBP is, directly and
indirectly involved in numerous biological pathways. Studies
confirmed many cellular processes impaired by mutant TBP via
either gain of function or loss of function mechanisms, such as
Notch signaling, TrkA signaling, Chaperone system, ER stress
response, and muscle function (Yang et al., 2016).

Combined with the previously mentioned roles of HTT,
ATXN1, ATXN2, ATXN3, ATN1, and TBP in transcription,
translation, RNA metabolism, and ubiquitin-dependent protein
quality control processes, a case can be made for the adverse effect
of CAG tract extension on normal gene expression and protein
regulation during neural development. Therefore, it can be
proposed that other late-onset degenerative diseases may also be
rooted in subtle developmental derailments. Deregulation
of genes involved in cell migration, cell differentiation,
maturation, synaptogenesis, and apoptosis can lead to severe
neurodevelopmental disorders and may also contribute to the
disease pathology of PolyQ diseases.

POLYQ DISEASES AND JUVENILE
CASES

Polyglutamine (PolyQ) diseases are neurodegenerative disorders
caused by expansion mutations giving rise to abnormally
long CAG tri-nucleotide repeat tracts in affected, otherwise
unrelated genes. PolyQ disorders are dominantly inherited and
autosomal, except for SBMA, which is X-linked. The expanded
polyQ repeats disturb the function of the proteins encoded
by the genes with CAG expansion, leading to loss or gain of
function (Lim et al., 2008). To date, nine PolyQ diseases were
identified; namely Huntington’s disease (HD), spinocerebellar
ataxia (SCA) types 1, 2, 3, 6, 7, and 17, dentatorubral-
pallidoluysian atrophy (DRPLA), and spinal bulbar muscular
atrophy (SBMA) (Zoghbi and Orr, 2009).

Several PolyQ diseases may occur in younger patients, and
in such cases, symptom presentation in juvenile disease usually
differs from the adult form. Although the juvenile and infantile
forms make up a minority of instances, the early onset and
polyQ protein domains, usually much longer than in the adult
forms, hint at the developmental nature of these cases. Since
the etiology of the diseases is genetic and more defined, they
may help to better understand the brain development in health

and disease. The first aim of this work is to obtain a broader
literature overview of the juvenile and infantile PolyQ disease
cases, with very long CAG repeats, in the context of early brain
development. Since brain development is primarily related to the
forming of new cell populations, differentiation, and wiring of
the brain, we also looked at what is known about these processes
in the context of juvenile polyQ cases. In the second part of
the work, we performed a bioinformatics analysis of RNAseq
and proteomics data from polyQ patients and models in search
of neurodevelopmental expression patterns and comparison
between diseases. The expression data were collected from cell
types reflecting stages of development such as iPSC, neuronal
stem cell (NSCs), neural precursor cells (NPCs), and neurons,
but also the adult patients and models for PolyQ disease. In
addition, thanks to a broader selection of transcriptomic data in
mice containing longer CAG tracts, we were able to compare gene
expression profiles between different PolyQ diseases. Still, the bias
toward HD in this work results from the available data sources.
However, another aim of our work is the focus on juvenile cases
of polyQ disorders other than HD, possible neurodevelopmental
signs in the diseases, and what we could still learn from the
juvenile forms about diseased brain development.

Juvenile and Infantile Huntington’s
Disease
In HD, the CAG expansion mutation is located in the Huntingtin
(HTT) gene (The Huntington’s Disease Collaborative Research
Group, 1993), which is crucial for neural development [reviewed
in Saudou and Humbert (2016) and Wiatr et al. (2018)].
The adult HD is a neurodegenerative choreic movement
disorder characterized by motor disturbance, cognitive loss, and
psychiatric manifestations that typically starts in the third to fifth
decade of life and gradually worsens over the course of 10 to
20 years until death. Adult HD is characteristic for individuals
who usually harbor over 39 trinucleotide repeats in HTT, but
rarely more than 60 (Martin and Gusella, 1986; Latimer et al.,
2017). The juvenile form of HD (Juvenile onset Huntington’s
disease; JOHD) is defined as disease onset before the age of 20
with the number of CAG repeats between 60 (Quarrell et al.,
2013) and 89 (Nance and Myers, 2001; Ribaï et al., 2007), and
infantile HD with very rapid onset with number of CAG repeats
above 90 and more (Fusilli et al., 2018; Stout, 2018). JOHD is
also marked by a more rapid disease progression, leading to
an earlier death (Fusilli et al., 2018). In JOHD, the symptoms
are typically seizures, rigidity, and severe cognitive dysfunction
(Nance and Myers, 2001; Vargas et al., 2003; Squitieri et al.,
2006; Ribaï et al., 2007). In cases where the onset is very early
(before 10 years of age, sometimes also referred to as “infantile-
” or “ultra-juvenile HD”), epilepsy is also frequent (Barbeau,
1970). One of the youngest onset of JOHD and also one of the
most severe presentations which have been described to date
was a girl who had healthy development until 18 months of
age and later at the age of 3,5 years, showed marked cerebellar
atrophy. The patient was diagnosed to have 265 triplet repeats
on the mutant HTT allele and 14 on the other (Milunsky et al.,
2003). Other reports have described frequent speech difficulties as
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early symptoms before motor problems arise (Yoon et al., 2006;
Sakazume et al., 2009). Behavioral problems, such as aggression,
irritability, and hyperactivity, which are often reported signs of
disturbed brain development, were also reported for juvenile
HD (Yoon et al., 2006). In both juvenile- and adult-onset HD,
the most affected cell types in the brain are striatal neurons
(Tereshchenko et al., 2019). MRI data from JOHD cases show
mostly cerebellar atrophy. The most substantial reduction in
brain volume is observed in the caudate, putamen, as well as
in globus pallidus and thalamus. Amygdala, hippocampus, and
brainstem are slightly enlarged in HD patients (Hedjoudje et al.,
2018). The significant difference between HD adults and children
is seen in the cerebral cortex, which is mainly unaffected in
children. Histopathological findings (Latimer et al., 2017) showed
mild to moderate neuron loss in the brain tissue of adult-onset
patients, while no significant loss of neocortical neurons was
observed in JOHD. However, in JOHD patients, a significant
neostriatal neuron loss and associated astrogliosis in the striatum
were observed. In both disease onsets, HTT positive intranuclear
and cytoplasmic neuronal inclusions can be found in the cerebral
and striatum cortex.

Early Onset in PolyQ Spinocerebellar
Ataxias
Most severe cases of juvenile or infantile-onset were reported for
SCA2 (ATXN2 gene; ataxin-2 protein), SCA7 (ATXN7; Ataxin-
7 protein), SCA17 (TBP gene; TATA Binding protein), and
DRPLA (ATN1 gene; atrophin-1 protein). Juvenile-onsets were
also reported for SCA3/MJD with more severe presentation
compared to adult forms. One of the reasons for the occurrence
of very severe developmental signs may be the function of
ATXN2, ATXN7, TBP, and ATN1, which can be summarized
as a very pleiotropic and broad influence on transcriptional
regulation. The function of the genes, including their impact
on transcription, has been well-reviewed previously (Shen
and Peterson, 2009; Yang et al., 2016; Lee J. et al., 2018;
Niewiadomska-Cimicka and Trottier, 2019). In SCA1 (ATXN1
gene; Ataxin-1 protein), SCA3/MJD (ATXN3 gene; ataxin-3), and
SCA6 (CACNA1A gene; α1A subunit of the voltage-gated P/Q
type channel), the cases with the earliest reported onset were
mostly showing signs shortly before adolescence.

In SCA2, the CAG repeat in affected adults varies in length
from 34 to 59 CAG repeats. The expansion mutation in ATXN2
in infantile cases can be very severe, reaching the range of 124
and 750 CAGs, and the range between 62 and 92 defines onset
in early childhood. Typically, SCA2 presents with progressive
involuntary movements of the limbs, sensorimotor neuropathy,
and slowed eye movements. The abnormal eye movements and
myoclonic jerks are generally the first symptoms seen in infantile
and early childhood cases, with the onset of disease as early
as 2 months of age (Moretti et al., 2004; Vinther-Jensen et al.,
2013; Singh et al., 2014; Sánchez-Corona et al., 2020). Besides
these, pigmentary retinopathy, seizures, dysphagia, and early
death are unfortunately also standard features of juvenile SCA2
(Babovic-Vuksanovic et al., 1998; Mao et al., 2002). The MRI of
children with very early-onset SCA2 (age from 7 to 17 months)

revealed enlarged lateral ventricles, markedly small cerebellum
and vermis, and associated atrophy involving the brainstem
and both cerebral hemispheres. Moreover, increasing cerebral
white matter loss, dysmyelination, pontocerebellar atrophy, and
thinning of the corpus callosum was observed during SCA2
disease progression (Moretti et al., 2004; Ramocki et al., 2008;
Paciorkowski et al., 2011; Vinther-Jensen et al., 2013; Singh et al.,
2014). Histopathology findings in the cerebellar cortex showed
a profound loss of Purkinje and granular neurons with severe
attenuation of the molecular layer (Paciorkowski et al., 2011).

Abnormally long polyQ tract in the ataxin 7 (ATXN7) gene
primarily manifests as cerebellar ataxia in SCA7. Healthy alleles
of this gene contain up to 35 CAG repeats, whereas SCA7
affected individuals have more than 39 repeats (David et al.,
1997; Stevanin et al., 1998). The childhood-onset of SCA7 is
the consequence of more than 100 CAG repeats in the ATXN7
gene (La Spada, 2020). It is a severe developmental syndrome
with patient death reported as early as 6 weeks of age (Neetens
et al., 1990). The unique symptom is retinal degeneration,
which often is the first presenting symptom (Niewiadomska-
Cimicka and Trottier, 2019). Besides the classic symptoms
of progressive cerebellar ataxia and retinal degeneration, the
juvenile cases of SCA7 presented with absent or depressed
deep tendon reflexes, which is not the case in the adult-onset
type of the disease (Enevoldson et al., 1994). Other studies
reported symptoms such as seizures, dysphagia, myoclonus,
head lag, the absence of cough reflex, and severe hypotonia,
but also symptoms more uncommon for PolyQ diseases such
as cardiac involvement, hepatomegaly, multiple hemangiomas,
atrial septum defect, patent ductus arteriosus, and congestive
heart failure accompany ataxia (Benton et al., 1998; Johansson
et al., 1998; van de Warrenburg et al., 2001; Ansorge et al.,
2004). Concerning histopathology, adult SCA7 is characterized
by neural loss, mainly in the cerebellum and regions of the
brainstem, particularly the inferior olivary complex (Holmberg,
1998). Juvenile cases present marked atrophy of both the
cerebrum and cerebellum, ventricular dilation, as well as delayed
myelination (Benton et al., 1998). Other reports show diffuse
brain volume reduction and increased atrophy of the brainstem
and cerebellum during SCA7 disease progression (Donis et al.,
2015). The most affected cell types in SCA7 are retinal, cerebellar,
and medullar neurons (Naphade et al., 2019).

In DRPLA, the affected gene is ATN1 (Koide et al., 1994),
a transcriptional regulator involved in the brain and other
organ development (Palmer et al., 2019). In the case of the
ATN1 gene, CAG repeat sizes can vary between 6 and 35
in healthy individuals, while the expansion of more than 48
repeats results in full penetrance and gives rise to the disease
(Nagafuchi et al., 1994). Patients with juvenile-onset DRPLA
often have progressive myoclonic epilepsy as one of the first
symptoms (Tomoda et al., 1991), and the onset in the first
years of life with CAG repeats between 70 and 80 (Veneziano
and Frontali, 1993; Hasegawa et al., 2010). Disease onset could
occur as early as 6 months of age (with an extreme number of
CAG repeats of 90 and 93), when hyperkinetic and involuntary
movements, the difficulty of controlling head movements, and
seizures developed (Shimojo et al., 2001). In general, DRPLA is
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characterized by severe neuronal loss in the dentatorubral and
pallidal-subthalamic nucleus (corpus Luysii). Juvenile-onset can
be characterized by more marked pallidoluysian degeneration
than dentatorubral degeneration, which is opposite to late-
adult onset degeneration pattern (Yamada, 2010). MRI data of
children with DRPLA showed severe atrophy of the cerebrum
and cerebellum, delayed myelination, and thin corpus callosum
(Shimojo et al., 2001). However, atrophy of the brainstem and
spinal cord was noticed as mild (Takeda and Takahashi, 1996).
Histochemistry revealed mild neuronal loss with gliosis in the
cerebral cortex (Hayashi et al., 1998; Tsuchiya et al., 1998). The
most affected cell types in DRPLA are striatal medium spiny
neurons and pallidal neurons (Naphade et al., 2019).

SCA17 is caused by an abnormal number (more than 45-
47) of CAG or CAA repeats in the TATA box-binding protein
(TBP) (Gao et al., 2008; Toyoshima and Takahashi, 2018). In
SCA17, a small gain in CAG number in the TBP gene results
in a very severe level of genetic anticipation (Maltecca et al.,
2003; Rasmussen et al., 2007). For instance, CAG repeats in the
range of 55–58 may cause the disease onset at age 20, 61 CAG
was associated with onset at age 11, while 66 CAGs resulted
in onset at the age of 3 years (Koide et al., 1999; Maltecca
et al., 2003; Rasmussen et al., 2007). Common features of the
disease are ataxic gait, dysarthria, loss of muscle control, seizures,
spasticity, tremor, and intellectual disability. Given the strong
anticipation resulting from only low intergenerational expansion,
SCA17 and TBP may strongly influence the brain development
and transcriptional control of developmental genes. MRI data of
14 years old female with SCA17 showed prominent cerebellar
atrophy accompanied by a dilatation of the fourth ventricle and
mild cerebral atrophy as well as dilatation of the lateral ventricles
(Koide et al., 1999). It is familiar with neuroimaging studies
of a family with age at onset range from very early to adult-
onset that showed cerebral and cerebellar atrophy in all patients
(Maltecca et al., 2003). The most affected cell types in SCA17
are Purkinje, medium spiny cortical, and dopaminergic neurons
(Naphade et al., 2019).

In SCA3, disease occurs above 51 or more CAG repeats in
ATXN3, while healthy individuals have 12–43 repeats. SCA3 early
childhood-onset, described in 2016, involved the range of CAG
repeat between 80 and 91 (Donis et al., 2016). The progression
of the disease was faster compared to adolescent cases and the
signs observed were ataxia, pyramidal findings, and dystonia. In
previous SCA3/MJD cohorts, the maximal number of CAGs was
86 (Todd and Paulson, 2010; Tezenas du Montcel et al., 2014).
Pathological examination of juvenile SCA3 patients has shown
degeneration and mild gliosis of the substantia nigra, dentate,
pontine and cranial nerve nuclei, anterior horns, and Clarke’s
columns, with the consequent loss of fibers of the superior and
middle cerebellar peduncles and spinocerebellar tracts (Coutinho
et al., 1982). The most affected cells in adult SCA3 are motor
neurons (Naphade et al., 2019). However, in juvenile cases of
SCA3 severe nerve cell loss was observed in the dorsal root and
trigeminal ganglia (Coutinho et al., 1982).

SCA6 is caused by a polyQ mutation in the calcium channel
gene CACNA1A (Zhuchenko et al., 1997). SCA6 develops due to
a relatively low number of CAG repeats, with 5 to 20 repeats

being considered healthy and 21 repeats and above giving rise
to the disease (Ishikawa et al., 1997). A study by Wang et al.
(2010) showed that neurodegeneration in SCA6 also occurs in
the spinal cord. Results of an autopsy of siblings with early-
onset SCA6 revealed severe neurodegeneration in the cerebellum,
dentate nucleus, and olivary nuclei (Wang et al., 2010). The most
affected cell type in both adult and juvenile SCA6 are Purkinje
cells (Wang et al., 2010; Naphade et al., 2019).

The length of CAG repeats in infantile or childhood PolyQ
diseases highly influences the onset and severity of the disease.
Moreover, genetic anticipation, earlier (and more severe) disease
onset in successive generations, is playing a crucial role in the
majority of these disorders (Jones et al., 2017).

Spinal bulbar muscular atrophy, also referred to as Kennedy
disease, is a form of spinal muscular atrophy that is recessive
and X-linked, and therefore only occurs in males. The cause of
SBMA is a CAG repeat expansion in exon one of the androgen
receptor gene, and the CAG triplet number is mostly in the range
of 38 to 62. Unlike in other PolyQ diseases discussed here, the
number of CAG repeats only poorly predicts the age of onset
(muscle weakness) (Sperfeld et al., 2002; Echaniz-Laguna et al.,
2005). Grunseich (Grunseich et al., 2014) presents juvenile onset
with 68 CAG repeats. Juvenile onset commonly manifests itself
with limb atrophy and gynecomastia between 8 to 15 years of
age (Echaniz-Laguna et al., 2005). Neurodegeneration in adult
SBMA is mainly characterized by loss of motor neurons in the
spinal cord and brainstem, white matter atrophy, and partial
androgen insensitivity (Arnold and Merry, 2019). Quantitative
brain imaging studies of SBMA patients demonstrated white
matter alterations in the corticospinal tracts (CST), limbic system
(Kassubek et al., 2007; Unrath et al., 2010), and cerebellum
(Pieper et al., 2013). Likewise degeneration of the dorsal root
ganglia, loss of lower motor neurons in the anterior horn of the
spinal cord as well as in the brainstem motor nuclei except for the
third, fourth and sixth cranial nerves. On a cellular level, there
is a presence of nuclear inclusions, especially in residual motor
neurons in the brainstem, spinal cord, and non-neuronal tissues
such as the prostate, testes, and skin (Naphade et al., 2019).

REVIEW OF JUVENILE- AND
ADULT-ONSET HD AND OTHER POLYQ
DISEASES TRANSCRIPTOMIC DATA:
DYSREGULATED GENES OVERLAP AND
GO TERMS OVER-REPRESENTATION
ANALYSIS

To obtain a broader view of the role of the very long CAG repeats
and very long polyQ tracts in proteins in early brain development,
we collected published transcriptomic data from human juvenile-
and adult-onset HD (An et al., 2012; Feyeux et al., 2012; HD iPSC
Consortium, 2012; Chiu et al., 2015; Ring et al., 2015; Nekrasov
et al., 2016; The HD iPSC Consortium, 2017; Mehta et al.,
2018; Świtońska et al., 2019; Al-Dalahmah et al., 2020; Smith-
Geater et al., 2020) and also published RNAseq or microarray
data from different PolyQ mouse models (Suzuki et al., 2012;
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Świtońska-Kurkowska et al. Neurodevelopmental Character of PolyQ Diseases

Aikawa et al., 2015; Agostoni et al., 2016; Pflieger et al., 2017;
Driessen et al., 2018; Hervás-Corpión et al., 2018; Malik et al.,
2019; Liu et al., 2020; Stoyas et al., 2020). The published mouse
data from SCA1, SCA2, SCA6, SCA7, SCA17, and DRPLA
were originally collected from different brain regions, however,
data from SBMA mice were collected from primary motor
neurons in the spinal cord. An overview of data from all
papers included in the analysis can be found in Supplementary
Table 1. Transcriptomic data were retrieved from the Gene
Expression Omnibus (GEO) repository, if possible, or from the
Supplementary Material provided with the original publication.
A cut-off of p-value < 0.05 was considered as significant. In
papers with much higher number of identified genes, we set
a cut-off of p-value < 0.001 (HD iPSC Consortium, 2012;
The HD iPSC Consortium, 2017). The analysis of overlapping
dysregulated genes (DEGs) between diseases was created and
visualized with R software 3.6.3 (R Core Team, 2018) and its three
packages: UpSetR (Conway et al., 2017), ComplexHeatmap (Gu
et al., 2016), and VennDiagram (Chen and Boutros, 2011). GO
terms over-representation analysis was conducted in Cytoscape
(Shannon et al., 2003) and its ClueGO app (Bindea et al.,
2009, 2013). In order to conduct a thorough comparative study,
and look separately into up- and downregulation in various
cell populations, we had to combine datas identified by several
different methods, such as RNAseq and microarrays. In the
summary table, we added a short note about the type of method
used in each publication for obtaining the transcriptomic data
(Supplementary Table 1).

Previously Published Transcriptomic
Data Show Molecular Downregulation in
Juvenile-Onset Human HD and
Highlights Organism Morphogenesis,
Neurodevelopment and Synaptic
Transmission
We first focused on the publications with human data where the
main aim was to compare genes dysregulated in two types of HD
onset in a more detailed way. We assessed the overlap of DEGs
between different cell types and between different types of HD
disease onset (Figures 1, 2). We focused on data from embryonic
stem cells (ESC), induced pluripotent stem cells (iPSC), neural
stem cells (NSC), and neurons. With such a collection, we were
able to check whether there are genes downregulated in HD
from the very beginning and at the same time through the whole
“neurodifferentiation axis”. The analyses revealed two genes
shared between iPSC, NSC, and neurons in data from JOHD,
TBX15, and HOXB6 (Figures 1A,B and Supplementary Table 1).
These two genes encode transcription factors that regulate a
variety of developmental processes. We identified 12 and 22
genes shared between iPSC and NSC with neurons, respectively,
in JOHD (Figures 1A,B and Supplementary Table 1). The
firstly mentioned 12 genes are again connected in the majority
with the regulation of transcription. The NSC/neurons shared
genes are involved in developmental biology and particularly

on embryonic skeletal system morphogenesis. Regarding adult-
onset HD, we did not identify genes commonly downregulated
in every cell type and only identified a group of 11 genes shared
between ESC and NSC (Figure 1C and Supplementary Table 1).
Altogether, the created Venn diagrams highlight the fact that in
JOHD, molecular processes and genes downregulated on very
early stages of organism development may have a direct impact
on the later brain and neuronal formation, hence resulting in a
much earlier disease onset. The UpSetR diagram did not show
much of an overlap of downregulated genes between juvenile and
adult HD (Figure 1A). Nonetheless, 27 significantly dysregulated
genes were identified in neurons obtained from both the adult
and juvenile disease types (Figures 1D–E). Those are involved,
among others, in the cerebral cortex GABAergic interneuron
differentiation, which aberration leads to an imbalance between
excitatory and inhibitory signaling, affecting motor and cognitive
processes during HD pathogenesis (Hsu et al., 2018). We also
analyzed which biological processes include genes downregulated
only in juvenile or only in adult HD. This resulted in a big
cluster of various early neurodevelopmental processes, organism
morphogenesis, and signal transduction for JOHD (Figure 3),
which was not the case for adult HD. Besides some neuronal
GO terms connected with genes downregulated in adult HD, no
obvious cluster of connected processes was identified. Particularly
interesting were the four papers with transcriptomic data on
human juvenile-onset HD neurons and four articles concerning
human adult-onset HD neurons, which we compared (HD iPSC
Consortium, 2012; Chiu et al., 2015; Nekrasov et al., 2016; Mehta
et al., 2018; Świtońska et al., 2019; Al-Dalahmah et al., 2020;
Smith-Geater et al., 2020). A total of 27 downregulated and 48
upregulated genes in neurons were found to be shared between
juvenile-onset and adult-onset HD (Figures 1D, 2D). A total of
758 downregulated and 632 upregulated genes in neurons were
found to be unique for juvenile-onset HD, and an additional
108 downregulated, and 451 upregulated genes in neurons were
unique to adult-onset HD (Figures 1D, 2D). A complete list of
common and uniquely dysregulated genes can be found in the
Supplementary Data of this work (Supplementary Table 1).

After the assessment of gene overlaps, we performed
pathway analysis with ClueGO app (Cytoscape). We found
that the DEGs uniquely downregulated in juvenile-onset
HD neurons are significantly involved in developmental
processes, such as Dopaminergic Neurogenesis (PW:0000394),
Differentiation Pathway (WP2848), spinal cord development
(GO:0021510), Neuronal System (R-HSA-112316.7), Neural
Crest Differentiation (WP2064), presynaptic active zone
assembly (GO:1904071), anterior/posterior axon guidance
(GO:0033564, metencephalon development (GO:0022037),
Potassium Channels (WP2669), and DNA-binding transcription
activator activity, RNA polymerase II-specific (GO:0001228)
Besides developmental processes, a substantial subset of the
uniquely downregulated genes in JOHD-derived neurons
is involved in synaptic processes, regulation of synaptic
transmission, glutamatergic (GO:0051967 and GO:0051968),
Cholinergic synapse (GO:0098981), neurotransmitter secretion
(GO:0007269), axon terminus (GO:0043679), positive regulation
of dopamine secretion (GO:0033603), regulation of neuronal
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FIGURE 1 | Analysis of Juvenile- and adult Huntington disease transcriptomic data demonstrates mostly specific sets of downregulated genes for each type of
onset. (A) UpsetR graph showing the intersection between genes identified in the different HD cell types. Venn diagrams were used to visualize the overlap between
genes from juvenile HD iPSC, NSC, and neurons (B), for genes from adult HD iPSC, NSC, and neurons (C), and for genes from juvenile and adult neurons (D).
Interestingly, although both the juvenile and adult neurons contain a mutation in HTT, their transcriptomic dysregulated genes vastly differ, showing just 27 genes in
common. These commonly downregulated genes are visualized with a CluGO plot (E).

synaptic plasticity (GO:0048168), and regulation of dendrite
morphogenesis (GO:0048814). In Supplementary Table 2, we
present a list of the most significantly involved pathways in
uniquely downregulated DEGs in JOHD or adult-onset HD,
grouped by biological processes, and highlight the input genes

found in those pathways. The GO terms unique to neurons of
adult-onset HD patients suggest a more developed, more mature
cellular expression pattern compared to the juvenile-onset HD.

Inspired by transcriptomic data generated by Haremaki and
colleagues (Haremaki et al., 2019) we decided to extend our
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FIGURE 2 | Analysis of Juvenile- and adult Huntington disease transcriptomic data demonstrates mostly specific sets of upregulated genes for each type of onset.
(A) UpsetR graph showing the overlap between genes identified in the different HD cell types. Venn diagrams were used to visualize the overlap between genes from
juvenile HD iPSC, NSC, and neurons (B), for genes from adult HD iPSC, NSC, and neurons (C), and for genes from juvenile and adult neurons (D). Similar to
Supplementary Figure 1D, the juvenile HD and adult HD neurons vastly differ in dysregulated genes, showing only 48 genes in common. These commonly
downregulated genes are visualized with a CluGO plot (E).

bioinformatic study with one additional comparative analysis.
As previously mentioned, Haremaki and colleagues succeeded
in recapitulating human neurulation by generating neuruloids

harboring neural progenitors, neural crest, sensory placode,
and epidermis. These self-organizing structures provide a great
opportunity to study the developmental aspects of many human
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Świtońska-Kurkowska et al. Neurodevelopmental Character of PolyQ Diseases

FIGURE 3 | Uniquely downregulated DEGs in JOHD are involved in developmental processes, organism morphogenesis, and signal transduction. A pie-chart with a
ClueGO analysis of genes downregulated only in neurons from juvenile-onset HD patients was used to visualize the biological processes they are involved in. Top
dysregulated processes for each bigger cluster were listed.

diseases, especially HD. Having the insight into single-cell
transcriptomics from healthy and HD neuruloids, we decided to
compare these data with the ones collected for our comparative
study. We compared down- and upregulated genes from our
cohort to each group of markers specific to a particular
cell population identified in scRNA-seq of healthy neuruloids,
neuroepithelial identity NE1 and NE2, neurons, skin, neural crest
(NC), placode and U1 neurons, and also to a list of differentially
expressed genes in NE and NC populations in HD neuruloids
(Supplementary Table 4). We identified a significant number of
genes shared between markers for neuruloid neurons population
and downregulated genes in stem cell-derived neurons in
juvenile-onset HD (Supplementary Table 4). This is coherent
with GO term over-representation analysis and again highlights
the significant downregulation of crucial genes and thus many
biological processes during the very early neurogenesis.

HD and SCA1 Seems to Have More
Common Transcriptionally Dysregulated
Genes Than Other PolyQ Diseases in
Mice
In rare PolyQ diseases availability of patient samples and
RNAseq data is limited. Therefore, more data can be acquired
from mouse models of PolyQ diseases. An extensive review
of polyQ mouse models can be found in the works of Figiel
et al. (2012) and Switonski et al. (2012). The high CAG repeat
numbers are needed in polyQ mouse models to express a disease
phenotype; therefore, they may be considered as polyQ models

of juvenile-onset type. Therefore, the second data collection for
this bioinformatic review was from nine publications concerning
mouse brain transcriptomics in several PolyQ diseases, such as
HD, SCA1, SCA2, SCA6, SCA7, SCA17, DRPLA, and SBMA
(Suzuki et al., 2012; Aikawa et al., 2015; Agostoni et al., 2016;
Pflieger et al., 2017; Driessen et al., 2018; Hervás-Corpión et al.,
2018; Malik et al., 2019; Liu et al., 2020; Stoyas et al., 2020)
(Supplementary Table 1). After adjusting p-value cut-off, the
following number of genes was collected: 697 downregulated
and 167 upregulated DEGs in HD and, respectively, 643 and
144 in SCA1, 134 and 80 in SCA2, 493 and 349 in SCA6,
64 and 27 in SCA7, 246 and 187 in SCA17, 250 and 162 in
SBMA, 225 and 318 in DRPLA (Figures 4, 5 and Supplementary
Table 1). The most significant subset of commonly shared
DEGs were 87 downregulated genes common between HD and
SCA1 (Figure 4B and Supplementary Table 3). ClueGo analysis
revealed the involvement of DEGs in Amphetamine addiction
(KEGG hsa05031), Opioid signaling (WP1978), neuronal cell
body membrane (GO:0032809), and integrin cell surface markers
(WP1833) (Figure 4C and Supplementary Table 5). SBMA stood
out as the least common of the PolyQ diseases, with 235 out of
250 downregulated and 152 out of 162 upregulated genes being
uniquely expressed in SBMA only (Figures 4A, 5A).

Two genes were shared between five of the PolyQ diseases
(G Protein Subunit Gamma 13 (Gng13) in SCA1, 2, 7, 17,
and DRPLA, and Glutamate receptor delta two interacting
protein (Grid2ip) in HD, Sca1, 2, 7, and 17). Gng13 encodes
the gamma subunit of heterotrimeric G proteins, which are
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FIGURE 4 | Overlap of significantly downregulated genes from mice transcriptomic data from different PolyQ diseases. (A) UpsetR analysis was used to see the
overlap between downregulated genes identified in different PolyQ diseases. Venn diagrams visualizing the overlap between downregulated genes in HD and SCA1;
(B) and for overlapping genes downregulated in SCA1 and DRPLA (D). ClueGO analysis was used to visualize the biological processes in which the commonly
downregulated genes between HD and SCA1 (C) and between SCA1 and DRPLA (E) are involved.

signal transducers for the seven-transmembrane-helix G protein-
coupled receptors (Li et al., 2006). Grid2ip is a Purkinje
cell-specific postsynaptic protein, where it may serve to link
Glutamate receptor delta 2 (GRID2) with the actin cytoskeleton

and various signaling molecules. GRID2 has been reported to
play crucial roles in synaptogenesis and synaptic plasticity and
may control GRID2 signaling in Purkinje cells (Matsuda et al.,
2006). Other notable DEGs are Regulator Of G Protein Signaling
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FIGURE 5 | Overlap of significantly upregulated genes from mice transcriptomic data from different PolyQ diseases. (A) UpsetR analysis was used to see the overlap
between upregulated genes identified in different PolyQ diseases. (B) Venn diagrams visualizing the overlap between genes upregulated in SCA7 and SCA17.
(C) ClueGO analysis of genes commonly upregulated in SCA7 and SCA17.

8 (Rgs8), Regulator Of G Protein Signaling 16 (Rgs16), and
Purkinje Cell Protein 4 (Pcp4), commonly dysregulated in HD,
SCA1, DRPLA, and either SCA6 (Rgs16), or SCA7 (Rgs8 and
Pcp4). These DEGs are all involved in calmodulin-binding, which
acts as part of a calcium signal transduction pathway and has
roles in cellular mechanisms, including metabolism, synaptic
plasticity, nerve growth, smooth muscle contraction (Hyman and
Pfenninger, 1985; Xia and Storm, 2005; Kleerekoper and Putkey,
2009; Mouton-Liger et al., 2011; Wang and Putkey, 2016).

Finally, several Cerebellin (Cbln1, 2, 3, and 4), Matrix
Metalloproteinases (Mmp8, 9, 16, 17, and 20), and Collagen
(Col5a1, Col6a4, Col11a1, Col18a1, Col20a1, and Col25a1)
isoforms are downregulated in compared PolyQ diseases.
While no commonly dysregulated isoform was found, the
downregulation of these proteins is important for synaptic
activity and the modulation of the extracellular matrix,

further hinting to an important role of WM alterations
in PolyQ diseases.

Commonly Downregulated Genes and
Proteins in HD Mouse Brain Are
Connected to Neuron Development,
Synapses and Signal Transduction, and
Cellular Transport
Additionally, we collected published proteomic data from human
juvenile- and adult-onset HD (Chen et al., 2012; Schönberger
et al., 2013; McQuade et al., 2014; Ratovitski et al., 2016; Ramdzan
et al., 2017; Ooi et al., 2019; Świtońska et al., 2019), mice HD
models (Deschepper et al., 2012; Skotte et al., 2018; Sap et al.,
2019; Sapp et al., 2020) and SCA1 mouse model (Stucki et al.,
2016). No data from SCA2, SCA6, SCA7, SCA17, DRPLA, and
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FIGURE 6 | Commonly Downregulated Genes and Proteins in HD Mouse Brain. (A) A list of 13 genes and proteins which were identified as dowregulated in HD
mouse brain in several different publications. (B) CPDB GO term over-representation analysis for the identified group of shared genes and proteins.

SBMA were found. Since the availability of published proteomic
data is very limited, our analysis of this data is also limited
compared to the transcriptomic part. Therefore, we mainly
focused on GO term analysis and searching for similarities
between dysregulated genes and proteins in human and mouse
HD. GO terms over-representation analysis was conducted in
ConsensusPathDB (CPDB) (Herwig et al., 2016). An overview of
collected data and all of the GO terms analyses for particular sets
of proteins can be found in Supplementary Table 5.

Firstly, we focused on comparing proteins and genes
dysregulated in the corresponding cell populations in human HD
(Supplementary Table 5). The comparison didn’t result in any
bigger common group, but nonetheless we were able to identify
three shared downregulated genes/proteins: TP53, ELAVL2,
COL1A2, together connected with mRNA and protease binding,
and four commonly upregulated genes/proteins: LAMB1,
CD44, SPP1 and HIST1H1B, which are connected with cell
morphogenesis and neuron development. Cell-specific CPDB
GO term analysis of human HD proteomic data highlighted
mainly neurodevelopment and organism morphogenesis, various
metabolic processes, cellular transport, gene expression and
DNA damage and apoptosis. Secondly, the comparative analysis
of mouse data resulted in identifying an overlap between 13
genes and proteins significantly downregulated in HD mouse
brain (Figure 6 and Supplementary Table 5). GO term analysis
highlighted four main clusters of biological processes to which
the identified genes are connected, such as transport regulation,
synapses and signaling, neuron development and metabolism.

Finally, we analyzed lists of dysregulated proteins from
mouse HD brain to further characterize if there are specific
clusters of biological processes connected uniquely with up-
or downregulation of certain proteins. We identified two main
groups of GO terms for downregulated proteins: transport and

ion activity and synapses and signal transduction, and two other
main groups for upregulated proteins: DNA and nucleus, and
neurodevelopment and organism morphogenesis.

CPDB over-representation analysis of proteins downregulated
in SCA1 mouse brain also highlighted synapses and
signal transduction and transport-related processes, while
upregulation was more connected to metabolism and
developmental aspects.

DISCUSSION AND CONCLUDING
REMARKS

Although the juvenile and infantile forms make up a minority
of PolyQ disease cases, the early onset makes these diseases an
example of neurodevelopmental disorders. Indeed, the results
of our bioinformatic study of the available transcriptomic data
reveal that uniquely dysregulated genes in juvenile-onset HD
neurons are involved in several (neuro)developmental pathways
leading to early symptoms in patients. Our group and others
have previously demonstrated a neurodevelopmental component
in HD pathogenesis, and further exciting evidence was delivered
only very recently (Kubera et al., 2019; Barnat et al., 2020).
Moreover, HTT has an impact on the cortical volume and brain
connections, leading to beter general intelligence score (IQ)
in people with larger (sub-disease) PolyQ repeats (Lee et al.,
2017; Lee J. K. et al., 2018). An increasing number of studies
created a body of evidence for transcriptional modulators of
PolyQ tracts not only in HD but also in other PolyQ diseases,
like SCAs, mentioned in this manuscript (Paulson et al., 2017;
Buijsen et al., 2019).

Our analysis combines numerous data sets on polyQ
transcriptomics into one collection and demonstrates several

Frontiers in Cell and Developmental Biology | www.frontiersin.org 12 July 2021 | Volume 9 | Article 642773

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-642773 June 25, 2021 Time: 19:18 # 13
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neurodevelopmental transcriptomic commonalities to the
diseases. There are genes unique in JOHD neurons and individual
genes that are downregulated in four or more of the independent
PolyQ diseases mouse models. The genes were involved in
neural growth, synaptogenesis, and synaptic plasticity, and
extracellular matrix remodeling, suggesting a critical role of
brain connections and WM changes roles in PolyQ disease
pathology. HTT, ATN1, TBP, and Ataxins have previously
been identified as transcriptional regulators (Benn et al., 2008;
Kumar et al., 2014; Gao et al., 2019) therefore, our results are
in agreement with the previously formulated hypothesis that
transcriptional dysregulation is a solid feature of several PolyQ
diseases (Helmlinger et al., 2006). The addition of proteomic
dataset further highlights neural growth and synaptogenesis
and signal transduction as main biological processes in which
dysregulated proteins are involved.

Polyglutamine diseases are relatively rare, thus, only a limited
number of publications with transcriptomic data were available
for our bioinformatic analysis. More research into PolyQ diseases
is needed to understand better the mechanistic aspects of the
disease pathology. Moreover, studies that will focus on the
unique differences between juvenile- and adult-onset would be
of interest, as the longer CAG repeat mutations augment the
transcriptional potential of the affected protein, which may
leading to compromised of neurodevelopment.
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Supplementary Table 1 | Transcriptomic data included in the comparative
bioinformatic study. Data were retrieved from the Gene Expression Omnibs (GEO)
repository, if possible, or from the Supplementary Material provided with the
publication. A cut-off of p-value < 0.05 was considered as significant. In two
publications, with a greater number of identified genes, we set a cut-off of
p-value < 0.001.

Supplementary Table 2 | Biological processes, molecular function, and cellular
components ClueGO analysis for genes downregulated in neurons from
juvenile-onset HD patients (stem cell-derived or collected post-mortem). Top
downregulated processes were visualized in Figure 3.

Supplementary Table 3 | Biological processes, molecular function, and cellular
components ClueGO analysis for common transcriptionally downregulated genes
in HD and SCA1 mice.

Supplementary Table 4 | Comparative analysis between scRNA-seq data from
neuruloid paper (Haremaki et al., 2019) and human data collected for our
comparative study. We compared down- and upregulated genes from our cohort
to each group of markers specific to a particular cell population identified in
scRNA-seq of healthy neuruloids, neuroepithelial identity NE1 and NE2, neurons,
skin, neural crest (NC), placode and U1 neurons, and also to a list of differentially
expressed genes in NE and NC populations in HD neuruloids.

Supplementary Table 5 | Proteomic data included in the bioinformatic
comparative study and CPDB GO term over-representation analysis of collected
data. Up- and downregulated proteins were retrieved from the main figures or
tables or from Supplementary Material provided with the publications. A cut-off
of p-value < 0.05 was generally considered as significant.
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