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Abstract 

Despite the critical position of translation in the multilevel gene expression regulation program, 
high-resolution and genome-wide view of the landscape of RNA translation in solid tumors is still 
limited.  
Methods: With a ribosome profiling procedure optimized for solid tissue samples, we profiled the 
translatomes of liver tumors and their adjacent noncancerous normal liver tissues from 10 patients 
with hepatocellular carcinoma (HCC). A set of bioinformatics tools was then applied to these data 
for the mining of novel insights into the translation shifts in HCC. 
Results: This is the first translatome data resource for dissecting dysregulated translation in HCC 
at the sub-codon resolution. Based on our data, quantitative comparisons of mRNA translation 
rates yielded the genes and processes that were subjected to patient specific or universal 
dysregulations of translation efficiencies in tumors. For example, multiple proteins involved in 
extracellular matrix organization exhibited significant translational upregulation in tumors. We then 
experimentally validated the tumor-promoting functions of two such genes as examples: AGRN and 
VWA1. In addition, the data was also used for de novo annotation of the translatomes in tumors and 
normal tissues, including multiple types of novel non-canonical small ORFs, which would be a 
resource for further functional studies.  
Conclusions: The present study generates the first survey of the HCC translatome with ribosome 
profiling, which is an insightful data resource for dissecting the translatome shift in liver cancer, at 
sub-codon resolution. 
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Introduction 
It has long been recognized that translation 

dysregulation is a signature feature and potential 
driver of tumorigenesis, as many translation initiation 
factors and up-stream signaling regulators of 
translation bear extensive genetic alterations in 

cancers [1, 2]. On one hand, rapid proliferation of the 
cancer cells requires accelerated protein production in 
general [3], and on the other hand, gene-specific 
translational regulation is critical for the significantly 
shifted cellular activities such as metabolism, 

 
Ivyspring  

International Publisher 



 Theranostics 2019, Vol. 9, Issue 14 
 

 
http://www.thno.org 

4142 

attachment and migration, and stress-responses of the 
tumor cells [4, 5]. Selective changes in translation of 
specific mRNA, which could be independent of the 
alterations at the transcription level, have been shown 
to be critical for tumorigenesis [1, 2]. Therefore, 
genome-wide surveys of the translation landscapes in 
tumors are of great value in dissecting the multilevel 
gene expression regulation programs in cancer. 

Since its original publication [6], the 
high-throughput method of ribosome profiling (also 
called Ribo-seq) has been widely exploited to 
characterize the landscapes of translation in various 
species [7], generating novel insights into key 
translational regulators involved in many biological 
processes [8]. In cancer research, ribosome profiling of 
model cancer cell lines has facilitated multiple 
detailed studies about translation inhibition in cancer 
cells by tumor inhibitory drugs such as mTOR 
inhibitors [9, 10] and an eIF4A inhibitor [11, 12]. These 
studies revealed potential oncogenes that were 
translationally regulated via 5’UTR structures and 
5’TOP-like regulatory elements in cancer cells. Such 
translational regulation programs control expression 
of key proteins in tumor cell activities such as 
proliferation, metastasis, and adaptation to stress. In 
addition to these mechanistic studies of the specific 
oncogenic translational regulations, comprehensive 
and detailed view of the translation landscape in 
cancer remains very limited. The translation 
abnormalities taking places in solid tumors are largely 
unknown. In the present study, we applied the 
translatome profiling method of ribosome profiling to 
comprehensively characterize the RNA translation 
landscapes in hepatocellular carcinoma (HCC) tumors 
in comparison with the adjacent non-cancerous 
normal liver tissues. Our specially designed 
bioinformatics pipelines were then applied to dissect 
the translatome shifts in tumors, including the altered 
translation rates of specific genes and novel ORFs that 
are specific to the tumors or normal tissues. Our study 
generated the first high-resolution data resource of 
the translatomes in human solid tumors. The analysis 
results should help in filling the gap between the 
transcriptome and the proteome landscapes in cancer 
and serve as the basis for further studies of the 
translational regulation program in HCC. 

Results and discussion 
Ribosome profiling of paired HCC tumors and 
adjacent non-cancerous liver tissues 

We profiled the paired tumor and adjacent 
normal liver tissue samples from 10 HCC patients 
with ribosome profiling, which was adapted and 
optimized for processing of clinical solid tissue 

samples. As shown by one of our experiments as an 
example, RNase treatment during ribosome profiling 
effectively digested the polysome RNA into ribosome 
monomers (Supplementary Fig. 1). Total RNA 
sequencing was performed in parallel for the same 
samples. Basic statistics of the sequencing data are 
provided in Supplementary Table 1, and the read 
counts of ribosome protected fragments (RPFs) and 
RNA for each gene in the 20 samples are supplied in 
Supplementary File 1.  

As shown in Supplementary Fig. 2A and 2B, the 
RPF reads from each sample are all tightly distributed 
within lengths of 28-32 nt, while the peaks (length 
with the most abundant reads) could be slightly 
shifted by 1 or 2 nt between different patients. We 
think that this was due to different digestion 
efficiencies of RNase I treatment of the RNA samples 
or simply different amounts of starting materials of 
RNA. Because the tissue samples were collected at 
different times, we could not perform all ribosome 
profiling experiments at once. Therefore, the potential 
differences in RNA digestion efficiencies or starting 
materials could result in batch effects between 
different patients. However, the paired tumor and 
normal tissues from the same patient were always 
processed in parallel at the same time, following the 
same procedure. Indeed, the footprint length 
differences only occur between different patients, but 
not between any pair of tumor and adjacent normal 
tissue samples (Supplementary Fig. 2A, B). This 
necessitates paired tumor-normal comparisons 
instead of unpaired group comparisons.  

Metagene analysis of the RPF reads aligned by 
their 5’ ends on the known protein-coding genes 
showed strong enrichment of the reads in the coding 
regions from the start to the stop codons 
(Supplementary Fig. 3). In addition, for each sample, 
the majority of the RPF reads with different lengths 
exhibited strong 3-nt periodicity (figures provided in 
Supplementary File 2). Note that the periodicity of all 
reads pooled together was not obvious for some 
samples (Supplementary Fig. 3). This is normal for 
ribosome profiling, as the RPF reads with different 
lengths could have slight shifts (usually +/-1nt) of the 
P-site positions relative to their 5’ ends (+12, 11, or 13 
nt offset from the 5’ ends, as shown in Supplementary 
File 2). Once the offsets were adjusted for different 
read lengths, the RPFs showed predominant 
allocations to the main open reading frame 0, 
compared to the other two frames +1 and +2 
(Supplementary Fig. 2C, D). Taken together, these 
informative features reflect high quality of the 
ribosome profiling data, which allows quantitative 
assessment of the translatomes at sub-codon 
resolution. To our knowledge, this is the first 
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ribosome profiling dataset of human solid tumors and 
their adjacent normal tissues. Such a data resource 
opens up an unprecedented opportunity to dissect the 
transcriptome-wide abnormality of RNA translation 
in HCC tumors.  

Dysregulated mRNA translation efficiencies in 
tumors  

Based on the ribosome profiling data above, we 
sought to systematically identify the genes with 
differential mRNA translation rates in liver tumors 
compared to their adjacent normal liver tissues. In 
contrast to the data from cultured cells or model 
organisms, the mRNA and RPF profiles of these 
clinical tumor and normal tissue samples exhibited 
strong heterogeneity across the 10 patients (Fig. 1A, 
B). Based on these RPF and mRNA profiles, 
translation efficiencies (TE) were inferred for the 10 
pairs of tumor and normal tissue samples with our 
bioinformatics analysis pipeline, Xtail [13]. We then 
performed differential translation analysis by 

comparing the paired tumor and normal samples 
from each patient with the tool Xtail [13] 
(Supplementary Fig. 4, Supplementary File 3). Genes 
with substantially up- or down-regulated TE in the 
tumor vs. the normal tissue from each of the 10 
patients were illustrated in Fig. 1C and listed in 
Supplementary File 3.  

As solid tumors are known for the intra-tumoral 
heterogeneity, i.e., heterogeneous non-tumor cells 
infiltrated in the tumor tissues, we used ESTIMATE 
[14] to assess purities of the 10 HCC tumors with the 
RNA-seq data. The results ranged from 0.821 to 0.905. 
Indeed, according to literature and our previous 
experiences, HCC tumors in general have high 
purities of tumor cells [15, 16]. In addition, as shown 
in Fig. 1A and B, there are clear differences between 
the molecular profiles of the tumor and normal 
tissues. Therefore, we think that our analyses should 
have reliably captured the major differences between 
the tumor and normal tissues. 

 

 
Figure 1. Comparisons of mRNA translation efficiencies between HCC tumors and adjacent normal tissues. (A, B) Principal component analysis (PCA) of the 
tumors and normal tissues based on the RPF (A) or RNA (B) read counts of 8527 genes that have read-outs in all the samples. The two main components (PC1 and PC2) are 
shown on the X- and Y-axis. The 10 tumor samples are marked in red and the normal samples are in green. (C) Translation efficiencies (TEs) of genes in paired tumor and normal 
samples from 10 HCC patients. A total of 2199 genes were selected, as they exhibited differential TE (1392 down and 807 up) in at least one patient between the tumor and the 
adjacent normal tissue (Supplementary File 3). (D) Biological processes enriched in the translationally up- or down-regulated genes in each tumor compared to the adjacent 
normal tissue. Saturation of the color indicates the statistical significance (-log10(Pv)) of each process. 
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Next, functional enrichment analyses were 
performed on the translationally up- or 
down-regulated genes for each individual patient 
(Fig. 1D). As shown by the results, up-regulations of 
mRNA translation frequently take place for genes 
related to biological processes such as matrisome and 
collagen fibril organization, blood vessel 
development, response to growth factors, and integrin 
cell surface interactions. On the other hand, genes in 
several metabolic processes were subjected to 
translational repression in multiple patients (Fig. 1D). 

Although the general metabolism level is 
up-regulated in cancer cells, it is not unusual to see 
many metabolism-related genes being 
down-regulated in cancers. For example, according to 
our results, LDHB was one of the translationally 
repressed genes in multiple HCC patients. Indeed, it 
has been shown that LDHB protein is generally 
down-regulated in HCC and associated to poor 
prognosis [17]. In fact, as the metabolic system is 
considered largely shifted in cancer cells and adapted 
to the highly variable contexts of different cancer 
types, specific metabolic pathways could be altered in 
either direction of up or down [18]. Therefore, our 
study revealed the processes enriched by translational 
up- or down-regulations of some genes, but these 
observations should not directly lead to a conclusion 
that these processes themselves were always altered 
to the same directions. 

Finally, it is also worth noting that our study has 
been focused on translation alterations in HCC, while 
other transcriptional and post-transcriptional 
dysregulations in HCC also make major contributions 
in shaping the overall shifted gene regulation 
program in HCC. For example, it has been recently 
shown that the mitochondrial respiratory chain genes 
were transcriptionally repressed in HCV-infected 
HCC cell line Huh-7.5, which potentially contributed 
to metabolic reprogramming in HCC cancer [19]. Here 
we showed that many key genes in lipid metabolism 
were translationally repressed, which in our minds 
represents another part of metabolic reprogramming. 
Therefore, such observation strengthens the necessity 
of studying the protein translation landscapes, in 
addition to the transcriptomes, in cancer.  

Consensus translation perturbations in HCC 
tumors 

Despite the inter-tumoral heterogeneity of the 
translation landscapes across HCC patients, in 
general, there are clear differences between the two 
groups of normal and tumor tissues with respect to 
their RNA and RPF profiles (Fig. 1A, B). Based on the 
assessments of differential mRNA translation in the 
10 independent comparisons above between paired 

tumor and normal tissues, we recovered consensus TE 
up- or down-regulation of the genes in multiple 
tumors (Fig. 2A, Supplementary Fig. 5A, and details 
in Supplementary File 4). Note that in general, the 
genes with consistently dysregulated TE in the 10 
HCC patients did not show similarly consistent 
abnormality in their mRNA expression levels in 
tumors compared to normal tissues (Supplementary 
Fig. 5B). On the other hand, many of the genes with 
dysregulated mRNA levels in these HCC patients 
bear relatively stable translation efficiencies 
(Supplementary Fig. 5A). These observations 
suggested that for most of the top genes that were 
altered at the level of mRNA or translation, these two 
types of dysregulation are generally independent 
from each other. 

Interestingly, the consensus top 100 
translationally up-regulated genes showed significant 
enrichments in the biological processes related to 
extracellular structures such as extracellular matrix 
(ECM) organization and collagen catabolism (Fig. 2B), 
whereas the top 100 down-regulated genes were 
mostly enriched in metabolic processes (Fig. 2B). In 
contrast, the consensus genes with up- or 
down-regulated mRNA expression profiles in these 
10 pairs of samples showed almost completely 
different functional enrichments (Supplementary Fig. 
5C), again suggesting that the mRNA regulations and 
translational dysregulations in tumors are generally 
not co-occurring and that they impact different sets of 
cellular processes. 

Intrigued by the findings above, we looked 
further into the genes involved in the ECM 
organization that were subjected to translational 
up-regulation in the HCC tumors (marked in Fig. 2A). 
Specifically, we selected AGRN and VWA1 as 
examples. As a proteoglycan, AGRN functions as a 
membrane protein or a secreted protein in the 
extracellular matrix [20]. Previous studies have 
reported tumor-promoting functions of AGRN in 
liver cancer cells by regulating focal adhesion 
integrity [21], in oral squamous cell carcinoma cells 
[22] and glioblastoma cells [23] by regulating the 
extracellular microenvironment, and in prostate 
cancer cells potentially by regulating DNA integrity 
and DNA repair [24]. VWA1 encodes a von 
Willebrand factor A‐domain‐related protein (WARP), 
an orphan ECM protein whose function is largely 
unclear [25]. It is suspected to play important roles in 
basement membrane structures, which remains to be 
validated. Potential involvement of VWA1 in cancer 
has never been proposed or studied before.  

Both AGRN and VWA1 have largely consistent 
mRNA expression levels in tumors compared to the 
adjacent normal tissues (Fig. 2C), which therefore 
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provided a clean background for study of their 
translational regulations. Strikingly, the protein 
expression levels of AGRN and VWA1 were 
dramatically elevated in the tumor samples compared 
to their adjacent normal tissues (Fig. 2D). Given the 
unchanged mRNA expression levels, such dramatic 
increases of AGRN and VWA1 proteins are well 
in-line with the up-regulated TEs of these two genes. 
However, as protein degradation rates were not 
examined, the up-regulated TEs may not be the only 
factors contributing to the elevated protein levels. In 
other words, we do not preclude other factors such as 
protein degradation in controlling the protein levels. 
Nevertheless, as these two examples have shown, 
quantitative assessments of the translation profiles 
provided valuable information that explains at least 
some of the abnormal protein expression in tumors.  

Tumor-promoting functions of ECM proteins 
AGRN and VWA1 

Considering the strong translational 
up-regulation of the two proteins AGRN and VWA1 
in HCC tumors, we looked further into their potential 

functions in liver cancer cells. Knock-down of AGRN 
(Supplementary Fig. 6A, B) or VWA1 (Supplementary 
Fig. 6C, D) in the HCC cell line Huh7 induced potent 
inhibition of cell proliferation (Fig. 3A). Cell colony 
formation and anchorage-independent growth from 
single-cells were also repressed upon stable 
knock-down of AGRN (Supplementary Fig. 6E, F) or 
VWA1 (Supplementary Fig. 6G, H), indicating critical 
involvements of these two genes in promoting the 
malignant potential of the cells (Fig. 3B, C). In 
addition, as a highly metastatic cell type, the Huh7 
cells exhibited largely suppressed migration rate 
upon knock-down of AGRN or VWA1, as shown by 
the scratch wound healing and trans-well migration 
assays (Fig. 3D, E). Indeed, silencing AGRN or VWA1 
induced repression of two well-established EMT 
markers involved in cancer cell migration, Vimentin 
(VIM) and N-cadherin (CDH2), at both the mRNA 
(Supplementary Fig. 6A, C, E, G) and protein levels 
(Supplementary Fig. 6B, D, F, H). Finally, repression 
of AGRN or VWA1 dramatically inhibited in vivo 
tumorigenesis of Huh7 cells in xenograft tumor 
models in immunodeficient NSG mice (Fig. 3F). 

 

 
Figure 2. Genes with consensus translational dysregulations in HCC tumors. (A) TE (log2) of the top 100 genes with consensus TE up, or of the top 100 genes with 
consensus TE down, in the tumors compared to the normal tissues. (B) Enrichment of the GO functional annotations in the top 100 genes with consensus TE up or TE down 
in the tumors. Each circle, representing a GO term, was color-coded according to the P-value (-log10) of the enrichment. The size of a circle represents the ratio of the genes 
annotated to the respective GO term in the gene list with TE up or down. (C) Relative mRNA expression levels of AGRN and VWA1 in 5 pairs of tumor and adjacent normal 
tissue samples. (D) Western blots showing protein expression levels of AGRN and VWA1 in 5 pairs of tumor and adjacent normal tissue samples. Beta actin was included as an 
endogenous reference. Relative quantifications of the blots are provided above the images. 
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Collectively, these results illustrated essential 
tumor-promoting roles of AGRN and VWA1 in the 
HCC cell line Huh7. These two genes, which are 
up-regulated at the level of translation in HCC 

tumors, nicely exemplified the translational 
dysregulation events that confer advantages upon the 
tumor cells and therefore play essential roles in tumor 
development.  

 

 
Figure 3. Tumor promoting functions of AGRN and VWA1 in Huh7 cells. (A) Proliferation of Huh7 cells upon silencing of AGRN and VWA1 with siRNAs. Silencing 
of Lamin A/C (siLMNA) was used as a negative control. Error bars represent the means ± SD. (B) Colony formation from Huh7 single-cells with stable knock down of AGRN, 
VWA1, or LMNA with shRNA. (C) Anchorage independent growth from Huh7 single-cells with stable knock down of AGRN, VWA1, or LMNA with shRNA. (D) Wound 
healing assay showing scratched area being reoccupied by the Huh7 cells migrating from the two sides. (E) Images of Huh7 cells that have migrated across the membrane of a 
transwell chamber. Cells were stained with crystal violet. Counts of cells in 6 fields of 2 replicates were summarized as bar plots to the right. (F) Images and weights of the tumors 
grown in xenograft transplantation models in NSG mice from the Huh7 cells with lentivirus-mediated stable gene knock-down. The error bars represent ± SEM. 



 Theranostics 2019, Vol. 9, Issue 14 
 

 
http://www.thno.org 

4147 

De novo annotation of the translatomes in 
HCC tumors and normal liver tissues 

Ribosome profiling assays generate 
genome-wide snapshots of translation at sub-codon 
resolution, which allows systematic identification of 
the RNA species or regions that are actively 
translated, i.e., de novo annotation of the translatomes. 
Specifically, as an active ribosome moves along the 
open reading frame (ORF) by steps of a codon 
(tri-nucleotides), the density of RPF reads aligned on 
the ORFs by their P-sites should exhibit 3-nt 
periodicity. This has been the most efficient feature for 
identification of active translation [26]. 
Context-dependent translatomes in various model 
organisms and cells have been assembled based on 
this feature of the ribosome profiling data [27-30]. 
These valuable resources revealed multiple categories 
of novel ORFs that are actively translated under 
specific experimental or physiological conditions. 
However, in cancer research, comprehensive 
annotation of the translatomes of tumors has been 
lacking. Our ribosome profiling data is a new resource 
for de novo annotation of active ORFs in HCC tumors. 
Here, we applied our analysis pipeline RiboCode [31] 
to systematically identify the actively translated ORFs 
and assemble the translatomes of tumors and normal 
tissues.  

Fig. 4A summarized the translatomes assembled 
with the combined ribosome profiling datasets from 
the 10 tumors or from the 10 normal tissue samples. 
As expected, the majorities of the translatomes were 
canonical ORFs from protein coding genes that have 
been annotated previously. In addition, significant 

proportions of the translatomes were composed of 
non-canonical ORFs, most of which have not been 
reported before, including upstream ORFs in the 
5’UTR (uORFs), downstream ORFs in the 3’UTR 
(dORFs), overlapping ORFs, and other novel ORFs 
from the protein coding and noncoding genes (Fig. 
4A, and details in Supplementary File 5). A multitude 
of studies have revealed strong biological relevance of 
the non-canonical small ORFs, for example uORFs 
[32-36], in coding functional peptides or proteins [33, 
37] and regulating gene expression [38, 39] such as 
mRNA translation [34, 40] and decay [41, 42]. Here, 
collections of the actively translated non-canonical 
ORFs in contexts of HCC tumors and non-cancerous 
liver tissues have provided a new resource for further 
studies of these ORFs in HCC. 

The RPF read counts of all the ORFs in tumors 
and normal tissues are provided in Supplementary 
File 5. As shown by the data, many non-canonical 
ORFs were subjected to up- or down-regulation of 
their translation efficiencies in the HCC tumors 
compared to the normal tissues (Supplementary Fig. 7 
and data in Supplementary File 6). It is worth nothing 
that in general, the average TE changes of the uORFs 
or dORFs in the 10 tumors vs. the 10 normal samples 
were not coordinated with the translational up- or 
down-regulations of the corresponding main CDS 
regions of the protein coding genes that host the 
uORFs or dORFs (Fig. 4B). Interestingly, some uORFs 
and dORFs showed opposite directions of 
translational dysregulations compared to their 
corresponding main CDS regions of the hosting genes 
(Fig. 4B).  

 
 

 
Figure 4. Translatomes assembled with ribosome profiling data of the HCC tumors and normal tissues. (A) Composition of the translatomes assembled with the 
ribosome profiling data of the tumors and normal tissues. (B) Average TE fold changes of the uORFs and dORFs in the 10 tumors compared to their matched normal tissue 
samples. The uORFs or dORFs were sorted by the average TE fold changes of their corresponding main CDS regions from the same protein coding genes. 
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Figure 5. Associations between uORFs and the downstream main CDS. (A) Scatter plot for 478 uORFs, for which the data of TE fold changes (tumor vs. adjacent 
normal) were available in at least 8 out of the 10 patients. For each uORF, the value on the Y-axis represents the Spearman’s correlation between its TE fold changes across the 
patients and the TE fold changes of the corresponding main CDS. (B) Two example pairs of uORF-CDS, which are marked in panel (A). Each dot represents one of the 10 
patients. The TE fold changes of the uORF in the 10 patients were shown on the X-axis, and the TE fold changes of the main CDS on the Y-axis. (C) Schematic description of 
the 5’UTR reporter constructs. After a CMV promoter, 5’UTR of AHCYL1 or KCNAB2 was conjugated with the CDS of GFP. To disable the uORFs, in another set of plasmids, 
the uORF start codon was mutated from ATG to AAG. (D) Green fluorescence and phase contrast images of the cells upon transfection of the 5’UTR reporter plasmids 
described in panel C. (E) Protein expression levels of GFP in Huh7 cells upon transfection of the 5’UTR reporter plasmids as described in panel C. Relative quantifications of the 
blots are provided above the images. (F) Relative expression levels of GFP mRNA in the cells upon transfection of the 5’UTR reporter plasmids. 

 
Inspired by the observations above (Fig. 4B), we 

then looked further into the potential associations 
between the uORFs with their corresponding main 
CDS regions (data in Supplementary File 7). 
Specifically, for each uORF, we calculated the 
Spearman’s correlation between its TE abnormalities 
(fold change of TE in tumor vs. normal) in the 10 
patients and the TE abnormalities of its corresponding 
main CDS in the 10 patients (Fig. 5A, Supplementary 
File 7). Some uORFs showed strong positive 
associations with their corresponding main CDS 
regions, which could simply indicate concurrent 
translational abnormalities of the two ORFs on the 
same RNA transcript. More interestingly, some 

uORFs were strongly anti-associated with their 
down-stream main CDS regions with respect to their 
TE abnormalities in the 10 HCC tumors (Fig. 5A). Two 
of these uORFs were shown as examples in Fig. 5B, 
one from the 5’UTR of KCNAB2 and another from the 
5’UTR of AHCYL1. KCNAB2, a potassium channel 
protein, was subjected to translational up- or 
down-regulation in tumors of different HCC patients, 
and its uORF almost always showed opposite 
directions of translational abnormalities (Fig. 5B). 
AHCYL1 is an inositol 1,4,5-trisphosphate 
receptor-binding protein involved in various essential 
cellular processes such as IP3 signaling, mRNA 
processing, and DNA replication. AHCYL1 was 
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translationally elevated in most of the 10 HCC 
patients, while its uORF was suppressed in all of these 
tumors. The magnitude of uORF suppression was 
proportional to that of CDS activation, suggesting a 
potential inhibitory effect of the uORF on the main 
CDS of AHCYL1 (Fig. 5B). To illustrate potential 
regulatory functions of these uORFs, we constructed 
GFP reporter systems, in which the 5’UTR of 
AHCYL1 or KCNAB2 was conjugated to the CDS of 
GFP in a plasmid (Fig. 5C). For comparison, the same 
constructs were prepared, but the uORFs were 
disabled simply by mutating their start codons (from 
AUG to AAG) (Fig. 5C). These reporter constructs 
were then transfected into Huh7 cells. Clearly, cells 
with the mutated 5’UTR of AHCYL1 or KCNAB2, in 
which the uORFs were disabled, expressed much 
more GFP than did the control cells with wild-type 
5’UTR of AHCYL1 or KCNAB2, respectively (Fig. 5D, 
E). Note that GFP mRNA expression levels remained 
stable in these cells with either wild-type or 
uORF-disabled 5’UTRs (Fig. 5F). Therefore, these 
reporter assays support the idea that the AHCYL1 or 
KCNAB2 uORFs inhibited the translation of their 
down-stream main CDS. 

There are many other examples showing 
different patterns of associations between translation 
of the uORFs with their main CDS regions. The 
potential underlying mechanisms are certainly worth 
further investigations. Therefore, the de novo 
translatomes assembled for the HCC tumors and 
normal tissues provided new collections of 
non-canonical ORFs, which is the basis for further 
dissection of the previously unannotated translation 
events and the potential functions of these new ORFs.  

In summary, with the technique of ribosome 
profiling, we have generated the first high-resolution 
and comprehensive survey of the RNA translation 
landscapes in HCC. Our data serve as a timely 
resource, which should help in elucidating the 
multilayer gene regulation programs in HCC by 
filling the knowledge gap between the transcriptome 
and proteome profiles in liver tumors. We performed 
a series of bioinformatics analyses to showcase deep 
data mining strategies based on this data resource for 
insights into the translatomes of HCC. We illustrated 
a significant and highly selective layer of translational 
dysregulation in tumors, which is largely 
independent of the extensively studied transcriptional 
and post-transcriptional layers of regulations that 
shape the mRNA expression profiles (Fig. 1, 2). For 
example, many genes involved in ECM organization 
were frequently elevated in tumors at the level of 
translation, and we further confirmed the 
tumor-promoting functions of two of these genes, 
AGRN and VWA1.  

Furthermore, we took advantage of the 
sub-codon resolution of the ribosome profiling data 
and systematically identified the actively translated 
ORFs in HCC tumors and non-cancerous normal 
tissues. These ORFs include canonical ORFs from 
protein coding genes and new non-canonical ORFs 
from noncoding genes or regions. This is the first de 
novo annotation of the translatomes in the context of 
cancer. Such a detailed description of the translatomes 
in HCC provides an unprecedented insightful 
resource for further characterization of the novel 
non-canonical ORFs, especially for their 
dysregulations in tumors and their potential functions 
in the translational regulation programs.  

Methods 
Clinical samples 

The primary liver cancer tumor tissues and the 
adjacent non-cancerous liver tissues were obtained 
from 10 randomly selected patients with HCC, who 
underwent radical resections in the Chinese PLA 
general hospital and Peking Union Medical College 
Hospital. 9 out of the 10 HCC patients were diagnosed 
HBV positive, except LC033. All patients were HCV 
negative. Informed consent was obtained from the 
patients. Ethical consent was granted from the 
Committee on Ethics of Biomedicine, Chinese PLA 
general hospital and Peking Union Medical College 
Hospital. 

Purification of RPFs and total RNA for 
ribosome profiling 

Tumors and adjacent normal tissues from HCC 
patients were flash-frozen and stored in liquid 
nitrogen. Prior to the experiments, the tissue samples 
were crushed into powder in an automatic cryogenic 
grinder (HORIBA, Freezer/Mill 6770) filled with 
liquid nitrogen. Approximately 50 mg of each of the 
powdered samples was lysed in 400 ul of lysis buffer 
containing 20 mM Tris-HCl (pH 7.4) (Invitrogen, 
AM9850G), 150mM NaCl (Invitrogen, AM9760G), 
5mM MgCl2 (Invitrogen, AM9530G), 1% Triton X-100 
(Sigma Aldrich, T8787), 0.1% NP40 (Amresco, E109), 1 
mM DTT (Sigma Aldrich, 43816), 25 U/ml DNase I 
(Invitrogen, AM2239) and 0.1 mg/ml cycloheximide 
(Inalco, 1758-9310). The mixture was clarified for 10 
minutes at 20,000 g at 4°C. Then, 200ul of the clarified 
lysate was used for purification of the RPFs, which 
was analyzed by ribosome profiling, and 100ul of the 
lysate was used for the total RNA sequencing in 
parallel. 

For the RPFs, 90 Units of RNase I (Life 
Technologies, AM2294) for each A260 of the lysate 
was added to 200 ul of the supernatant and incubated 
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at room temperature for 45 min with gentle mixing. 
Nuclease digestion was stopped with 15 ul of 
SUPERase InTM RNase Inhibitor (Life Technologies, 
AM2696), and samples were chilled on ice. 
Ribosome-RNA complexes were purified by 
Sephacryl S400 spin column chromatography (GE 
Healthcare, 27514001). The ribosome-protected RNA 
was extracted with Trizol (Invitrogen, 15596018), 
following the manufacturer’s protocol. Next, the 
ribosomal RNA was depleted using the RiboZero kit 
(Illumina; MRZH11124), following the manufacturer’s 
protocol. The samples were then resolved in a 15% 
urea gel by electrophoresis, and the 25-35nt fragment 
was excised from the gel. The RNA fragments were 
finally eluted for least 2 hours in 400ul nuclease-free 
water, 40 ul of 5 M ammonium acetate (Invitrogen, 
AM9070G) and 2 ul of 10% SDS (Invitrogen, AM9823), 
followed by isopropanol (Sigma Aldrich, I9030) 
precipitation. 

Total RNA from the tissue samples was isolated 
from 100 ul of the clarified tissue lysate with Trizol 
(Invitrogen, 15596018), and the ribosomal RNA was 
then depleted using the RiboZero kit (Illumina; 
MRZH11124). Next, the rRNA-depleted total RNA 
was fragmented with PNK buffer (NEB, M0201L) at 
95°C for 20min. 

Sequencing library preparation 
Both RPF and fragmented total RNA were 

cloned and amplified for next-generation sequencing 
with a tagging-based workflow. In brief, the RNA 
fragments were end repaired with T4 PNK (NEB, 
M0201L) and ligated with 3’ adaptor, followed by 
cDNA synthesis, cDNA gel purification, 
circularization and PCR amplification [43]. The 
sequencing libraries were assessed with a 
BioAnalyzer and quantified using KAPA SYBR FAST 
Universal qPCR Kit (Kapa Biosystems, KK4601) prior 
to and after pooling for sequencing. Library insert 
sizes were typically around 30 bp. The pooled 
libraries were sequenced on the Illumina HiSeq 2500 
platform with a single-end sequencing strategy for 50 
cycles.  

Processing of the Ribosome profiling and 
RNA-seq data 

The pre-processing procedure of the ribosome 
profiling data and the parallel RNA-seq data has been 
described previously [13, 44]. Specifically, the 3’ 
adaptors were trimmed from the raw reads of both 
the mRNA and RPF. Low-quality reads with Phred 
quality scores lower than 20 (>50% of bases) were 
removed using the fastx quality filter 
(http://hannonlab.cshl.edu/fastx_toolkit/). The 
reads originated from rRNAs were identified and 

discarded by aligning the reads to human rRNA 
sequences (5S, 5.8S, 18S, and 28S) using Bowtie 
(version 1.1.2) with no mismatch allowed. The 
remaining reads were then mapped to the human 
genome and spliced transcripts using STAR with the 
following parameters: --outFilterType BySJout 
--outFilterMismatchNmax 2 --outSAMtype BAM 
--quantMode TranscriptomeSAM 
--outFilterMultimapNmax 1 --outFilterMatchNmin 
16.  

Analysis of gene differential translation 
efficiencies 

The bioinformatics pipeline Xtail was used for 
quantitative and systematic analyses of the 
differential translation efficiencies between each pair 
of tumor and normal tissue samples for each HCC 
patient [13]. Preparation of the data for Xtail has been 
described previously [13, 44]. Specifically, the mRNA 
expression was estimated by the RNA-seq reads, 
which were counted using HTSeq-count (version 
0.7.2) [13, 45]. The RPF reads were subjected to 
multiple steps of read filtering, which reduced the 
technical noise of ribosome profiling and extracted the 
reads originating from ribosome-binding and 
translating sequences in coding regions. First, RPF 
reads with lengths of 25-35 nt were deemed high 
quality and most likely to be from ribosome-occupied 
RNA in human cells. Second, reads with multiple 
alignments were discarded, and only the reads 
uniquely mapped to the coding regions were counted 
for RPFs. Third, due to the potential accumulation of 
ribosomes around the starts and ends of coding 
regions, reads aligned to the first 15 and last 5 codons 
were excluded for counting of RPFs.  

Most of the bioinformatics algorithms for 
differential translation analysis with ribosome 
profiling data require at least 2 replicates for each 
group of samples. However, due to the extensive 
inter-tumoral heterogeneity across the 10 HCC 
patients as shown in Fig. 1, it would be inappropriate 
to treat the 10 tumors and the 10 adjacent normal 
samples simply as two groups with 10 replicates each. 
Therefore, we first performed genome-wide 
differential translation analysis between the tumor 
and normal tissues for each HCC patient. This was 
done with Xtail, as it allows analysis of differential 
translation without replicates [13]. Specifically, the 
RNA and RPF read counts of the paired tumor and 
adjacent normal tissue samples from one patient were 
processed by the Xtail algorithm, which yielded TE 
fold change and P-value as an assessment of the 
differential translation for each gene in each of the 10 
HCC patients (Supplementary File 3).  
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Results from the 10 differential translation 
analyses for the 10 HCC patients were then treated as 
independent sources of evidence for general 
assessments of translation dysregulations in HCC. 
Specifically, we derived the consensus TE up- or 
down-regulation of each gene by integrating the 
evidence of differential TE of the gene in the 10 
comparisons between the matched tumor and normal 
samples (Supplementary File 4). Many genes indeed 
showed consistent trends of up- or down-regulation 
of their TEs in all HCC patients. However, there are 
also genes showing opposite directions of TE changes 
in different patients. We reasoned that a gene could be 
subjected to heterogeneous perturbations of 
translation in different patients. We wished to assess 
the extent of translation perturbation in the 
dominating direction by collecting and integrating the 
supporting evidence from some patients. However, 
this does not preclude the possibility that this gene 
could be subjected to strong translational 
dysregulation in the opposite direction in other 
patients.  

Specifically, for the 10 HCC patients, if a gene 
showed up-regulated TE in more than half (5) of the 
tumors and down-regulated TE in no more than 3 
patients, this gene was identified to have consensus 
up-regulation of TE. We then used Stouffer's method 
to integrate the P-values from the patient-specific 
comparisons above that showed up-regulated TE in 
the tumors. This yielded the consensus P-value for 
up-regulated TE. Similarly, genes with 
down-regulated TE in more than half of the 10 
patients and up-regulated TE in no more than 3 
patients were defined as TE down. The consensus 
P-values for down-regulated TE of these genes were 
inferred with Stouffer’s method, which integrated the 
P-values from the tumor-normal comparisons 
showing down-regulated TE. Finally, the genes with 
consensus TE up or down were sorted by their 
P-values, separately, and the top 100 genes from the 
two lists are shown in Fig. 2A. 

Gene Ontology functional enrichment analyses 
For the various gene sets selected by the different 

analyses, GO enrichment analysis was conducted 
using the Metascape tool. The GO terms with P-values 
< 0.001 were selected and imported into REVIGO, 
which visualizes the terms as nodes in a network. 
Each GO term was color-coded according to the 
P-value (−log10) of the enrichment. The size of each 
node is proportional to the number of genes 
belonging to the GO term, whereas the link between 
different terms represents the number of shared genes 
between two GO terms. 

Polysome fractionation 
Samples were resuspended in polysome lysis 

buffer (10 mM Tris pH 7.4, 150 mM KCl, 5 mM MgCl2, 
0.1mg/ml CHX, 1 mM DTT, 1% Triton X-100, 0.1% 
NP-40, 140 U/ml RNasin), lysed on ice, and clarified 
by centrifugation at 20,000 × g for 10 min. Lysates 
were then centrifuged through a 10–50% sucrose 
gradient in gradient buffer (10 mM Tris pH 7.4, 150 
mM KCl, 5 mM MgCl2, 0.1mg/ml CHX, 1 mM DTT) 
for 2 hours at 36,000 rpm in a SW41Ti rotor 
(Beckman). Gradients were collected with an ISCO 
gradient fractionator coupled to an optical density 
recorder.  

RNA extraction and real-time qPCR analysis 
RNA was isolated using Trizol reagent following 

the manufacturer’s instructions, followed by DNase1 
digestion (NEB, M0303L). Reverse transcription of 
RNA was performed with High-Capacity cDNA RT 
Kit with random primers (Invitrogen, 4368814). The 
first-strand cDNA was diluted 1:5 in nuclease-free 
water and used as a template. Real-time qPCR was 
performed with SYBR Green PCR Master Mix 
(Invitrogen, 4364346) and the gene-specific primers 
shown in the following table. The housekeeping gene, 
Beta-actin, was used as an endogenous control. The 
relative expression of RNAs was calculated using the 
comparative Ct method. 

 

Table A. Heading 

Gene 
name 

Forward primer (5'-3') Reverse primer (5'-3') 

β-actin CACCATTGGCAATGAGCGGTT
C 

AGGTCTTTGCGGATGTCCACG
T 

AGRN GATGGAGTCACATACGGCAAC
G 

TCACAGTCACGGAGGCAGAT
GT 

VWA1 GAGAAGCACCTGCACTTTGTG
G 

TGGACGTGATCTCCGTGGCAT
G 

CDH2 CCTCCAGAGTTTACTGCCATGA
C 

GTAGGATCTCCGCCACTGATT
C 

VIM AGGCAAAGCAGGAGTCCACTG
A 

ATCTGGCGTTCCAGGGACTCA
T 

GFP GACCACATGAAGCAGCACGAC CTTCAGCTCGATGCGGTTCAC 
 

Western blot analysis 
Powdered samples of HCC tumor or normal 

liver tissues or cells were lysed in cell lysis buffer 
(Solarbio, J619) containing a protease inhibitor 
cocktail (Roche, 4693124001). Total protein levels were 
quantified by bicinchoninic acid (BCA) assay Kit 
(Pierce, 23228). Twenty to forty microgram of total 
protein were resolved by SDS-polyacrylamide gels, 
transferred to nitrocellulose membranes (Millipore, 
HATF00010), and detected with the appropriate 
primary and HRP-conjugated secondary antibody. 
Prestained protein ladders (Thermo, 26619) were 
loaded to one well of each SDS-PAGE gel on western 
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blots. Antibody detection was performed using the 
SuperSignal West Pico Chemiluminescent Substrate 
(Pierce Biotechnology, 34080) and imaged on the 
Molecular Imager ChemiDox XRS System from 
Bio-Rad. Primary anti-AGRN (PA5-37121) was 
purchased from Thermofisher, anti-VWA1 
(14322-1-AP), anti-CDH2 (22018-1-AP), anti-VIM 
(10366-1-AP) and anti-GFP (50430-2-AP) were 
purchased from Proteintech, anti-α-tubulin (ab7291) 
and anti-β-actin (ab8227) antibodies were purchased 
from abcam. Secondary anti-rabbit (#31466) and 
anti-mouse (#31431) antibodies were purchased from 
Pierce Biotechnology. 

Cell culture 
Huh7 cells were obtained from the American 

Type Culture Collection (ATCC). The cells were 
cultured in Dulbecco's modified Eagle's medium 
containing 4.5 g/L glucose (Corning, 10-013-CVR) 
supplemented with 10% (v/v) fetal bovine serum 
(FBS) (HyClone, SH30084.03). Cells were grown in a 
humidified cell culture incubator containing 5% CO2 
at 37˚C. All cells were routinely tested as 
mycoplasma-free with the Mycoplasma Detection kit 
(Bimake, B39032).  

Constructs and transfections 
5’UTR sequences of AHCYL1 and KCNAB2, 

including both the wile type forms and the uORF start 
codon mutants (AUG to AAG), were synthesized at 
Wuxi Qinglan Biotech Co. Ltd. The fragments were 
inserted into a Xho1- and EcoR1-digested enhanced 
green fluorescent protein (eGFP) expression cassette 
(pEGFP-N1) (Fig. 5C). The plasmids were then 
transfected into the cells with Lipofectamine 2000 by 
the manufacturer’s protocol.  

Imaging 
Fluorescent microscopy was performed 

(ECLIPSE Ti, Nikon) and images were captured with 
a Nikon DIGITAL SIGHT DS U3 camera at identical 
settings and exposure time. 

Small interfering RNA (siRNA) synthesis and 
transfection 

The siRNAs specifically targeting AGRN and 
VWA1, scrambled non-targeting control siNC and 
negative controls siLMNA were synthesized by 
GenePharma (Suzhou, Jiangsu, China). The sequences 
of siRNAs are listed in the following table. siRNAs 
were transfected at a final concentration of 10nM 
using Lipofectamine RNAiMAX Reagent (Invitrogen, 
13778075) following the manufacturer's protocol. 
Briefly, siRNAs were diluted in Opti-MEM medium 
and then RNAiMAX was added in. Mix gently and 
incubate for 20 minutes at room temperature. For 

96-well plates, 100ul medium containing 104 cells 
were added to the transfection mixture. 6 hours after 
transfection, replace the cell supernatant with fresh 
cell medium. 

 

Table B. Heading 

Gene name Sense (5'-3') Antisense (5'-3') 
AGRN 
(human) 

GCAGGAGCACGUGCGAUUU
AU 

AUAAAUCGCACGUGCUCCU
GC 

VWA1 
(human) 

CCUGCACAUCAUUGUCCAA
GA 

UCUUGGACAAUGAUGUGCA
GG 

NC UUCUCCGAACGUGUCACGU ACGUGACACGUUCGGAGAA 
LMNA 
(human) 

GAAGCAACUUCAGGAUGAG
AU 

AUCUCAUCCUGAAGUUGCU
UC 

 

Lentivirus production and construction of 
stable cell lines 

The shRNA plasmids were obtained from 
Sigma-Aldrich. For packaging of lentivirus, 70% 
confluent HEK293FT cells in Flask T-175 were 
transfected with 10 ug of the shRNA vector with 15 ug 
and 10 ug of Δ8.9 envelope and Vsv-G packaging 
vectors, respectively. 6 hours after transfection, the 
medium was replaced with fresh medium. Infectious 
lentivirus supernatant was harvested at 72 h 
post-transfection. After centrifugation, lentivirus 
supernatant was filtered through 0.45 um PVDF filters 
(Millex, SLHV033RB), aliquoted and stored at -80℃. 
The lentivirus-containing supernatant supplemented 
with 8 ug/mL of polybrene (Sigma-Aldrich, H9268) 
were used to infect Huh7 cell lines. Twenty-four 
hours after infection, the Huh7 cells were selected in 
medium containing 2 ug/mL puromycin (Amresco, 
J593) and passaged under continuous selection for at 
least 2 passages before the experiments. The TRC IDs 
of the shRNAs are listed in the following table. 
Scrambled shRNA as a non-targeting control (shNC) 
and the shRNAs targeting LMNA were used as 
negative controls. 

 

Table C. Heading 

Gene Symbol TRC_ID Gene Symbol TRC_ID 
AGRN TRCN0000056391 LMNA TRCN0000061833 
VWA1 TRCN0000117177 shNC TRCN0000050849 

 

Cell proliferation assay 
Proliferation experiments were carried out by 

plating 8,000 cells or 50,000 cells (about 30% 
confluence) in 96-well or 24-well plates respectively 
and cultured in regular media. The IncuCyte live-cell 
imaging and analysis system (Essen Bioscience) was 
used to monitor the long-term cell growth and 
morphology change. Cell proliferation was quantified 
by measuring the occupied area (% confluence) of the 
cell images over time.  
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Colony formation assay 
For colony formation assays, 1,000 cells were 

seeded in the 6-well plates or 35 mm dishes and 
incubated with normal medium for 2 weeks. Colonies 
were fixed with methanol (Fisher Scientific, A452) for 
5 min at room temperature and stained with 0.5% 
crystal violet (YEASEN, 60506ES60) for 10min at room 
temperature. Finally, the colonies were imaged by a 
camera or under a microscope. 

Anchorage independent growth assay 
The anchorage independent growth assay was 

performed in 6-well plates using stable cells plated at 
a density of 3,000 cells/well. Cells were suspended in 
medium with 0.3% agarose and seeded onto plates 
pre-coated with 0.6% base agarose. Cells were then 
cultured for about 2 weeks. The colonies were 
photographed under a microscope after cells had been 
stained with 0.005% crystal violet. 

Wound-healing assay 
The wound healing assay was performed to 

monitor and quantify cell motility. Briefly, cells were 
seeded in a 96-well plate at 3*104 cells per well and 
allowed to reach confluence before the surface was 
uniformly scratched across the center of the well by an 
Essen wound maker (Essen Bioscience). The wells 
were then rinsed with fresh medium to remove 
floating cells, and the wound healing process was 
monitored continuously in the IncuCyte live-cell 
imaging system (Essen Bioscience). Images were 
obtained at each set time point and then analyzed by 
the IncuCyte scratch wound assay software to 
quantify wound healing. Data were expressed as 
wound widths. 

Transwell cell migration assay 
A total of 3*104 cells were suspended in 100 ul of 

DMEM without FBS and seeded into the top chamber 
of 24-well plate-sized transwell inserts (Millipore, 
MCEP24H48) with a membrane with a pore size of 8 
um. The medium containing 10% FBS was placed into 
the lower chamber as a chemoattractant. After 
incubation for 24 h, the cells that did not migrate 
through the pores were manually removed with a 
cotton swab. Cells presented at the bottom of the 
membrane were fixed with methanol and stained 
with 0.5% crystal violet and then counted and imaged 
under a microscope.  

In vivo xenograft tumor models 
Male immune deficient NSG mice (6-8 weeks 

old) were used for animal studies. Huh cells (2*106) 
were injected subcutaneously into the left or the right 
flanks of mice. Tumors were allowed to grow for 4 

weeks. The mice were sacrificed, and the tumors were 
isolated, photographed and weighed. To confirm 
knock-down efficiency in the grown tumors, small 
fractions of the tumors were also collected for RNA 
extraction and qPCR assays. 

De novo assembly of the translatomes 
The bioinformatics package RiboCode [31] was 

used to annotate the active ORFs and assemble the 
translatomes with the RPF reads from the tumors and 
normal tissue samples. The RPF reads with lengths 
25-35 nt were supplied to RiboCode, which was run 
with the default settings. The minimal ORF length 
was set to 30 nt (10 amino acids for the translation 
product), and the P-value cutoff was set to 0.05. The 
“ORFcount” function in RiboCode was used to count 
the RPF reads on each ORF.  

Supplementary Material  
Supplementary figures, table, and file legends. 
http://www.thno.org/v09p4141s1.pdf  
Supplementary file 1. 
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