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Bacterial persistence is an active rS stress response
to metabolic flux limitation
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Abstract

While persisters are a health threat due to their transient anti-
biotic tolerance, little is known about their phenotype and what
actually causes persistence. Using a new method for persister
generation and high-throughput methods, we comprehensively
mapped the molecular phenotype of Escherichia coli during the
entry and in the state of persistence in nutrient-rich conditions.
The persister proteome is characterized by rS-mediated stress
response and a shift to catabolism, a proteome that starved cells
tried to but could not reach due to absence of a carbon and energy
source. Metabolism of persisters is geared toward energy produc-
tion, with depleted metabolite pools. We developed and experi-
mentally verified a model, in which persistence is established
through a system-level feedback: Strong perturbations of meta-
bolic homeostasis cause metabolic fluxes to collapse, prohibiting
adjustments toward restoring homeostasis. This vicious cycle is
stabilized and modulated by high ppGpp levels, toxin/anti-toxin
systems, and the rS-mediated stress response. Our system-level
model consistently integrates past findings with our new data,
thereby providing an important basis for future research on
persisters.
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Introduction

Bacterial persistence is a phenotypic state of transient antibiotic

tolerance that threatens human and animal health (Cohen et al,

2013; Grant & Hung, 2013). This state is typically associated with

dormancy in nutrient-rich environments and with absent or low

antibiotic target activity, which renders most antibiotics ineffective

(Lewis, 2010) and can cause recurrence of infections with, for exam-

ple, Mycobacterium, Staphylococcus, or Pseudomonas species

(Dawson et al, 2011; Fauvart et al, 2011; Cohen et al, 2013).

Despite the importance of persisters, we still have very limited

insights into the molecular phenotype of these cells and into what

actually triggers persistence.

Bacterial persistence is typically investigated using different

in vitro models. One persistence model are the antibiotic-tolerant

cells that are formed stochastically in growing cultures (Maisonneuve

et al, 2013; Feng et al, 2014). Another model for persistence are

starved cells (i.e. cells in stationary phase) (Nguyen et al, 2011),

which have diminished or absent antibiotic target activity due to

the absence of nutrients (Fung et al, 2010). However, it is question-

able whether this model is relevant for all types of persisters, as

they occur in the host both in the presence (Guarner & Malagelada,

2003; Rohmer et al, 2011) or absence of nutrients (Appelberg,

2006). Finally, a third model for persistence was recently proposed:

It was found that after certain nutrient shifts (i.e. abrupt shifts or

gradual shifts resembling diauxie) a large number of non-/

slow-growing and antibiotic-tolerant cells (i.e. persisters) emerge in

nutrient-rich conditions (Amato & Brynildsen, 2014; Kotte et al,

2014).

Through isolation of stochastically generated persisters from

growing cultures by means of ampicillin treatment or FACS and

through performing transcriptome analyses, it was found that—

compared to growing cells—persisters have higher abundances of

SOS response, cold/hot shock, and toxin/antitoxin systems (TAS) as

well as lower levels of flagellum-related transcripts (Keren et al,

2004; Shah et al, 2006). Further, it was found that the fraction of

such persister cells could be increased by overexpression of certain

toxins such as HipA (Korch & Hill, 2006), RelE (Tashiro et al, 2012),

YgiU (Shah et al, 2006), or the Lon protease (Maisonneuve et al,

2011). On the basis of these findings, it was suggested that toxins,

higher expressed in individual cells (eventually due to stochastic

variation in ppGpp levels), are the decisive factor for persister

formation (Maisonneuve et al, 2013). However, neither ppGpp-

negative strains (Maisonneuve et al, 2013), rpoS deletion strains

(Nguyen et al, 2011), nor strains with multiple TAS deleted

(Maisonneuve et al, 2011) were completely free of persisters,
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suggesting that persister formation can also be achieved through

other mechanisms. The involvement of various mechanisms could

explain the recently observed heterogeneity between persister cells

(Amato & Brynildsen, 2015).

In fact, all three persister models indicate that persister formation

could also involve metabolism; next to the involvement of toxin/

antitoxin systems. First, the observation that the frequency of

stochastically formed persisters increased with the amount of

glucose transport inhibitor added to the growth medium (Maisonneuve

et al, 2013) shows that stochastic persister formation depends, at

least to some degree, on the magnitude of metabolic flux in single

cells. Second, for the nutrient-shift-induced persisters, we demon-

strated that a limitation in metabolic flux is decisive whether an

individual cell adapts to the new nutrient or enters the persister

state (Kotte et al, 2014). Finally, in the starvation model, lack of

nutrients (and thus lack of metabolic flux) is the cause for the

observed persister phenotype. Together, these findings suggest that

the metabolic state of a cell and persistence might be closely

tethered.

Still, our knowledge about persisters and what exactly triggers

their formation is limited. The main problem is that cultures

containing only a small fraction of persister cells cannot be

subjected to population-averaging experimental methods that

require large number of cells. As a matter of fact, the proteome,

metabolome, and the physiology (i.e. growth and nutrient uptake)

of persister cells are not yet known, as recently highlighted (Balaban

et al, 2013; Amato et al, 2014). Here, however, the discovery of the

nutrient-shift-induced persisters opened up a new possibility to

investigate this important bacterial phenotype.

In this work, we exploited the nutrient-shift method to generate

large numbers of persisters present in nutrient-rich environments.

First, we demonstrated similarities of these persisters with the

stochastically generated ones in terms of antibiotic tolerance, TAS

upregulation, and ppGpp levels. Then, we determined the pheno-

type of nutrient-shift-induced and starvation-induced persisters,

including the proteome, metabolite levels and physiology of cells

during the entry into and in the state of persistence, thereby cover-

ing at least two of the currently used persister models. This compar-

ative analysis allowed us to determine the influence of nutrient

presence. We found that the metabolism of persisters formed during

abrupt glucose-to-fumarate shift is characterized by low carbon

source uptake that sustains a metabolism sufficient for ATP mainte-

nance requirements, and slow growth. Further, we found the

proteome of these persisters to be shaped by rS, typically associated

with starvation and stress. On the basis of our data and previous

knowledge, we developed a system-level model on the emergence

and sustenance of persisters, which we validated through a series of

targeted perturbation experiments. The generated comprehensive

description of the persister phenotype and the developed model will

form an important basis for future work toward understanding and

eradicating persisters.

Results

Following our previous work (Kotte et al, 2014), when we switched

Escherichia coli cells from glucose to fumarate medium, only an

extremely small fraction of cells (0.1 � 0.05%, SD) adapted and

started to grow on fumarate. The other cells, despite the presence of

a utilizable carbon source, entered a state of non-/slow growth

(Kotte et al, 2014), resembling the one of persister cells. Because

even 10–15 h after the nutrient shift the growing population reached

only 1% of the total population (Appendix Fig S1A), we could

perform population-averaging proteome analyses, metabolite

concentration measurements, and physiological analyses, with the

small fraction of growing cells not significantly influencing the

results in the first 8 h after the shift (cf. Appendix Text S1). We

performed the same analyses on cells that we switched from glucose

to medium without a carbon source, generating starved cells, which

allowed us to investigate the effect of nutrient presence on the

persister phenotype.

Nutrient shifts induce persistence

First, we asked whether the non-/slow-growing cells in nutrient-rich

conditions obtained after a nutrient shift and starved cells resemble

stochastically induced persister cells in growing cultures. With the

key hallmark of persister cells being transient antibiotic tolerance

(Balaban et al, 2013), we specifically asked whether and how fast

the cells become tolerant to antibiotics after the switch to fumarate

or to no carbon source. Therefore, we treated the cells for 2 h with

ampicillin at a concentration that was used for detection of stochas-

tically formed persisters (Maisonneuve et al, 2011) and that killed

fumarate-growing cells, at different time points after the switch to

fumarate medium or medium without a carbon source, and then

determined the fraction of surviving cells. In both cases, we found

that virtually all cells became tolerant to ampicillin within 30 min

after the nutrient shift (Fig 1A).

To determine whether the cells also became tolerant against other

antibiotics and to identify the dependence of this tolerance on nutrient

presence/absence, we exposed the starved cells and the non-/slow-

growing cells in nutrient-rich conditions (i.e. in the presence of fuma-

rate as the carbon source) 4 h after the medium shift, to six different

antibiotics for 2 h, at concentrations that killed fumarate-growing

cells, and determined the fractions of surviving cells. Choosing dif-

ferent antibiotics was motivated by their different mechanisms of

action. Observed differences could hint to specific mechanisms

increasing antibiotic tolerance between the two tested persister

models. Here, we found tolerant cells for all tested antibiotics (Fig 1B).

For CCCP (proton gradient disruptor), we found that the non-/slow-

growing cells in nutrient-rich conditions survived the antibiotic chal-

lenge significantly better (t-test, P-value < 0.01) compared to the

starved cells. Our results show that non-/slow-growing cells in nutri-

ent-rich conditions and starved cells are tolerant to numerous anti-

biotics at concentrations that killed fumarate-growing cells. However,

the observed difference—namely, the higher tolerance of non-/slow-

growing cells in nutrient-rich conditions against CCCP compared to

starved cells—suggested that persister cells in nutrient-rich conditions

must exploit specific tolerance mechanism that enhance their survival

over that of persisters generated by starvation.

Elevated levels of ppGpp, occurring for example during amino

acid starvation, have been associated with the persister phenotype

(Amato et al, 2013; Maisonneuve et al, 2013). To determine

whether ppGpp levels are also increased in the non-/slow-growing

cells obtained after the nutrient shift, we quantified the intracellular

ppGpp concentration in these cells, as well as in cells exponentially
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growing on glucose. Here, we found that ppGpp increases about

16-fold within the first 30 min after the shift (t-test P-value = 0.03)

and then over the next 7.5 h decreases to about fivefold higher

levels compared to those on glucose (t-test P-value = 0.03) (Fig 1C).

Another hallmark of stochastically induced persisters is the

involvement of TAS genes (Maisonneuve et al, 2011). To determine

whether the non-/slow-growing cells obtained after the nutrient

shifts induce transcription of TAS genes, we performed reverse tran-

scription and real-time PCR measurements of 13 different transcripts

of the first genes in TAS operons. Here, we found that the shifts to

fumarate and to medium without a carbon source both lead to

increased abundance of TAS gene transcripts compared to cells

growing exponentially on glucose (Fig 1D).

Thus, the nutrient-shift-induced persisters have the characteris-

tics of the stochastically induced persisters: enhanced antibiotic

tolerance, increased ppGpp levels, and increased expression of TAS

genes. Remarkably, the slow-/non-growing cells in nutrient-rich

conditions obtained after a nutrient shift have partly enhanced

antibiotic tolerance to CCCP compared to starved cells, suggesting

active tolerance mechanisms. In the following, we will call the nutri-

ent-switch-induced persisters “persisters” and the starvation model

persisters “starved cells”.

Persisters are metabolically active

The enhanced antibiotic tolerance of persisters in nutrient-rich

conditions could have been caused by energy availability, which, for

instance, could be used to fuel multidrug-efflux systems. To test

whether and how the nutrient-switch-induced persisters utilize nutri-

ents (i.e. here, fumarate), we determined the physiological parame-

ters of these cells, as well as starved cells and cells normally growing

on fumarate. We found that in the first 2 h after the switch to fuma-

rate or to medium without a carbon source, cells underwent a reduc-

tive division characterized by a decrease in cell volume (Fig 2A,

Appendix Table S1) and an increase in cell count (Fig 2B). After that,

the persisters grew at a rate of 0.02 � 0.005 h�1 (95% confidence

interval) (Fig 2B) and their volume remained constant (Fig 2A,

Appendix Table S1). As expected, the starved cells did not grow in

number (Fig 2B), but they did in volume for the following 6 h

(Fig 2A, Appendix Table S1). In other bacterial species, such an

increase in volume was associated with swelling caused by a lack of

membrane potential (Rottem et al, 1981). Thus, persister cells, in

contrast to starved cells, must have metabolic activity to sustain their

slow growth, and possibly to maintain their membrane potential.

Focusing on the nutrient and gas exchange rates in the persister

cells, we found that they took up fumarate and oxygen and produced

carbon dioxide, all at rates (per cell) approximately one order of

magnitude lower than cells growing on fumarate (Fig 2C–E,

Appendix Table S2). Looking at yields, compared to cells growing

on fumarate, persisters produced 5.2 times less biomass per mol of

consumed fumarate (Fig 3A), but exchanged more O2 and CO2 (2.1

and 1.3 times more per mol of consumed fumarate, respectively;

Fig 3B). Thus, the differences between cells growing on fumarate

and persisters extend beyond a simple scaling down of the respective

metabolic rates. In fact, the higher O2 and CO2 yields, in combination

with the lower biomass yield in persisters, indicate that persisters

respire more and thus suggest that persisters produce more ATP per

mol of consumed carbon source than fumarate-growing cells. We

confirmed this conjecture with a flux balance analysis [using a

genome-scale model of E. coli metabolism (Reed et al, 2003) and the

measured physiological rates at 8 h (Appendix Table S2) with their

99.5% confidence intervals as constraints and assuming that they

represent steady-state conditions as done before (Zampar et al,

2013)], which revealed that the maximum ATP yield (beyond what

is needed for biomass production) in persisters is 8.4 times higher

than in growing cells (Fig 3C). Thus, these data indicate that persis-

ters operate their metabolism in a way that is optimized for energy

generation, in contrast to biomass production and growth.

Through the flux balance analysis, we also found that persister

cells, despite their very low fumarate uptake, could still produce ATP

at a maximal rate of approximately 9.5 mmol gDW�1 h�1 (Fig 3D,

A B

C D

Figure 1. Non-/slow-growing cells and starved cells are antibiotic-
tolerant, accumulate ppGpp, and express TAS.

A Dynamics of establishing antibiotic tolerance during entry into non-/slow
growth or starvation. Fraction of antibiotic-tolerant cells after treatment
with ampicillin (2 h, 100 lg ml�1) is shown at various times after the
medium switch. Gray disks: non-/slow-growing cells, open circles: starved
cells. Data from biological triplicate. Error bars represent one standard
deviation.

B Fractions of antibiotic-tolerant cells after a 2-h treatment of non-/slow-
growing and starved cells with various antibiotics (ampicillin 100 lg ml�1;
chloramphenicol 140 lg ml�1; kanamycin 100 lg ml�1; ofloxacin
5 lg ml�1; rifampicin 100 lg ml�1; CCCP 50 lg ml�1) 4 h after nutrient
switch. Gray bars: non-/slow-growing cells, white bars: starved cells. Data
from biological triplicate. Error bars represent one standard deviation.
Statistical significance (t-test or Wilcoxon rank sum test for kanamycin and
ofloxacin, P-value < 0.05) is marked with *.

C ppGpp concentration in cells growing on glucose and in cells shifted from
glucose-to-fumarate medium. Data from biological triplicate. Error bars
represent one standard deviation.

D Log2 fold change in transcript abundance of first genes in TAS operons
compared to cells growing on glucose, normalized to housekeeping gene
abundance. Green bars: 2 h after switch from glucose medium to glucose
medium, gray bars: non-/slow-growing cells 2 h after switch from glucose
medium to fumarate medium, white bars: starved cells 2 h after switch
from glucose medium to medium without a carbon source. Data from
triplicate experiments. Error bars represent one standard error of the mean.

Source data are available online for this figure.
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note that this is the ATP production rate beyond what is required for

growth), a value which is enough to satisfy the non-growth-

associated ATP maintenance requirements, which were estimated to

between 8 and 10 mmol ATP gDW�1 h�1 (Orth et al, 2011).

Through a metabolome analysis, we found that indeed the adenylate

energy charge (AEC = ([ATP] + 0.5 [ADP])/([ATP] + [ADP] +

[AMP])) was maintained at a high level in persisters (0.74, Fig 3E).

The sum of adenylate nucleotide concentrations was identical in

persisters and starved cells (Fig 3F), suggesting that the high adeny-

late energy charge is achieved thanks to energy generation (charging

of AMP/ADP with phosphate). In comparison, cells growing on

glucose and fumarate had an energy charge of 0.89 and 0.88, respec-

tively (Fig 3E), with values higher than 0.8 being required for

growth in E. coli (Chapman et al, 1971). In contrast, the adenylate

energy charge in starved cells dropped to a value of 0.24 (Fig 3E),

as expected from nutrient-deprived cells. Thus, through a metabo-

lism focused on energy generation, persisters in nutrient-rich condi-

tions are able to maintain high energy charges, eventually

contributing to the observed enhanced antibiotic tolerance compared

to starved cells.

Persisters achieve a proteome state that starved cells fail to attain

Toward determining the global proteomic phenotype of the persister

cells, we next measured levels of about 2,000 proteins through

liquid chromatography/mass spectrometry proteomics during entry

into persistence from glucose (i.e. five time points until 8 h after

the shift). For comparison, we measured protein levels in cells

growing exponentially on fumarate and glucose, as well as during

entry into starvation from glucose or fumarate. The data, that is,

absolute numbers of protein copies per cell, are available in

Table EV1.

Using the acquired data, we first aimed to identify the global dif-

ferences between the proteome changes in persister and starved

cells. Therefore, we used principal component analyses (PCA) to

scale down the almost 2,000-dimensional dataset (across 14 dif-

ferent conditions/time points) into a two-dimensional PCA space

(Fig 4, upper and middle panels). Here, we found that with time the

persisters’ proteome increasingly deviated from the proteome of

glucose-grown cells (Fig 4A). Interestingly, although all cells were

switched to fumarate, the proteome of persister cells did not

approach the one of fumarate-growing cells. In fact, the proteomes

of fumarate- and glucose-growing cells were more similar to each

other than the proteome of persister cells compared to either the

proteome of glucose-growing cells or fumarate-growing cells (Pear-

son’s r = 0.86, 0.75 and 0.66, respectively).

Furthermore, we found that the changes in the proteome of

starved cells, which almost exclusively occurred during the first 2 h

after the nutrient shift, followed the same trajectory as the

proteome changes in the persister cells (Fig 4B). However, likely

A C

D

E

B

Figure 2. Persisters grow and are metabolically active.

A Images of a cell growing on glucose, a persister cell and a starved cell. Scale bars: 1 lm. Volumes of cells growing on fumarate, cells growing on glucose, cells
entering persistence and cells entering starvation. See also Appendix Table S1.

B Evaporation-corrected cell count development of cell populations entering persistence and starvation. Gray disks: persister cells, open circles: starved cells. Values
from each replicate were normalized to t0. Error bars indicate one standard deviation. Green line (persister cells) and red line (starved cells) represent a prediction
of a linear regression fitted to the log-transformed data, where slopes are equal to the growth rate with the dotted lines error margins representing the 95%
confidence intervals determined by the model. Vertical gray area covering the period from 0 to 2 h visualizes the period of reductive division. Data from at least ten
biological replicates.

C–E Time course of the fumarate uptake rate (C), the oxygen transfer rate (OTR; D), and the carbon dioxide transfer rate (CTR; E) of persister cells. Points indicate time-
specific rate values, and lines indicate fits from generalized additive models with 95% confidence interval (indicated by areas). Vertical gray area covering the
period from 0 to 2 h visualizes the period of reductive division. Data from at least three biological replicates.
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due to the lack of a carbon and energy source, the proteome of

starved cells did not reach the same state as persister cells. Remark-

ably, the proteome of starved cells, which were previously grown

on fumarate, also moved in the same direction as the proteomes of

persisters and of starved cells generated from glucose-growing cells

(Fig 4B). These findings implied that the proteome adjustments in

both starved and persister cells must be caused by a common cue,

which is not specific to the availability of a carbon source in the

medium.

Persister proteome is characterized by enhanced catabolism and
rS-driven stress response

One factor inherent to the proteome changes of persister and

starved cells is the downshift in growth rate (Fig 2B). Growth rate

affects gene expression (Klumpp et al, 2009) and was identified to

be a major factor in reorganizing proteome upon gradual glucose

exhaustion (Berthoumieux et al, 2013). Thus, the observed

proteome changes in the persister cells could be a simple conse-

quence of the decrease in growth rate. To decipher whether the

observed changes are a mere reflection of growth rate changes or

whether the observed changes resemble specific characteristics of

persisters, we made use of the proteome data that we recently

generated when E. coli was grown on 11 different carbon sources

and under three different stress conditions (Schmidt et al, 2016).

We projected these proteomes onto the PCA space created by the

proteomes of this study. Here, we found that the proteomes of

cells growing on different carbon sources, and thus at different

growth rates, were mainly distributed along the dimension 2 of the

PCA space, while the proteomes of the cells grown under the stress

conditions moved along the dimension 1, as did the proteomes of

persister cells and starved cells measured in this study (Fig 5A).

The fact that persister cells and starved cells moved along the

same direction as the stressed cells (i.e. pH, temperature, and

osmotically stressed cells) suggests that a general stress response,

or the stringent response triggered by the increased ppGpp levels

(Fig 1C), is the driving force behind the specific proteome adjust-

ments in persister and starved cells, instead of a global growth rate

effect.

We next sought to identify the specific characteristics of the

persister proteome. Therefore, we again used PCA together with a

GOterm enrichment analysis, this time comparing persister cells at

8 h with the proteomes of growing cells, and separately with

starved cells at 8 h (Fig 4, lower panel). In the first analysis, for

which the results are shown in Fig 5B, we found that the proteins

of “dimension 1” explain 75.2% of the total variation between the

data of persister cells and growing cells. The enrichment analysis of

this separating dimension showed that the persister proteome,

compared to growing cells’ proteomes, was characterized by lower

levels of proteins for DNA replication, recombination, and SOS

response (Fig 5B, see Appendix Table S3 for full ranked list). On

the other hand, persister cells had higher levels of proteins respon-

sible for stress response, including response to starvation, RNA

catabolism, DNA repair, and protein folding (e.g. chaperones). In

persisters, also a shift toward catabolism was observed (i.e. lower

abundances of proteins for nucleotide, amino acid and cofactor

A

E F

B C D

Figure 3. Persisters maintain high energy charge levels through respiratory metabolism.

A–C Persister cells utilize a higher proportion of the taken up carbon for ATP production through respiration and less on biomass formation than cells growing on
fumarate. The yields (relative to the up-taken fumarate) were calculated as ratios of physiological rates (cf. Materials and Methods) and in case of ATP, on the
results of the flux balance analysis maximizing ATP production using the estimated physiological rates as constraints. Data from at least three biological replicates.
Error bars indicate one standard error of the mean.

D Maximal possible ATP production rates in persister cells and in fumarate-growing cells, estimated by flux balance analysis maximizing ATP production using the
estimated physiological rates as constraints.

E, F Adenylate energy charge (E) and sum of adenylate nucleotide concentrations (F). Gray disks: persister cells, open circles: starved cells, green bars: growing cells.
Error bars indicate 95% confidence interval of the mean, calculated with a mixed effects model based on multiple biological replicates in multiple measurement
campaigns (cf. Table EV2).

Source data are available online for this figure.
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biosynthesis, and higher abundance of glycolysis proteins) (Fig 5B).

When comparing persisters and starved cells, the analysis revealed

similar processes to be upregulated as between persisters and

growing cells (Fig 5B). This finding indicated—consistent with the

analysis shown in Fig 4A—that the differences between the starved

and the persister proteome lie mostly in the strength of protein

expression changes and not in the kinds of proteins being

expressed. Overall, the proteome of persisters (and to a lesser

extent also the one of starved cells) was mostly characterized by a

shift toward catabolism, as well as global stress response, compared

to exponentially growing cells.

To identify proteins that particularly contribute to the observed

phenotype of persister cells, we looked for proteins that were most

significantly correlated with the separating “dimension 1” (which

characterizes the persister-specific differences). One of these

proteins (Fig 5C and D) is EmrA, a protein involved in CCCP export

and resistance to this drug (Lewis et al, 1994), which had a 1.6-fold

higher concentration in persisters than in starved cells, eventually

explaining the higher tolerance of persisters to this drug (cf. Fig 1B).

Other notable differences included proteins involved in DNA replica-

tion, transcription, and translation. As for replication, we found

higher levels of IHF (integration host factor) in persisters compared

to both growing and starved cells (IhfA: 2.3 and 1.7-fold; IhfB: 2.4-

and 1.6-fold, respectively). As the integration host factor has been

found to enhance initiation of replication (Friedman, 1988), its

higher abundance might point to an enhanced capability to initiate

replication in persister cells, which would prime them for resuming

growth. We also found higher levels of DnaC in persisters compared

to cells growing on glucose (2.8-fold). DnaC was found to be crucial

for restarting stalled replication forks (Nusslein-Crystalla et al,

1982) and required for initiation of replication (Kaguni et al, 1985).

If indeed the higher levels of these proteins enhance the persisters

A B

Figure 4. Persisters’ and starved cells’ proteome are shaped by the same cue.
The experimental and data analysis procedure is described in the gray boxes step by step.

A PCA plot of the Escherichia coli proteomes in different conditions and time points. Each point represents a proteome in a different state. The distances between points
are inversely correlated with the similarity between proteomes (i.e. proteomes with higher correlation coefficient have a shorter distance between each other),
calculated based on differences in the expression level of each quantified protein. Green disk: cells growing on glucose, green square: cells growing on fumarate, gray
disks: cells entering persistence after glucose-to-fumarate switch, open circles: cells entering starvation from glucose, open squares: cells entering starvation from
fumarate. Time series are indicated by gray color gradients.

B The progression of changes upon entry into starvation and entry into persistence happens in the same direction in the two-dimensional space, indicating that the
same cue shapes these proteomes.
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cells’ ability to replicate DNA, then potentially, persisters are ready

to resume replication and growth.

As for translation, we found proteins involved in post-transcriptional

regulation to be increased in persisters, compared to growing

cells. Specifically, we observed higher levels of ribonucleases in

persisters: RNase I (rna, 1.6-fold), R (rnr, 2.6-fold), and E (rne, 1.4-

fold). While the two-first RNases are responsible for rRNA degrada-

tion (Kaplan & Apirion, 1974; Cheng & Deutscher, 2002), RNase R

and RNase E are also responsible for mRNA degradation, the

latter being also involved in specifically degrading transcripts

essential for growth (i.e. ftsA-ftsZ) (Cam et al, 1996; Cheng &

Deutscher, 2005). The persister proteome is also characterized by

higher levels of RMF (ribosome modulation factor, 26.4-fold),

which was found to cause the dimerization of the 70S ribosomes,

also in persisters (Cho et al, 2015), leading to global inhibition of

translation. These results suggest that in persisters, the cellular

processes of transcription and translation might be inhibited by

mechanisms extending beyond toxin–antitoxin systems. The gener-

ally stronger overexpression of the above-mentioned proteins in

persisters compared to starved cells again indicates that the main

difference between the proteomes of persister cells and starved cells

is caused by availability of nutrients and the rudimentary metabolic

activity of persisters.

Next, we aimed to identify the regulatory factors responsible for

the proteome of persisters. Here, rS and the stress response was a

good candidate, as the comparative analysis above suggested a

stress response to be specific for the persister proteome. This notion

was also in agreement with the fact that a lack of rS affected the

frequency of persister cell formation (Nguyen et al, 2011) and that

rS levels were increased in stochastically formed persister cells

(Maisonneuve et al, 2013). Indeed, we found the levels of rS to be

increased upon entry into persistence (5.5-fold difference compared

A C D

B

Figure 5. Proteome of persisters has enhanced catabolism and activation of stress response.

A Projection of E. coli proteomes in various growth and stress conditions (Schmidt et al, 2016) on the PCA space created by proteomes generated in this study.
B PCA of proteomes of persister, fumarate-growing, and glucose-growing cells (upper panel); PCA of proteomes of persister cells and starved cells growing on glucose

or fumarate before starvation (lower panel), markers as in (A). GOterms shared between the two analyses (i.e. persisters versus growing cells and persisters versus
starved cells) are indicated in bold. GOterms specific to persisters versus starved cells analysis are indicated in italics. For a ranked list of assigned GOterms, see
Appendix Table S3. See also Appendix Fig S2 showing expression levels of proteins involved in Escherichia coli central metabolic pathways.

C, D Time profiles of abundance of selected proteins that are significantly correlated with the persister phenotype in both PCA (i.e. proteins for which the correlation
coefficient had P < 0.1). Abundance relative to cells growing on glucose (C) or relative to starved cells (D). Error bars indicate one standard deviation reflecting
variation between technical replicates.

Source data are available online for this figure.
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to glucose-growing cells) as well as into starvation (3.9-fold dif-

ference compared to glucose-growing cells) and were maintained at

about 1.5 times higher level in persister cells compared to starved

cells 8 h after the medium switch (Appendix Table S4).

However, because mRNA of rS-induced genes could be subject

to post-transcriptional regulation, just from the higher abundance of

this sigma factor, we could not yet conclude that rS is truly respon-

sible for the shape of the persister proteome. However, when focus-

ing on the genes regulated by rS (Salgado et al, 2013), for which we

had protein concentrations measured, we found that 67 out of 174

proteins were more than twofold overexpressed and only 11 out of

174 were more than twofold depleted in persisters compared to

glucose-growing cells. In starved cells, we found 41 out of 174

proteins to be more than twofold overexpressed and 11 out of 174

to be more than twofold depleted compared to glucose-growing cells

(Appendix Table S5).

To establish that the changes in persister proteome were

indeed governed by rS, we performed a hypergeometric test using

known sigma factor–gene interactions, transcription factor (TF)-

gene interactions, and regulatory RNA-gene interactions (all from

the RegulonDB database; Salgado et al, 2013) on genes with at

least twofold change in protein abundance, selected by clustering

along similar profiles of protein concentration change in time

with STEM software. Here, we found that in persister cells, rS

had the lowest P-value of all regulatory factors (FDR-adjusted

P = 0.015; for all other sigma factors and TF factors as well as

regulatory RNA the P-values were higher than 0.05). This finding

indicated that the proteome changes in persister cells were largely

controlled by rS.

Consistent with the general function of stress response to limit

the demand for resources and to ensure survival (Hardiman et al,

2007; Shimizu, 2013), our PCA did not reveal any changes in the

persisters’ metabolic proteome toward adapting these cells to the

new condition (i.e. growth on fumarate in this case). The

revealed upregulation of glycolytic proteins (less than twofold

compared to glucose-growing cells, Fig 5B, Appendix Fig S2) is

not needed for growth on fumarate, as it is a gluconeogenic

substrate. In fact, the only major differences we found in central

metabolic enzymes between persister and growing cells (i.e. the

fumarate reductases and the aconitase) can be explained by the

regulatory action of rS.

Overall, we found that rS is primarily responsible for the

proteome of persisters. Because we also found that rS is upregulated

in starved cells (Appendix Table S4), the cue for entering the persis-

ter state in nutrient-rich conditions must be the same as for entering

starvation. As rS was upregulated for the whole period of our obser-

vation in persisters and starved cells (Appendix Table S4), this

suggests that the cue inducing the rS stress response must be

sustained over time. Because persisters maintain metabolic activity,

change protein expression, and grow, it is interesting to ask what is

the cue, or the factor, which causes them to perceive starvation

even though nutrients are available. Increased ppGpp levels cause

an upregulation of rS expression (Gentry et al, 1993). As we found

elevated ppGpp levels in persisters (Fig 1C), these increased ppGpp

concentrations could be the cause for the higher abundance of rS in

persister cells. However, it is still a question which mechanism

would cause ppGpp levels to be increased in persisters, and what is

the cue triggering this mechanism.

Persister cells and starved cells share a distinct metabolite
pool pattern

While the proteome of both persisters and starved cells was trig-

gered in response to likely the same cue, our physiological charac-

terization demonstrated that this signal cannot be the cells’

energetic state, or a lack of metabolic activity, because these two

features were strongly different in persisters and starved cells.

However, intracellular metabolite concentrations, which can regu-

late gene expression (cf. Kochanowski et al, 2013), could serve as

the signal triggering the stress response in persister cells present in

nutrient-rich conditions as well as in starved cells. In search for

such a metabolic cue, we measured the concentrations of 29

metabolites of central carbon metabolism as well as of energy and

redox cofactors at different time points during entry into persistence

and starvation, and in cells growing exponentially on fumarate and

on glucose.

Here, we found that compared to growth on glucose and

fumarate, the concentrations of most glycolytic and pentose phos-

phate pathway intermediates dropped one to two orders of

magnitude to concentrations in the lM range in the first 30 min

of entry into persistence and starvation (Fig 6, Table EV2). The

Figure 6. Persister and starved cells have depleted metabolite pools.
Change in metabolite concentrations in persister, starved, and fumarate-
growing cells relative to glucose-growing cells. For absolute concentrations with
error estimates and numbers of replicates, see Table EV2.
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only glycolytic metabolites with higher concentrations in persis-

ters and starved cells, compared to glucose-grown cells, were

phosphoenolpyruvate (PEP) and the PEP derivatives, phospho-

glycerates, and phenylalanine. The tricarboxylic acid cycle inter-

mediates, most probably due to fumarate as the chosen carbon

source, had higher concentrations in persisters compared to the

starved cells, as high as in fumarate-growing cells. The distinct

concentration pattern of glycolytic metabolites (i.e. extremely low

levels with the exception of increased levels of PEP and phospho-

glycerates), similar in starved cells and persister cells, could

contain the signal for the entry and sustenance of the stress

response.

Low metabolic flux causes persister formation without rS or
TAS action

On the basis of our generated data and previous persister cell stud-

ies, we developed a conceptual model for the entry into and the

sustenance of the persister state (Fig 7A). At the core of this model

is a positive feedback loop that can drive cells into and arrest them

in the persister state. According to this model, a trigger for entry into

persistence is strong perturbations of metabolic homeostasis—

perturbations beyond the intrinsic buffering capacities of enzymes

or beyond possible adjustments of enzyme levels—leading to criti-

cally lowered metabolic fluxes. At such low fluxes, a correction of

A

C D

E

B

Figure 7. Persistence is sustained through a system-level feedback loop.

A A metabolic perturbation beyond the intrinsic buffering capacity of metabolism, which results in low metabolic flux, is the trigger for persistence. Cells with critically
low metabolic fluxes get into a vicious cycle (feedback) and thus cannot restore metabolic homeostasis. The robustness of this primitive, system-level feedback loop
can be enhanced via various mechanisms, such as action of TAS, rS, or ppGpp, which lead to further inhibition of transcription and translation. The system-level
feedback loop is active until the vicious cycle is broken through restoration of metabolic homeostasis, for example, by addition of certain nutrients, stochastically
higher expression of certain flux-limiting enzymes or stochastically low expression of growth-inhibiting mechanisms.

B Fraction of growing cells (i.e. 1 � fraction of persister cells) in various knockout strains after a glucose-to-fumarate nutrient shift. White bars: BW25113-derived
strains. Gray bars: MG1655-derived strains. D10: strain with 10 TAS knockout. Statistically significant difference (t-test or Wilcoxon rank sum test for Drmf, P-
value < 0.05) between the mutants and the respective wild type is indicated with an asterisk (*). Mean of at least three replicates and standard deviations are shown.
See Appendix Table S6 for antibiotic tolerance assay results.

C Fraction of growing cells after a glucose-to-fumarate shift decreases with higher induction of rS expression in DrpoS strain. Cells were induced with IPTG at the
indicated concentrations after the nutrient shift.

D Fraction of growing cells after a glucose-to-fumarate shift increases with higher induction of DctA fumarate transporter, and thus with higher metabolic flux, in the
D10DrpoS strain. Cells were induced with the indicated IPTG concentrations for 16 h prior to the nutrient shift and after the nutrient shift. Mean of three replicates
and standard deviations are shown.

E Rapid increase in forward scatter and cell count upon addition of glucose (at 4 h after nutrient shift) indicates that persister cells can rapidly resume growth upon
externally driven restoration of metabolic homeostasis. Forward scatter distribution from three replicates, cell count mean of three replicates, and standard
deviations are shown.
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metabolism is impossible, because rates of protein synthesis could

be lower than the rates of protein degradation. As such, at critically

low metabolic fluxes, it might be impossible for cells to restart meta-

bolism or to re-adjust metabolic homeostasis. Together, these mech-

anisms could form a sort of vicious cycle (i.e. feedback) leading to

persistence (Fig 7A). It should be noted that this feedback mecha-

nism does not involve toxins and is therefore different to the one

proposed by (Klumpp et al, 2009), who suggested a toxin-based

feedback mechanism resulting in growth bistability during steady-

state growth.

Our model further suggests that the robustness of such “low-

level” vicious cycle could be enhanced by the stress response and

toxin/antitoxin systems, as well as other inhibitory mechanisms

such as RMF-induced ribosome dimerization. These mechanisms

could strengthen the feedback by inhibiting translation, transcrip-

tion, and replication, or by allocating the limiting resources (under

the perturbation of metabolic homeostasis) to stress response. Such

allocation of resources would further reduce (or prevent) metabolic

adjustments or corrections, although with the resources still avail-

able it might also be possible to attempt restoring metabolic home-

ostasis. These feedback-enhancing mechanisms would likely

ensure bacterial survival during strong perturbations of metabolic

homeostasis, by prohibiting that cells engage in “risky” metabolic

adjustments and instead invest in stress response and maintenance

given the available limited resources (indicated by low metabolic

fluxes).

On the basis of the identified characteristic metabolite pool

pattern, we hypothesize that activation of the observed stress

response could occur through a metabolite, which modulates the

activity of (or being one of the substrates for) the ppGpp synthases

RelA or SpoT leading to increased levels of ppGpp to trigger the

stringent and other stress responses. According to our model,

perturbations in components such as the TAS, rS, or ppGpp synthe-

sis should either sensitize or de-sensitize the feedback loop depend-

ing on the nature of the perturbation, but not abolish the feedback

loop between low metabolic fluxes and lack of metabolic adjust-

ment/correction. Thus, TAS, rS, or ppGpp synthase perturbations

should only modulate the fraction of persister cells, but not

eliminate them.

To test whether the currently known growth-inhibiting persis-

tence mechanisms, TAS and RMF, indeed only modulate the frac-

tion of persister cells, we switched various mutant strains from

glucose to fumarate and assessed the number of persisters

emerging: We tested Drmf (ribosome modulation factor, inhibitor

of protein synthesis) in our wild-type background (BW25113), as

well as the 10 TAS knockout strain generated in Kenn Gerdes’

laboratory (D10, Maisonneuve et al, 2011) and the respective

parental strain, MG1655. Here, we found that deleting neither

the TAS systems nor the ribosome modulation factor changed

the fraction of cells adapting to fumarate (Fig 7B), and thus, the

fractions of persisters formed. Next, we investigated the role of

rS and stress response, which, on the basis of our proteome

analyses, we speculated to have a significant role in establishing

the persister phenotype. First, consistent with the fact that the

ppGpp synthase RelA is primarily involved in amino acid starva-

tion response (Haseltine & Block, 1973), we found that its dele-

tion did not modulate the fraction of adapting cells and thus not

the amount of persisters formed (Fig 7B). This finding suggests

that here rather SpoT (the second E. coli ppGpp synthase) might

be responsible for synthesizing ppGpp and for its increased

Figure 8. Schematicmodel: Persistence and growth are two attractor states on a phenotypic landscape with the dimensions “metabolic flux” and “activity of
growth-inhibiting mechanisms”.
The blue circle denotes the normal growth state, the red circle denotes the persister state, and the gray disk indicates the position of a cell directly after a perturbation. The
magnitude of metabolic flux and the activity of growth-inhibiting mechanisms determine a cell’s position on the landscape. If a cell is on the right side of the watershed
(i.e. the hill/dotted line), it will move toward the attractor indicated by the blue disk and achieve normal growth in metabolic homeostasis. If a cell happens to be on
the left side of the watershed, it will become a persister cell. Both states are achieved through active mechanisms (that eventually also require resources/energy), as indicated
by the finding that the persister state is not equal to the starved state. Various perturbations that were found to cause persistence (for instance, stochastic TAS
induction, nutrient shift, or diauxie)move the cell on the landscape in different directions, but all of thempush it from the state ofmetabolic homeostasis beyond thewatershed.
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concentration (Fig 1C). As a deletion of spoT was never achieved

without obtaining spontaneous suppressor mutations in the relA

gene (Montero et al, 2014), and the double knockout strain

DrelADspoT cannot grow without certain amino acids (Xiao et al,

1991), we directly tested the DrpoS strain (rpoS encodes for rS).

Deleting rpoS in the BW25113 background and in the D10 strain

both significantly increased the number of cells adapting to

fumarate (t-test P-value = 0.0025 and 0.0032, respectively)

(Fig 7B) and thus decreased the number of persisters. To perturb

the system in the opposite direction, we complemented the

BW25113 DrpoS strain with a plasmid for IPTG-inducible expres-

sion of rS and switched the cells from glucose-to-fumarate

medium supplemented with different IPTG concentrations. Here,

we found that with progressively higher concentrations of IPTG

(and thus higher rS expression levels), more cells assumed the

persister phenotype (Fig 7C). These findings show that rS modu-

lates the strength of the feedback and thus the amount of persis-

ters, most probably as a response to SpoT activity. However,

persisters also occurred in absence of rS (Fig 7B). Therefore,

also rS is not essential, but still plays a role in establishing the

persister state.

Because the growth-inhibiting mechanisms currently thought

to be responsible for persister formation did not lead to complete

elimination of persister cells, these findings provide further

evidence toward the proposed metabolic flux-dependent primitive

vicious cycle forcing cells into persistence (Fig 7A). Critical

perturbations of metabolic homeostasis leading to lowered meta-

bolic fluxes could be low expression (for instance, for stochastic

reasons) of flux-controlling enzymes or nutrient transporters

(Kiviet et al, 2014), drastic nutrient shifts, reductions of nutrient

influx, or complete nutrient deprivation (for instance, during

stationary phase). In fact, it has been shown that the fraction of

persisters inversely correlated with glucose influx (Maisonneuve

et al, 2013), and with acetate or fumarate influx (Kotte et al,

2014). To test whether the entry into persistence is still metabolic

flux dependent in a strain that lacks TAS and rS, which would

provide further support for the primitive vicious cycle, we trans-

formed the D10 DrpoS strain with a plasmid for IPTG-inducible

expression of the fumarate transporter DctA, through which we

could previously modulate the metabolic flux upon shifts to

fumarate (Kotte et al, 2014). Here, we found that with increasing

DctA expression and thus increasing fumarate uptake flux, the

fraction of persisters indeed decreased (Fig 7D). This finding,

together with the fact that the D10 TAS DrpoS strain still

produced persisters upon a nutrient shift (Fig 7B), provided

further support to our model, in which the metabolic flux is the

basic factor in establishing persistence, while other mechanisms

enhance the feedback.

Finally, according to our model, a change to beneficial environ-

mental conditions should immediately break the vicious cycle by

enabling persister cells to regain homeostasis passively without

adjustment of the metabolic machinery. To test whether this is

indeed the case, we added glucose to the persister cells 4 h after the

shift to fumarate. We found that the cells indeed started growing in

size (measured via forward scatter) and in number, virtually imme-

diately after the addition of glucose (Fig 7E). This finding suggests

that the factors inhibiting persister growth can be removed on a very

short timescale.

Discussion

Using a recently proposed way to generate persisters in large

quantities, and high-throughput analytical methods, we compre-

hensively mapped the molecular phenotype of cells during

the entry and in the state of persistence in nutrient-rich

conditions. We found that E. coli persisters in nutrient-rich condi-

tions take up nutrients and grow slowly through a metabolism

that is focused on energy production, although these cells could

have utilized the available nutrient to adapt to the new

conditions and ultimately grow faster. Still, their rudimentary

metabolism accompanied by depleted metabolite pools (Fig 6) is

sufficient to generate enough ATP to sustain non-growth-

associated maintenance costs (Fig 3D) and a high adenylate energy

charge (Fig 3E). The proteome of E. coli persisters, which the

starved cells try to, but do not, reach (Fig 4A) possibly due to

lack of energy or carbon, does not show any signs of metabolic

adaptation. Instead, the persister proteome is characterized by

shift toward catabolism and stress response caused by the action

of rS (Fig 5B). Likely due to the rS-shaped proteome and the

sustained energy charge (Fig 3E), persisters in nutrient-rich condi-

tions exhibit higher tolerance to certain antibiotics in comparison

with starved cells (Fig 1B). On the basis of the generated data and

the previous findings in the field, we developed a conceptual

system-level model on the emergence of and sustenance in

persistence.

According to this model, the state of persistence and the

state of normal growth can be thought of as two attractors on

a phenotypic landscape divided by a watershed (Fig 8). Moving

on this landscape can, on the one hand, be accomplished by

changing the magnitude of metabolic fluxes and on the other

hand by altering the activity of growth-inhibiting mechanisms.

Cells in metabolic homeostasis have high flux and low activity

of growth-inhibiting mechanisms. Once the watershed is

crossed, for instance through a critically lowered metabolic

flux (i.e. caused by a nutrient shift) or a critically increased

activity of growth-inhibiting mechanisms (i.e. through stochas-

tic induction of TAS activity), cells will be attracted to the

persister state. Achieving the ultimate persister state is an

active process, which requires metabolic activity, active protein

expression and thus presence of a carbon source. A perturba-

tion that does not move the phenotypic state of the cell

beyond the watershed will allow cells to restore metabolic

homeostasis and continue to grow, not assuming the persister

state.

Our model for persistence integrates the different (and at the

first view contradicting) findings on persisters: While at the

model’s core is a flux-dependent feedback, there is a multitude of

molecular mechanisms that can modulate the feedback. Because

these two factors (metabolic flux and growth-inhibiting molecular

mechanisms) can affect persister frequency, it is of crucial impor-

tance that they are both considered when investigating bacterial

persistence, as also pointed out recently (Kaldalu et al, 2016). We

envision that our developed model, which unifies the current and

the newly obtained knowledge about persistence and creates a

system-level view on persistence, will provide an important basis

for future research toward understanding and eradicating

persisters.
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Materials and Methods

Bacterial strains used in this study

Strain Source

BW25113 Obtained from (Baba et al, 2006)

BW25113 Drmf Obtained from (Baba et al, 2006)

BW25113 DrelA Obtained from (Baba et al, 2006)

BW25113 DrpoS Obtained from (Baba et al, 2006)

BW25113
DrpoS + pNT3-rpoS

BW25113 DrpoS transformed with pNT3-rpoS
plasmid from (Saka et al, 2005)

BW25113 + pBAD-
LacY-EYFP

BW25113 transformed with pBAD-LacY-EYFP
plasmid (gift from Jonas van der Berg)

MG1655 Obtained from (Maisonneuve et al, 2011)

MG1655 D10 Obtained from (Maisonneuve et al, 2011)

MG1655 D10DrpoS MG1655 D10 with rpoS knockout transduced with
P1 phage from BW25113 DrpoS

MG1655 D10DrpoS +
pNT3-dctA

MG1655 D10DrpoS transformed with pNTR-SD-
dctA plasmid from (Saka et al, 2005)

Media and cultivation

Escherichia coli K12 strain BW25113 was used for the phenotypic

characterization. Parts of the model validation were also done with

the strain MG1655. All experiments were performed using M9 mini-

mal medium, which was prepared as previously described (Kotte

et al, 2014) or LB that was autoclaved and then filtered through a

0.2 lm polyethersulfone (PES) filter. M9 medium was supple-

mented with a carbon source to a final concentration of 5 g l�1

glucose or 2 g l�1 fumarate, unless indicated otherwise. The carbon

source stock solutions were made by dissolving the carbon source

in demineralized water, adjusting the pH to 7 with NaOH or HCl,

and filtering through a 0.2 lm PES filter. Cultivations were done in

50 ml of M9 medium in a 500-ml Erlenmeyer flask closed with a

38 mm silicone sponge closure (Bellco Glass) at 37°C, 300 rpm, and

5 cm shaking diameter. On the following day, cells were diluted into

a new culture prepared in the same way as the overnight culture,

incubated, and further diluted as needed in order to keep the cells in

mid-exponential phase.

Flow cytometric analyses

Cell counts, fluorescence intensity, and forward scatter values were

determined with an Accuri C6 flow cytometer. Cells were diluted to

an appropriate density with M9 medium without a carbon source

directly prior to analysis. The flow cytometer was set to measure

20 ll volume, with the fluidics setting set to “medium”. The SSC-H

and FSC-H thresholds were set to 500 and 8,000, respectively, in

order to cut off most of the electronic noise. The Accuri CFlow Plus

software was used for data analysis.

Antibiotic tolerance test

Cell were switched from M9 medium with glucose to M9 medium

with fumarate with (for time course experiments with ampicillin) or

without staining (for all other experiments), as described previously

(Kotte et al, 2014). Staining was performed using the PKH-67 dye

(Sigma-Aldrich). At various time points, antibiotics were added and

the cells were incubated for 2 h at 37°C with shaking. Thereafter,

0.5 ml of the culture was transferred to 50 ml pre-warmed LB

medium. Cells that resumed growth became bigger, and non-

growing cells retained their size. The fraction of cells that do not

resume growth was determined by observing cell size changes (with

flow cytometry via forward scatter, a value which correlates with

cell size) under the new conditions every 30 min from 0 to 4 h after

the transfer to LB medium. Then, fractions of non-recovering cells

from the period between 2 and 3 h were averaged for each replicate.

A control experiment without antibiotics was performed, in order to

measure the machine noise and the eventual fraction of non-

recovering cells that died not due to antibiotic action, but due to the

medium switch procedure. This level of non-recovering cells and

noise was used to normalize the results.

Relative quantification of TAS transcripts abundance

To determine the relative amount of TAS transcripts, 0.9 × 109 cells

growing on M9 medium supplemented with 5 g l�1 glucose,

1.6 × 109 cells switched to M9 medium without carbon source or

supplemented with 2 g l�1 fumarate, and 0.9 × 109 cells growing on

M9 medium supplemented with 5 g l�1 glucose that were treated in

an identical way as during a nutrient switch were mixed in a 4:1

ratio with a 5% solution of phenol in ethanol (ice-cold) and incu-

bated for 30 min on ice in order to stop RNA metabolism. Bacteria

were then centrifuged (5 min, 8,000 g, 4°C), resuspended in the

same volume of 1% solution of phenol in ethanol (ice-cold), centri-

fuged, (5 min, 8,000 g, 4°C), resuspended in the same volume of

PBS (ice-cold), and centrifuged again (5 min, 8,000 g, 4°C). Pellets

were then lysed with 150 ll of 1 mg ml�1 lysozyme solution in TE

buffer (10 mM Tris–HCl pH 8.0, 1 mM EDTA) for 5 min at RT.

Then, total RNA was extracted with 1 ml of TRIzol (Invitrogen),

followed by two extractions with 0.5 ml of chloroform. RNA was

precipitated in 1 ml of 0.3 M sodium acetate 70% ethanol solution

at �20°C for at least 16 h, pelleted by centrifugation (10 min,

12,000 g, 4°C), and washed twice with 1 ml of 75% EtOH. RNA was

then dissolved in 20 ll of RNase-free water and treated with 3 U of

DNase I for 1 h at 37°C (Turbo DNA-free, Ambion/Applied Biosys-

tems). After DNase I inactivation, RNA integrity was assessed by

agarose–TAE electrophoresis, and the yield and purity of the RNA

was determined by spectrophotometry (Nanodrop Instruments).

Genomic DNA contamination of RNA samples was ruled out by

performing a 30-cycle PCR using gapA primer pair and 150 ng of

RNA of each sample and verifying that no product was synthesized.

For cDNA library construction, 1 lg of total RNA was reverse-tran-

scribed with random hexamers using the High-Capacity cDNA

Archive kit (Applied Biosystems) in a one-step run of 10 min at

25°C, 2 h at 37°C, and 5 min at 85°C. For real-time quantitative PCR

(qPCR) analysis, 2 ng of the cDNA library as template, 0.5 lM of

each primer, and the Power SYBR Green PCR master mix (Applied

Biosystems/Life Technologies) in a 10 ll final volume were used.

qPCRs were performed in an ABI Prism 7300 instrument (Applied

Biosystems) using the following program: 10 min at 95°C; 45 cycles

of 15 s at 95°C and 1 min at 60°C; dissociation curve of 15 s at

95°C, 1 min at 60°C; and a progressive temperature increase until
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95°C. All qPCR runs included a non-template control, a mock cDNA

library produced without reverse transcriptase, and a standard curve

with different amounts cDNA. When feasible, primers were

designed using Primer Express 3.0 (Applied Biosystems), and the

quality of manually designed primers was examined with the same

software. Primers are listed in Appendix Table S6. For data analysis,

the amplification efficiency in each qPCR assay was determined

using a standard curve with 20, 4, 0.8, 0.16, 0.032, and 0 ng of

cDNA run in parallel with the test samples. The baseline and thresh-

old were set using the standard curve, and only cycle threshold (Ct)

data from the samples lying within the linear range of the standard

curve were considered. The Ct for every transcript in each sample

corresponds to the mean value of the Cts obtained in three qPCRs

run in parallel. Ct data from each sample were subtracted from the

mean Ct value obtained from bacteria growing in M9 supplemented

with glucose before the switch (DCt). These values were converted

into relative fold expression by raising the amplification efficiency

of each qPCR assay to the �DCt value. Expression data were further

normalized to the mean relative expression value of six housekeep-

ing genes (Appendix Table S7). Relative expression was assessed

in three independent biological replicates for each experimental

condition.

Determination of fumarate uptake rate of persister cells

To determine the fumarate uptake rate (FUR) of persister cells,

exponentially growing E. coli cultures on M9 medium supple-

mented with glucose were harvested, centrifuged (10 min, 4,000 g,

4°C), washed twice with M9 medium containing no carbon source,

and resuspended in M9 2 g l�1 fumarate medium resulting in a

cell concentration from 1 × 109 ml�1 to 5 × 109 ml�1. The new

cultures were incubated, and samples were taken over a period of

8 h. Cell counts in the samples were determined by flow cyto-

metry. For each sample, the medium was centrifuged (5 min,

4,000 g), filtered through a Spin-X centrifuge filter (Corning,

0.22-lm nylon membrane, 3 s, 4,000 g), and stored at 4°C. Fumarate

concentration was determined by HPLC using a Hi-Plex H ion

exchange column (MP: 0.005 M H2SO4, 0.6 ml min�1, isocratic)

and detection of UV absorbance at 210 nm. The fumarate concen-

tration was then determined with a calibration curve prepared

freshly for each experiment by dissolving appropriate amounts of

sodium fumarate in M9 medium. The time-specific uptake rate

was calculated as follows:

rti ¼ Sti�1
� Sti

ti�1 � tið ÞXti

;

where S is the fumarate concentration, t is the time elapsed from the

beginning of the experiment, and X is the cell count. Then, a gener-

alized additive model using univariate penalized cubic regression

spline smooths with eight knots was fitted to the data using R in

order to estimate the mean and error values.

Determination of oxygen and carbon dioxide transfer rates of
persister cells

Escherichia coli cultures were prepared as for fumarate uptake rate

determination. All experiments were performed in technical

triplicates using the Respiration Activity Monitoring System

(RAMOS) in special flasks filled with 26 ml of medium, shaken at

300 rpm. Cell counts and fumarate uptake rate were determined in

parallel in a separate flask at an identical cell density. Ten minutes

of rinsing time and 50 min of measurement time in the RAMOS

device were used. Then, a generalized additive model was fit to the

data using R in order to estimate the mean and error values as for

fumarate uptake rate estimation.

Determination of fumarate uptake rate and oxygen and carbon
dioxide transfer rates in growing cells

To determine the fumarate uptake rate of cells exponentially grow-

ing on fumarate, a culture containing fumarate-adapted cells was

diluted to a cell concentration that allowed for about 20 h of growth

before fumarate depletion. About 8 h prior to fumarate depletion,

samples were taken every 30 min. Cell counts in the cultures were

determined by flow cytometry. Samples for determination of fuma-

rate concentration were taken and analyzed with HPLC-UV as for

persister cells. In parallel to the culture made for fumarate uptake

rate determination, three cultures (technical triplicates) were made

to measure oxygen and carbon dioxide transfer rates. All experi-

ments were performed using the Respiration Activity Monitoring

System (RAMOS) in special flasks filled with 26 ml of medium,

shaken at 300 rpm. Ten minutes of rinsing time and 20 min of

measurement time were used. All calculations were performed by

the software package provided with the RAMOS system, which

returned time-specific total carbon dioxide and total oxygen transfer

values. The fumarate concentration-dependent fumarate uptake

rate, fumarate concentration-dependent oxygen transfer rate, fuma-

rate concentration-dependent carbon dioxide transfer rate, and

fumarate concentration-dependent growth rate were determined by

fitting the cell counts and fumarate concentration measurements, as

well as the cumulative oxygen transfer and carbon dioxide transfer

values to a model describing exponential growth of cells with a

fumarate concentration-dependent growth rate following Monod

kinetics:

dX

dt
¼ lX;

dS

dt
¼ 1

YXS
lX;

dO

dt
¼ 1

YOS
lX;

dC

dt
¼ 1

YCS
lX;

l ¼ lmaxS

KS þ S
;

where l is the growth rate, S the fumarate concentration, X the cell

count, O cumulative oxygen transfer, C cumulative CO2 transfer,

lmax the maximum growth rate, KS the Monod constant, YXS the cell

count/fumarate yield, YOS cell count/oxygen yield, and YXS the cell

count/carbon dioxide yield. The fitting was performed in MATLAB,

using MCMC toolkit (Haario et al, 2006). The fumarate uptake rate,

oxygen transfer rate, and carbon dioxide transfer rate of growing
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cells were then determined with the estimated parameter values

(� SD):

lmax ¼ 0:99� 0:05½h�1�

KS ¼ 1:53� 0:18½g l�1�

YXS ¼ 0:90� 1012 � 0:15� 1012½g�1�

YOS ¼ 1:83� 1010 � 0:58� 1010½mol�1�

YCS ¼ 1:11� 1010 � 0:31½mol�1�

and the following equations, for 2 g l�1 fumarate concentration:

rSðSÞ ¼ 1

YXS

lmaxS

KS þ S
:

rOðSÞ ¼ 1

YOS

lmaxS

KS þ S
:

rcðSÞ ¼ 1

YCS

lmaxS

KS þ S
:

Cell volume determination

Cell volume was determined by microscopy imaging of live E. coli

expressing a photo-switchable EYFP. LacY-EYFP fusion expression

from pBAD-LacY-EYFP plasmid was induced in various ways,

depending on the condition, in which cells were grown. In case of

glucose-growing cells, this was done with addition of 0.02% arabi-

nose 12 h prior to the measurements. This induction was enough to

ensure high enough levels of LacY-EYFP expression in cells that were

subsequently switched to medium with fumarate or medium without

a carbon source, without further induction in the new conditions. In

fumarate-growing cells, no induction was necessary and the leaky

expression of protein was sufficient for imaging. Microscope imaging

was performed as described before (Biteen et al, 2008). Localization

of the LacY protein indicating the localization of cell membrane was

digitized by manually selecting pixels on one side of longer cell axis,

using ImageJ. The point coordinates were then transformed in the

XY coordinate system, so the longer cell axis laid on the x-axis of the

system. Simpson’s rule was used to calculate individual cell volumes

equal to the volume of a solid of revolution (i.e. a solid created by

rotating the transformed points around the x-axis).

ppGpp concentration determination

ppGpp was quantified as described before (Traxler et al, 2008), with

slight modifications. Cultures were prepared as for fumarate uptake

rate determination. At least 2 × 1010 cells (with the exact number

determined with flow cytometry) were harvested by removing the

culture medium through fast filtration (< 60 s, 0.2-lm nylon

membrane filter, Sigma) and placing the filter with cells immedi-

ately (< 5 s) into 3 ml of 1 M formic acid pre-cooled to 0°C. The fil-

ters containing E. coli cells were rinsed by pipetting the formic acid

over the side of the filter containing the cells until all the cells were

resuspended, and cells were further incubated without the filter for

30–60 min in the formic acid at 0°C. After that, the cell suspension

was centrifuged (1 min, 21,000 g, 4°C) and the cell pellet was

discarded. Water and formic acid were removed by freeze-drying

overnight. The dried metabolites were then resuspended in 0.13 ml

of 0.1 M formic acid by vortexing and ultrasonication, centrifuged

(1 min, 21,000 g, 4°C), filtered through a Spin-X centrifuge filter

(Corning, 0.22-lm nylon membrane, 3 s, 4,000 g), and analyzed

using a HPLC-UV method with absorbance measurement at 260 nm.

A PL-SAX anion exchange column (Agilent) was used at a column

temperature of 60°C. A 35-min linear gradient of two solvents was

employed: 0 min: 100% A; 30 min: 0% A; 33 min: 0% A; 33 min:

100% A, where A: 0.01 M K2HPO4, pH 2.6, B: 0.5 M K2HPO4,

pH 3.5. The flow rate was 1 ml min�1. Peaks were quantified based

on a ppGpp standard curve (Jena Biosciences) prepared in 0.1 M

formic acid, and the intracellular concentrations were calculated

considering the number of cells harvested and the determined cell

volumes.

Metabolite concentration determination with LC-MS/MS

Cultures were prepared as for fumarate uptake rate determination.

At least 2 × 109 cells (with the exact number determined with flow

cytometry) were harvested by removing the medium through fast

filtration (< 60 s, 0.2-lm nylon membrane filter, Sigma) and placing

the filters with cells immediately (< 5 s) into 3 ml of acetonitrile,

methanol, water, and formic acid (40:40:19.9:0.1 by volume) pre-

cooled to �20°C and with U13C internal standard (see below) spiked

in. The filters containing E. coli cells were then incubated for 60–

120 min in the mixture at �20°C and, at the end of incubation time,

rinsed by pipetting the extraction mixture over the side of the filter

containing cells, until all the cells were removed from the filter. The

mixture was gathered and centrifuged (10 min, 21,000 g, 4°C).

Organic solvents were removed from the supernatant in a vacuum

concentrator (2 h, RT), and the remaining water was removed

by freeze-drying overnight. The samples were then resuspended

in water by vortexing and ultrasonication, centrifuged (2 min,

21,000 g, 4°C), and analyzed using a UHPLC-MS/MS method (injec-

tion volume of 10 ll). Quantification was done by relating the

samples’ 12C/13C peak area ratios to calibration curves constructed

using pure 12C standard in conjunction with the global U13C internal

standard. The UHPLC-MS/MS system consisted of a Dionex Ultimate

3000 RS UHPLC (Dionex, Germering, Germany) with the sample

compartment permanently cooled to 4°C, a Waters Acquity UPLC

HSS T3 column with precolumn (dimensions: 150 × 2.1 mm, parti-

cle size: 3 lm; Waters, Milford, MA, USA) was used at 50°C column

temperature. A linear binary UHPLC gradient was employed: 0 min:

100%A; 5 min: 100%A 10 min: 98%A; 11 min: 91%A; 16 min: 91%

A; 18 min: 75%A, 22 min: 75%A; 22 min: 0%A; 26 min: 0%A; 26

min: 100%A; 30 min: 100%A, where solvent A was composed of

water:MeOH 95:5, 10 mM tributylamine (2.4 ml per l), 15 mM

acetic acid (0.86 ml per l), and 1 mM 3,5-heptanedione (0.237 ml

per l), and solvent B was isopropanol. The flow rate was

0.35 ml min�1. Quantification was done via multiple reaction moni-

toring on a MDS Sciex API365 tandem mass spectrometer upgraded

to EP10+ (Ionics, Bolton, Ontario, Canada) and equipped with a

Turbo-Ionspray source (MDS Sciex, Nieuwerkerk aan den Ijssel,

Netherlands). The source parameters were as following: NEB

(nebulizing gas, N2): 12 a.u., CUR (curtain gas, N2): 12 a.u., CAD

(collision-activated dissociation gas): 4 a.u., IS (ion spray voltage):
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�4,500 V, TEM (temperature): 500°C. If concentrations were

measured in multiple campaigns, the data were analyzed with a

mixed effects model using the campaign as a nuisance variable.

Otherwise, mean and standard error were calculated normally. The
13C internal standard was prepared by growing Saccharomyces cere-

visiae on 13C uniformly labeled glucose (Cambridge Isotope Labs) as

a sole carbon source followed by quenching and metabolite

extraction as described before (Siegel et al, 2014).

Absolute protein quantification

About 1.5 × 109 growing, persister, or starved cells were centrifuged

(1 min, 16,000 g, 4°C), washed twice with ice-cold PBS, and the cell

pellet was frozen in liquid nitrogen. Cell pellets were lysed in 50 ll
lysis buffer (2% sodium doxycholate, 0.1 M ammonium bicarbon-

ate) and disrupted by two cycles of sonication for 20 s (Hielscher

ultrasonicator). Protein concentration was determined by BCA assay

(Thermo Fisher Scientific) using a small sample aliquot. Proteins

were reduced with 5 mM TCEP for 15 min at 95°C, alkylated with

10 mM iodoacetamide for 30 min in the dark at room temperature,

and quenched with 12.5 mM N-acetylcysteine. Samples were diluted

with 0.1 M ammonium bicarbonate solution to a final concentration

of 1% sodium doxycholate before digestion with trypsin (Promega)

at 37°C overnight (protein to trypsin ratio: 50:1). After digestion, the

samples were supplemented with TFA to a final concentration of

0.5% and HCl to a final concentration of 50 mM. Precipitated sodi-

um doxycholate was removed by centrifugation (15 min at 4°C at

21,000 g). Then, peptides were desalted on C18 reversed phase spin

columns according to the manufacturer’s instructions (Macrospin,

Harvard Apparatus), dried under vacuum, and stored at �80°C until

further processing.

About 1 lg of peptides of each sample was subjected to LC–MS

analysis using a dual pressure LTQ-Orbitrap Velos mass spectro-

meter connected to an electrospray ion source (both Thermo Fisher

Scientific) as described recently (Glatter et al, 2012) with a few

modifications. In brief, peptide separation was carried out using an

EASY nLC-1000 system (Thermo Fisher Scientific) equipped with

a RP-HPLC column (75 lm × 45 cm) packed in-house with C18

resin (ReproSil-Pur C18–AQ, 1.9 lm resin; Dr. Maisch GmbH,

Ammerbuch-Entringen, Germany) using a linear gradient from 95%

solvent A (0.15% formic acid, 2% acetonitrile) and 5% solvent B

(98% acetonitrile, 0.15% formic acid) to 28% solvent B over

90 min at a flow rate of 0.2 ll min�1. The data acquisition mode

was set to obtain one high-resolution MS scan in the FT part of the

mass spectrometer at a resolution of 120,000 full width at half

maximum (at m/z 400) followed by MS/MS scans in the linear ion

trap of the 20 most intense ions. The charged state screening modus

was enabled to exclude unassigned and singly charged ions and the

dynamic exclusion duration was set to 20 s. The ion accumulation

time was set to 300 ms (MS) and 50 ms (MS/MS).

For label-free quantification, the generated raw files were

imported into the Progenesis LC-MS software (Nonlinear Dynam-

ics, Version 4.0) and analyzed using the default parameter

settings. MS/MS-data were exported directly from Progenesis LC-

MS in mgf format and searched against a decoy database of the

forward and reverse sequences of the predicted proteome from

E. coli (Uniprot, download date: 15/6/2012, total of 10,388

entries) using MASCOT. The search criteria were set as following:

Full tryptic specificity was required (cleavage after lysine or

arginine residues); three missed cleavages were allowed;

carbamidomethylation (C) was set as fixed modification; oxida-

tion (M) as variable modification. The mass tolerance was set to

10 ppm for precursor ions and 0.6 Da for fragment ions. Results

from the database search were imported into Progenesis, and the

protein false discovery rate (FDR) was set to 1% using the

number of reverse hits in the dataset. The final protein lists

containing the summed peak areas of all identified peptides for

each protein, respectively, were exported from Progenesis LC-MS

and further statically analyzed using an in-house developed R

script (SafeQuant) (Glatter et al, 2012).

Principal component analysis and GOterm enrichment analysis

First, we applied two-dimensional principal component analysis

(without scaling) using the FactoMineR package for R to datasets

describing relative fold difference in protein concentrations between

all the analyzed conditions (14 conditions or three conditions at the

same time). PCA assigned two coordinates (one for each dimension)

based on correlation coefficients calculated between each and every

of the analyzed proteomes. These coordinates placed each of the

analyzed proteomes in a two-dimensional space. Proteomes not

generated in this study were then projected on the two-dimensional

PCA space. This PCA space was generated based on the proteomes

measured in this study but only using a subset of proteins that

measured both in this and the external study. Furthermore, for each

protein and each of the two new PCA dimensions, a correlation

coefficient was calculated between (1) a numerical vector contain-

ing the particular protein concentration fold-change values between

each of the analyzed proteomes and (2) a numerical vector contain-

ing the coordinate along the particular PCA dimension of each of

the analyzed proteomes. These correlation coefficients indicate

whether an increase or decrease in each protein concentration corre-

lates with the position of the proteome along the dimensions of the

PCA space. Along each correlation coefficient, a P-value indicating

whether this correlation coefficient is significantly different from 0

was calculated. Then, we created (for each of the two PCA dimen-

sions) two lists containing the protein names and P-values of their

positive or negative correlation coefficients, thus enabling us to

distinguish to which direction of the PCA dimension they contribute

(the negatively correlated proteins contribute in an opposite direc-

tion than the positively correlated proteins). Then, these lists were

supplemented with protein names that do not contribute to the

particular direction of the PCA dimension (i.e. a list with proteins

positively correlated with dimension 1 was supplemented with a list

of proteins negatively correlated with dimension 1), with P-value of

these added proteins set to 1. This supplementation was done in

order to include all the measured proteins in GOterm enrichment

analysis described below.

GOterm enrichment analysis was performed using the TopGO

package for R. GOterm-gene annotations were downloaded from

Bioconductor (the org.Eck12.e.g.db database). A protein was

selected as significant if the P-value of its correlation coefficient (see

above) was lower than 0.1. Then, GOterms were assigned using the

elim algorithm, which walks through GOterm hierarchy from the

highest to the lowest level of detail, eliminating broad GOterms

given that more detailed, child GOterms were selected. For every
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GOterm, we determined significance of its enrichment using the

GOtTest function (which considered the number of significant

proteins including their P-values), and thereby, we created a ranked

list of the enriched GOterms.

Enrichment analyses of sigma factor, transcription factor, and
sRNA activity

Activity of sigma factors, transcription factors, and sRNA was deter-

mined as previously described with small adaptations (Zampar

et al, 2013). Specifically, the subsets of regulated proteins were

selected by clustering performed with STEM software (version

1.3.8) (Ernst & Bar-Joseph, 2006), which first generated a set of

random model expression profiles (representing protein concentra-

tion change over time). Then, protein expression profiles were

assigned to the random model expression profiles based on their

correlation to these profiles. Random model expression profiles with

statistically significant number of protein profiles assigned to them

were then clustered depending on how well they correlated with

each other. This resulted in lists of proteins that changed their

concentrations significantly during the time course, clustered along

similar expression profiles. The settings used for analysis can be

found in Appendix Table S8. For enrichment analysis of sigma

factor activity, we used sigma factor–gene associations, transcrip-

tion factor–gene associations, or sRNA-gene associations from the

RegulonDB database which were supported by experimental

evidence. For each tested factor j, a P-value based on a hyper-

geometric mean was calculated:

pj ¼ 1�
Xkj�1

i¼0

Mj

i

� �
N �Mj

n� i

� �
�
N
n

� ;

where N is the total number of proteins, n—number of proteins in

the investigated subset, Mj—number of proteins associated with

sigma factor j in the complete protein list, kj—number of proteins

associated with sigma factor j in the investigated subset. The

P-value, after False Discovery Rate adjustment, is equal to the prob-

ability that the observed protein expression change occurred by

chance and not because of a real regulatory effect of the investigated

sigma factor.

Determination of fraction of persisters and growing cells

Cell were switched from M9 medium with glucose to M9 medium

with fumarate as described previously, with staining (Kotte et al,

2014). Staining was performed using the PKH-67 dye (Sigma-Aldrich).

Multiple cell count and fluorescence intensity measurements were

taken during the culturing period. The fraction of growing and non-

growing cells after the shift was determined by fitting a model of two

Gaussian distributions and of exponential growth to the measured

fluorescence intensity, as described before (Kotte et al, 2014).

Estimation of maximum ATP production rate with flux
balance analysis

A stoichiometric genome-scale metabolic network model of E. coli

metabolism (Reed et al, 2003) was constrained with the measured

extracellular rates (carbon uptake, gas exchange, and biomass

production) within their 99.5% confidence intervals. The units of

measured rates were converted from [fmol cell�1 h�1] to [mmol

gDW�1 h�1] using the measured cell volumes and assuming that

0.74 of cell mass is water (Ishkawa et al, 1995) and that the average

cell density is 1.105 kg l�1. The model was solved using GAMS with

maximization of ATP hydrolysis rate as the objective.

Accession codes

All mass spectrometry raw data files have been deposited to the

ProteomeXchange Consortium (http://proteomecentral.proteomex-

change.org) (identifier PXD001968).

Expanded View for this article is available online.
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