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Abstract

Free-living amoeba (FLA) is widely distributed in the natural environment. Since these

amoebae are widely found in various waters, they pose an important public health problem.

The aim of this study was to detect the presence of Acanthamoeba, B. mandrillaris, and N.

fowleri in various water resources by qPCR in Izmir, Turkey. A total of (n = 27) 18.24%

Acanthamoeba and (n = 4) 2.7% N. fowleri positives were detected in six different water

sources using qPCR with ITS regions (ITS1) specific primers. The resulting concentrations

varied in various water samples for Acanthamoeba in the range of 3.2x105-1.4x102 plasmid

copies/l and for N. fowleri in the range of 8x103-11x102 plasmid copies/l. The highest con-

centration of Acanthamoeba and N. fowleri was found in seawater and damp samples

respectively. All 27 Acanthamoeba isolates were identified in genotype level based on the

18S rRNA gene as T4 (51.85%), T5 (22.22%), T2 (14.81%) and T15 (11.11%). The four

positive N. fowleri isolate was confirmed by sequencing the ITS1, ITS2 and 5.8S rRNA

regions using specific primers. Four N. fowleri isolates were genotyped (three isolate as

type 2 and one isolate as type 5) and detected for the first time from water sources in Turkey.

Acanthamoeba and N. fowleri genotypes found in many natural environments are straightly

related to human populations to have pathogenic potentials that may pose a risk to human

health. Public health professionals should raise awareness on this issue, and public aware-

ness education should be provided by the assistance of civil authorities. To the best of our

knowledge, this is the first study on the quantitative detection and distribution of Acantha-

moeba and N. fowleri genotypes in various water sources in Turkey.

Introduction

Free-living amoeba (FLA) are unicellular protozoa that commonly find in soil and water

throughout the world. Free-living amoeba could be found in tap water, well water, seawater,

streams, river, swimming pools, dams, lakes, and air-conditioning systems [1]. Among the
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numerous FLA species present in nature, the most common species are Acanthamoeba, Bala-
muthia mandrillaris (B. mandrillaris), and Naegleria species, which play a role in human and

animal infections [2]. Acanthamoeba spp. and B. mandrillaris may cause granulomatous amoe-

bic encephalitis (GAE), cutaneous lesions, lung infections, and also Acanthamoeba keratitis

(AK) in immunocompetent persons. Acanthamoeba genus is divided into 22 different geno-

types based on the 18S rRNA gene, and genotype T4 is one of the most common in the envi-

ronment and the most common genotype causing human infection [3, 4]. N. fowleri causes

primary amoebic meningoencephalitis (PAM) in immunocompetent children and young

adults [1, 5].

This pathogenic FLA enters the body via nasal mucosa and/or the skin lesions and then dis-

seminate along the olfactory neuroepithelial route or by following the hematogenous spread

route they gain entry into the brain to occur infection [6]. Quantitative screening of these

amoebae in various water sources is crucial since they pose risk to human health. To date, in

vitro culture methods were used to quantitatively assessment of aquatic FLA, but there are

some limitations such as time-consuming procedure, precision, and accuracy [7]. Quantitative

real-time PCR (qPCR) assay is a method with high specificity and sensitivity useful for detect-

ing the presence of the amoebae in water resources [8, 9].

The aim of this study was to identify rapidly and accurately the presence of Acanthamoeba
spp., B. mandrillaris, and N. fowleri in various water sources by qPCR assay. Moreover, the

sensitivity, specificity, and efficiency of the qPCR were also evaluated. Finally, the water quality

parameters were measured and Acanthamoeba culture-positive samples were subjected to

osmo/thermo-tolerance test to measure their pathogenicity. In the light of the results obtained,

identified isolates were evaluated as potential risks for humans.

Material and methods

The geographical location of the study area

The study is conducted in the province of Izmir, which is the third-largest city in western Tur-

key. Izmir is located between the northern latitudes 37˚ 45’ and 39˚ 15’ and 26˚ 15’ and the

east longitudes 28˚ 20’ and have a surface area of 12.012 km2. Izmir city is in Mediterranean

climate zone and summers are also hot and dry and followed by mild and wet winters. Accord-

ing to National Meteorological Service average temperature in summertime was higher than

30˚C and highest temperature might be higher than 40˚C. While the approximate population

for 2020 was 4.394.694, this number increases even more during the summer months, since

the region is one of the important touristic areas in Turkey. There are many irrigation dams,

lakes, and ponds in this region.

Water sample collection and processing

A total of 148 water samples were collected from places within the boundaries of Izmir that

could pose a risk to people and where human contact was high. Tap water (TW), pool water

(PW), well water (WW), lake water (LW), dam water (DW), stream water (StW), seawater

(SeW), and thermal spring water (TsW) were collected from various water sources and the geo-

graphic coordinates were shown (S1 Table). Water samples were collected in approximately one

liter (lt) of the sterile glass bottles and stored at 4˚C for subsequent analyses within 24 hr.

For culture and DNA isolation one liter of water sample was concentrated by filtration using

a nitrocellulose membrane with a pore size of 0.22 μm (Sartorius Stedim Biotech, Göttingen,

Germany). The filter membrane was divided into two equal parts with the help of a sterile scal-

pel and forceps, then half of the filter was transferred into the center of the NNA plate [10].
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Analysis of water quality parameters

Water quality parameters, including total dissolved solids content (TDS), electrical conductiv-

ity (EC), and temperature were measured in situ using the portable thermometer (TDS&EC

meter hold). The temperature, TDS, and EC of the parameters indicate sensitivity in degrees

between 0.1 and 80.0˚C (Celsius), 0 and 5000 ppm (parts per million), 0 and 9990 μs/cm,

respectively. The chlorine level of the water samples was evaluated in situ using the chlorine

test kit (Sutest Liquid Test Kit). The pH of the collected water samples was determined using a

pH-meter (HI 2211–02, Hanna Instruments Inc., Woonsocket, MA, USA) in Ege University

Parasitology Department Laboratory.

Culture of free-living amoeba

After filtration of each water sample, the half of the cut filter was placed in the center of 2%

non-nutrient agar (NNA) plates previously seeded with heat killed 100 μl Escherichia coli
(ATCC 25922) bacterial suspension and the edges of the plates were sealed around with paraf-

ilm (Heathrow Scientific, Vernon Hills, IL, USA). The plates were incubated in the inverted

position at 30–32˚C and exanimated daily with the inverted microscope for 10 days. Plates

without proliferation were considered negative after a check of at least two weeks. FLA-posi-

tive plates were then sub-cultured by cutting off small pieces circled with a pen under the

microscope and transferring them to new fresh NNA plates to purifying them from other

organisms, especially fungi and yeasts. The grown of Acanthamoeba trophozoites and cysts

were characterized from other free-living amoebas. Besides, the cyst shape has been easily

identified by the double wall of the cyst and typical star shape [11, 12].

Tolerance assays for Acanthamoeba positive samples

Pathogenicity tests were repeated three times for each positive sample. The pathogen strains of

Acanthamoeba castellanii and Acanthamoeba spp. (EU266547 –T4) from Cumhuriyet and

Dokuz Eylül Universities were used as reference strains.

Osmo-tolerance assay. To investigate the effect of osmolarity of each isolate on the tro-

phozoites of Acanthamoeba (approximately 103 trophozoites/plate), trophozoites were coated

with mannitol-free E. coli and transferred to the center of NNA plates (as a control). Positive

isolates (approximately 103 trophozoites/plate) were transferred to the center of the plates by

coating the NNA plate with E. coli suspension prepared at 0.5 M and 1 M mannitol concentra-

tion. The plates were then incubated at 30˚C for 10 days and the growth of amoebae at 24, 48,

and 72 hours was evaluated. Trophozoites or cysts were counted at a microscopic magnifica-

tion at x100 of five microscopic areas of approximately 20 mm from the center of each plate.

The presence of proliferation was evaluated as (+) positive, and the absence of growth (-) as

negative [13, 14].

Thermo-tolerance assay. For the thermo-tolerance assay, the trophozoites of Acantha-
moeba spp. (approximately 103 trophozoites/plate) were transferred to the center of E. coli
coated NNA plates. These plates were incubated at 30˚C (as a control), 37˚C, and 42˚C for 10

days; It was evaluated after 24, 48, and 72 hours of the incubation. During this period, prolifer-

ation was evaluated under the microscope as mentioned in the osmo-tolerance test [13, 14].

DNA extraction from culture and filter membranes

For the DNA isolation of the amoeba from the NNA plates, which were identified as Acantha-
moeba spp. by microscopy, 2 ml of 1xPBS (Thermo Fisher Scientific, Phosphate-Buffered

Saline (PBS), pH: 7.4) buffer solution was dropped onto the plate. The amoebas from agar
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plates were collected into the tube using the sterile swab after waiting for approximately 5 min-

utes. The tubes were centrifuged at 2500 rpm for 10 min and washed with PBS buffer solution.

Acanthamoeba genomic DNA was extracted with the QIAamp DNA mini kit (Qiagen GmbH,

Germany) according to the manufacturer’s recommendations.

Half of the 0.22 μm diameter membrane of the filtered water sample was cut into several

pieces with sterile scissors and transferred to the bead tube. Total genomic DNA was extracted

using the Norgen Biotek Water RNA/DNA Purification Kit (Water RNA / DNA Norgen Bio-

tek Corp., Canada) following the manufacturer’s protocol. Briefly, after placing the filter into

the tube with beads, 500 μl Lysis buffer E was added. The tubes were vortexed for 30 sec using

FastPrep1-24 instrument (MP Biomedical). The tubes were then incubated in the thermal

block at 65˚C for 10 min. and then centrifuged at 20 000 g for 1 min. After centrifugation,

600 μl ethanol was added to the mixture and transferred to filter tubes. The filter tubes were

then washed twice with 400 μl of wash solution A and genomic DNA sample was obtained by

adding 100 μl of elution buffer H. DNA concentration and purity were measured using the

NanoDrop1 1000 spectrophotometer (NanoDrop Technologies, Wilmington, DE, USA).

DNA samples were kept at -20˚C until the PCR experiments.

Positive control plasmid for PCR

The positive control of Acanthamoeba spp. was obtained from a reference strain, which was

isolated from a human case with Acanthamoeba keratitis (GenBank No: EU266547 –T4).

DNA samples of N. fowleri and B. mandrillaris strains were obtained from the Center for Dis-

ease Control and Prevention (CDC).

The 18S rRNA gene for Acanthamoeba spp., and B. mandrillaris and the 5.8S rRNA and

ITS (ITS1 and ITS2) regions for N. fowleri were selected as targets to determine the presence of

the plasmid copy quantification in water samples [15–17]. The primers and conditions were

used for amplification are the same as those used for the LightCycler 480 PCR test described

below. A plasmid containing the PCR amplified product was commercially synthesized by Let-

gen Biotechnology Laboratory (Letgen Biotechnology, İzmir, Turkey) using the pGEM-T Vec-

tor cloning kit (Promega Corporation, Madison, WI) following the manufacturer’s

instructions. The number of copies in the plasmid solution was calculated using a NanoDrop

ND1000 spectrophotometer (NanoDrop Technologies, Wilmington, DE, USA). Serial dilu-

tions (plasmid controls ranging from 1x109 to 1x100 copies plasmid/μl) on the order of 10-fold

of 18S rRNA gene and ITS region fragment were used to generate the standard curve of con-

centrations expressed in log units (log10) versus the values obtained in amplification cycles.

Quantification analysis for each plasmid control was performed with the Light Cycler 480 II1

Thermal Cycler (Roche Diagnostic) on 96-well white LightCycler 4801multiwell plates

(Roche Diagnostics Ltd, Switzerland).

Quantitative real-time PCR (qPCR) assay

The qPCR was performed using DNA obtained from cultures and direct water filters. The

quantification of Acanthamoeba spp., B. mandrillaris, and N. fowleri DNA was performed by

using a LightCycler 480 II (Roche Diagnostics, Mannheim, Germany) Real-Time PCR Sys-

tems. The targets sequence of the 180-bp (Acanthamoeba spp), 171-bp (B. mandrillaris), and

123-bp (N. fowleri) fragments of the 18S rRNA and ITS gene regions were amplified. The

primers and the respective probes used in this study were described in S2 Table [15, 17]. Reac-

tion was performed in a final volume of a 20 μl in 96-well plates, containing 5 μl DNA template

or controls, 5 x TaqMan Master Mix (Roche), 0.25 μM each of primer and 0.2 μM of each

probe and then centrifuged at 1500 g for 2 min at 4˚C. The PCR conditions were conducted
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using the following calculated control protocol: 10 min pre-incubation step at 95˚C, followed

by 45 cycles of 10 sec at 95˚C, 1 min at 60˚C and 1 sec at 72˚C and followed by a final cooling

step at 40˚C for 30 sec.

All qPCR reactions were run using positive control (plasmid DNA), negative control DNA

(using double distilled water) and were tested in triplicate in each reaction. The Ct value (cycle

threshold) was defined as the number of cycles required for the fluorescence signal to cross the

threshold. The Ct value is inversely correlated with the quantity of DNA. A standard curve was

constructed using a series of dilutions with a known quantity of plasmid DNA standards. The

slope (S) of the standard curve was adopted as an indication of the efficiency of the real-time

PCR amplification. The efficiency (E) of the qPCR amplification was calculated according to

the equation of E = 10 (-1 /Slope)-1.

Assessment of possible the qPCR inhibition in water samples

Duplicate PCR reactions were performed to eliminate possible PCR inhibition that might arise

from water samples. One of the reactions contained only purified water sample DNA, while

the other reaction contained ten plasmid copies with the spiked into the purified water DNA

sample. To generate a cycle threshold value, three reactions containing ten plasmid control

DNA copies in distilled water were performed. The Ct values observed for the spiked water

sample with a positive control plasmid differed from the mean >40 Ct value were considered

to be indicative of PCR inhibition. The inhibited samples were diluted 10-fold and PCR was

analyzed again as described above.

DNA sequencing and phylogenetic analysis

To genotype qPCR positive samples, conventional PCR was performed for Acanthamoeba spp.

and Naegleria spp., with primers specific for 18S rRNA gene (JDP1-JDP2) and ITS region

(FW2-RV2), respectively (S2 Table) [18, 19]. PCR was performed in a total volume of 50 μl

including 25 μl of 2x PCR Master Mix, 10 pmol of each primer and 5 μl template DNA. reac-

tion was carried out in a Techne TC-3000 Thermal Cycle (Techne, Staffordshire, UK) by fol-

lowing program: an initial denaturation at 95˚C for 2 min followed by 35 cycles 95˚C for 35 s,

annealing step at 60˚C and 58˚C for 40 s for Acanthamoeba spp. and Naegleria spp. respec-

tively and final extension 3 min at 72˚C. All PCR products were separated by electrophoresis

on 2% agarose gel, stained with Safeview Classic (Applied Biological Materials Inc., Richmond,

Canada) and were photographed using an Alpha Imager HP (Alpha Innotech), on a UV trans-

illuminator. All the PCR products were purified with the QIAquick PCR purification kit (QIA-

GEN, Germany) according to the manufacturer’s instructions. Sequencing was performed by a

commercial company using an ABI automated sequencing system (Microsynth, Balgach, Swit-

zerland). The resulting sequences were alimented using ClustalW based on sequence analysis

of DF3 and ITS region as previously described [20, 21] by comparing to the available Acantha-
moeba and N. fowleri DNA sequences in GenBank database (Department of Molecular Genet-

ics, The Ohio State University, OH, USA). Phylogenetic relationship among the sequences was

made using the neighbor-joining with molecular distances under the Kimura two-parameter

distance model with the Molecular Evolutionary Genetics Analysis (MEGA X) software pro-

gram [22]. The accuracy of the phylogenetic tree was assessed by 1000 bootstrap replicate data

sets. The root of the tree was established using an outgroup (Saccamoeba lacustris GenBank

No: JN112797.1). Sequence data obtained for Acanthamoeba and N. fowleri isolates were

deposited in the GenBank database under the accession numbers MW689474–MW689500

and MW677627-MW677629, MW676178, respectively.
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Statistical analysis

The data obtained were analyzed using Mac OSX SPSS 25.0 version (SPSS Inc, Chicago, IL,

USA) software. Numerical variables were summarized using the mean and standard error of

the mean. Kolmogorov-Smirnov test was used to determine the importance of normality. The

Mann-Whitney U test was used to compare the relationship between water quality parameters

and the presence/absence of Acanthamoeba spp., and N. fowleri in environmental water sam-

ples. A value of p�0.05 was considered statistically significant.

Results

Isolation of Acanthamoeba spp. in culture

A total of 148 water samples were collected from 19 different districts of Izmir including tap

water (n = 44), well water (n = 31), pool water (n = 26), lake water (n = 18), dam water

(n = 10), stream (n = 9), seawater (n = 8) and thermal spring water (n = 2). From the total of

samples, 71 (47.97%) were found to be positive for FLA. Eighteen out of 148 water samples

(12.16%) included in this study were found positive for Acanthamoeba spp. according to

Page’s morphological analysis criteria (Fig 1). Acanthamoeba were detected in various water

sources including 12.9% (4/31) WW, 44.44% (4/9) StW, 6.81% (3/44) TW, 11.53% (3/26) PW,

11.11% (2/18) LW, and 25% (2/8) SeW (Table 1).

Pathogenic potential of Acanthamoeba spp. in positive water samples

The results of the tolerance assay of 18 Acanthamoeba isolates grown in culture were shown in

Table 2. All of the 18 Acanthamoeba isolates investigated were grown at 37˚C and 0.5 M man-

nitol. Ten (55.5%) of the isolates were grown both at 42˚C, and 1 M mannitol. Only eight

(44.4%) of the isolates were not grown at 42˚C and 1 M mannitol. Therefore, ten isolates

Fig 1. Acanthamoeba cysts and trophozoites in non-nutrient agar plate found in various water sources collected from in İzmir, Turkey. A) Acanthamoeba cysts, B)

Acanthamoeba trophozoites.

https://doi.org/10.1371/journal.pone.0256659.g001
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(55.5%) were considered potentially pathogenic, and the rest (44.4%) were classified as low

pathogenic potential.

The growth ability was evaluated by exposure at different temperatures (37˚-42˚C) and

osmolarity ranges (0.5-1M mannitol) to test the pathogenicity potential of 18 Acanthamoeba
positive samples in NNA plate culture. The isolates that can grow at high temperature (at

42˚C) and high osmolarity (1 M mannitol) were considered as potential pathogenic strains.

However, the other isolates that were able to grow at 37˚C temperature and 0.5 M osmolarity

were considered as low pathogens.

Table 1. Result of the qPCR assay and culture for Acanthamoeba spp. in various waters sources.

Water sources Sample No. Culture qPCR Mean Ct value Acanthamoeba spp. (plasmid copies/l)

N (%) N (%)

StW 9 4 44.44 4 44.44 32.9 8.8x104-7.3x102

LW 18 2 11.11 5 27.77 37.2 1.2x103-1.4x102

SeW 8 2 25 2 25 31.2 3.2x105-5.3x103

PW 26 3 11.53 6 23.07 36.8 5.3x103-1.6x102

WW 31 4 12.9 6 19.35 34.4 1.6x104-1.4x103

TW 44 3 6.81 4 9.09 36.1 1.9x104-1.8x102

Total 136 18 13.23 27 19.85

TW: Tap water, PW: Pool water, WW: Well water, LW: Lake water, StW: Stream water, SeW: Seawater

https://doi.org/10.1371/journal.pone.0256659.t001

Table 2. Thermo/osmo-tolerance assay of Acanthamoeba positive strains isolated from water samples in different districts of İzmir province.

Tolerance Assay

Strain No. Sampling area Locality NNA qPCR PCR (JDP) Species Genotype Osmo-tolerance (M, mannitol) Thermo-tolerance (˚C)

0.5 / 1 37 / 42

IWS3 Tap water Torbalı + + + Acanthamoeba sp. T4 +/+ +/+

IWS24 Tap water Torbalı + + + Acanthamoeba sp. T4 +/+ +/+

IWS30 Tap water Çeşme + + + Acanthamoeba sp. T5 +/+ +/+

IWS47 Pool water Bornova + + + Acanthamoeba sp. T2 +/- +/-

IWS56 Pool water Bornova + + + Acanthamoeba sp. T5 +/- +/-

IWS60 Pool water Bornova + + + Acanthamoeba sp. T4 +/+ +/+

IWS78 Well water Bayraklı + + + Acanthamoeba sp. T4 +/+ +/+

IWS80 Well water Dikili + + + Acanthamoeba sp. T15 +/- +/-

IWS93 Well water Bayraklı + + + Acanthamoeba sp. T4 +/+ +/+

IWS95 Well water Dikili + + + Acanthamoeba sp. T2 +/+ +/+

IWS103 Lake water Menderes + + + Acanthamoeba sp. T5 +/+ +/+

IWS114 Lake water Ödemiş + + + Acanthamoeba sp. T4 +/- +/-

IWS130 Stream water Menderes + + + Acanthamoeba sp. T2 +/- +/-

IWS132 Stream water Menderes + + + Acanthamoeba sp. T5 +/+ +/+

IWS134 Stream water Menderes + + + Acanthamoeba sp. T4 +/+ +/+

IWS136 Stream water Menderes + + + Acanthamoeba sp. T4 +/- +/-

IWS142 Seawater Çeşme + + + Acanthamoeba sp. T15 +/- +/-

IWS146 Seawater Çeşme + + + Acanthamoeba sp. T4 +/- +/-

(+): Positive samples, (-): Negative samples

https://doi.org/10.1371/journal.pone.0256659.t002
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PCR amplification efficiency (E) and standard curve

A standard curve was developed by serial dilutions of known amounts of plasmid DNA rang-

ing 109 to 100 plasmids copy from Acanthamoeba, N. fowleri, and B. mandrillaris. The standard

curve of the known plasmid concentrations and Ct values of Acanthamoeba, N. fowleri, and B.

mandrillaris was shown in Fig 2. A slope (S) of -3.37, -3.58, and -3.35 equals a PCR amplifica-

tion efficiency (E) of 97.8%, 90.2% and 98.5% for Acanthamoeba, N. fowleri and B. mandril-
laris, respectively. Moreover, the determination coefficient (R2) of 0,99, 0,99, and 0,98 were

observed for Acanthamoeba, N. fowleri, and B. mandrillaris, respectively. The lowest detection

limit for Acanthamoeba, and N. fowleri of the qPCR assay was determined as one plasmid copy

per reaction. However, the lowest detection limit for B. mandrillaris was set at 10 plasmid con-

trol DNA copies.

Quantification of Acanthamoeba and N. fowleri from various water

A total of 27/148 (18.24%) Acanthamoeba spp. and 4/148 (2.7%) N. fowleri positives were

detected in six different water sources by the qPCR assay. However, all water samples were

found negative for B. mandrillaris. The qPCR assay was applied to confirm positive samples in

terms of FLA in culture, and 18 (12.16%) Acanthamoeba and four (2.7%) N. fowleri were

found to be positive. The overall presence of Acanthamoeba spp. in various water sources were

4/9 (44.44%) in StW, 5/18 (27.77%) in LW, 2/8 (25%) in SeW, 6/26 (23.07%) in PW, 6/31

(19.35%) in WW, and 4/44 (9.09%) in TW (Table 1).

Acanthamoeba spp. were found more frequent in streams samples than tap waters. How-

ever, it could not detect in dam water and thermal spring water. The Ct value of PCR amplifi-

cation of Acanthamoeba in StW, LW, SeW, PW, WW, and TW in the ranges from 28.2 to 39.4,

and also plasmid copies concentrations of Acanthamoeba 18S rRNA gene were detected in the

range of 3.2x105-1.4x102 plasmid copies/l. In our study, the highest concentration of Acantha-
moeba was found quantitatively in seawater samples, while the lowest concentration was

found in lake water (Fig 3).

N. fowleri was detected in various water sources, 2/26 (7.69%) in PW, 1/18 (5.5%) in LW,

and 1/10 (10%) in DW samples. For various water sources in PW, LW, and DW, means of Ct
values was ranged from 35.13 to 38.13, and plasmid copies of N. fowleri were between 8x103

and 11x102 plasmid copies/l. The average highest concentration of N. fowleri was shown in

dam water (Table 3). Two water samples which sample code PW12 and LW4 were detected

positive both Acanthamoeba and N. fowleri.

Fig 2. Standard curves were generated by linear regression of the cycle threshold (Ct) versus (A) Acanthamoeba, (B) N. fowleri, and (C) B. mandrillaris plasmid control

DNAs.

https://doi.org/10.1371/journal.pone.0256659.g002

PLOS ONE Evaluation of Acanthamoeba and Naegleria fowleri in various water sources, Turkey

PLOS ONE | https://doi.org/10.1371/journal.pone.0256659 August 26, 2021 8 / 19

https://doi.org/10.1371/journal.pone.0256659.g002
https://doi.org/10.1371/journal.pone.0256659


Genotyping of Acanthamoeba spp. and N. fowleri-positives in water

samples

All 27 Acanthamoeba isolates detected positive by qPCR were subjected for PCR amplification

using JDP primer sets, which is specific for the DF3 region of the 18S rRNA gene sequences.

The sequence data obtained from Acanthamoeba isolates were aligned using Clustal W soft-

ware and were used to construct the phylogenetic tree to illustrate the relationships between

the isolates obtained and reference sequences of Acanthamoeba genotypes retrieved from Gen-

Bank (A. palestinensis genotype T2 accession nos: U07411 and L09599; A. castellanii genotype

T4 accession nos: MF806034, KT892904, MF139789,MH620482, MH620483, MK192795 and

MG969963; A. lenticulate genotype T5 accession nos: KX018036, U94730, EU377584, U94740,

U94737 and U94736; A. jacobsi genotype T15 accession nos:KX870203, KT892847, GQ905495

and MH790995; Acanthamoeba genotype T17 accession no:GU808277; Acanthamoeba geno-

type T18 accession no:KC822461). All samples showed nucleotide identity between 98% and

100% with reference strains deposited in GenBank (BLASTn) (www.ncbi.nlm.nih.gov/

BLAST). In this study, four different genotypes (T2, T4, T5, and T15) were detected in water

samples. Fourteen (51.85%) of 27 Acanthamoeba isolates were belonged to T4 genotype. The

Fig 3. DNA quantity of Acanthamoeba plasmid copies determined by qPCR assay in various water sources from

İzmir, Turkey.

https://doi.org/10.1371/journal.pone.0256659.g003

Table 3. Result of the qPCR assay for Naegleria fowleri in various waters.

Strain No. Sample code Mean Ct value N. fowleri (plasmid copies/l)

IWS52 PW8 38.13 11 x102

IWS56 PW12 37.71 15 x102

IWS105 LW4 36.68 3 x103

IWS120 DW1 35.13 8 x103

IWS: Izmir water sample, PW: Pool water, LW: Lake water, DW: Dam water

https://doi.org/10.1371/journal.pone.0256659.t003
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remaining isolates were belonging to T5 genotype 6/27 (22.22%), T2 genotype 4/27 (14.81%)

and T15 genotype 3/27 (11.11%). The distribution of Acanthamoeba genotypes according to

different districts of İzmir province and various water resources was showed in Fig 4 and

Table 4. According to the phylogenetic tree, Acanthamoeba isolates T4 obtained from various

water sources were grouped within the clade including the other sequences of Acanthamoeba
castellanii complex available from Genbank. Six isolates (IWS_132, IWS_79, IWS_30,

IWS_56, IWS_68, IWS_103) were found to be Acanthamoeba genotype T5 revealing 98%

sequence identity to various T5 reference strain. Phylogenetic tree showed that three isolates

(IWS_61, IWS_80 and IWS_142) were strictly related with Acanthamoeba T15 genotype cho-

sen as references with 100% of identity, four isolates (IWS_14, IWS_47, IWS_95 and

IWS_130) T2 genotype with 98% of identity with the T2 sequence references (Fig 5).

Four positive samples detected N. fowleri by qPCR were shown to be 99–100% nucleotide

identity with references isolates in GenBank (N. fowleri accession nos: AJ132028, X96565,

AJ132019 and X96564). Genotypic differences of N. fowleri can be distinguished based on a

one bp transition in 5.8S rRNA and the length of the internally transcribed spacer (1) [23].

Among the N. fowleri positive water samples (DW1, LW1and PW12), three of them do have T

at position 31 in the 5.8S rRNA, and the ITS1 length was 42 bp, so these were identified as

belonging to type 2. However, in one N. fowleri (PW8) sample, the sequence C has not changed

to T at position 31 in 5.8S rRNA and the ITS1 length was found to be 84 bp with a two bp dele-

tion in the sequence of repeat. According to obtained data this sample was identified as type 5

(Table 5). The phylogenetic tree was shown using neighbor-joining models of 5.8S rRNA,

ITS1, and ITS2 sequence data for Naegleria spp. (Fig 6). According to the phylogenetic tree, N.

Fig 4. The distribution of Acanthamoeba genotypes according to different districts of İzmir province and various water resources.

https://doi.org/10.1371/journal.pone.0256659.g004
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fowleri isolates obtained from various water sources were grouped within the clade including

the other sequences of N. fowleri genotypes available from GenBank. Three isolates (LW1,

DW1 and PW12) were found to be N. fowleri type 2 revealing 100% sequence identity to vari-

ous N. fowleri type 2 reference strains (N. fowleri type 2 accession nos: AJ132019 and X96564).

However, phylogenetic tree showed that one isolates (PW8) were strictly related with N. fowleri
type 5 chosen as references (N. fowleri type 5 accession nos: AJ132028 and X96565) with 99%

of identity. In the present study, N. fowleri type 2 and type 5 were identified in water samples

for the first in Turkey.

Associations between Acanthamoeba and water quality parameter variables

A non-parametric test was conducted to determine the relationship between five different

water quality parameters and the presence/absence of Acanthamoeba in various water sources.

The result of the non-parametric statistical test was shown in Table 6. A significant relation-

ship with Mann-Whitney U test was found between the presence/absence of Acanthamoeba
spp. and pH values from well water and also EC-TDS values from pool water, lake water, and

sea waters (p<0.05).

Discussion

Among the FLA, Acanthamoeba spp., N. fowleri, and B. mandrillaris are eukaryotic protists

widely found in many places of the world. These FLAs can potentially cause opportunistic/

non-opportunistic infections in humans and animals [1, 24]. Recently, they have received

increasing attention in the medical and scientific world due to the serious fatal infections in

humans. The impact of Acanthamoeba and N. fowleri on human health is associated with the

genotypes of these pathogens and their reproduction in water and soil resources, a natural res-

ervoir location. Therefore, preventive, and investigational monitoring programs for measuring

the density of Acanthamoeba and N. fowleri are important in aquatic environments with

human exposure, which can be achieved with real-time qPCR [3]. This study was occurred the

quantify presence of Acanthamoeba and N. fowleri from various water sources in province

İzmir, Turkey. Acanthamoeba spp. were found positive ranging from 4.4% to 50% in various

water sources such as tap water, ponds, rivers, streams, and water wells in Turkey [25–29].

Acanthamoeba was detected positively 17.3%, 28.8%, 15.9% and 42.9% in Jamaica, Iran, Thai-

land, and Uganda in tap water sources, respectively [30–33]. The results of this study which

indicate that the Acanthamoeba spp. occurrence in various water sources (18.24%) are similar

to those results obtained in the America, Brazil, and Japan Jamaica, Iran, Thailand, Turkey. In

previous reports, Naegleria spp. was found in various water sources worldwide at 0.6%–60.9%

all over the world, and 0.7–10% in Turkey. [26, 34, 35]. We conclude that Naegleria spp. and

Table 4. Distribution of Acanthamoeba genotype in various water sources.

Genotype Total LW WW TW StW PW SeW

% n

T4 51.85 14 4 3 2 2 2 1

T5 22.22 6 1 1 1 1 1

T2 14.81 4 1 1 1 1

T15 11.11 3 1 1 1

Total 100 27 5 6 4 4 5 2

TW: Tap water, PW: Pool water, WW: Well water, LW: Lake water, StW: Stream water, SeW: Seawater

https://doi.org/10.1371/journal.pone.0256659.t004
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Fig 5. Phylogenetic tree inferred using neighbor-joining models of the 18S rRNA gene DF3 region sequence data for the Acanthamoeba genotypes by

MEGA X. Bootstrap values are based on 1000 replicates and the root of the tree evaluated by an outgroup Saccamoeba lacustris.

https://doi.org/10.1371/journal.pone.0256659.g005
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Table 5. Base length and position of ITS1, ITS2 and 5.8S rRNA sequences of references strains and all the positive isolates in this study.

Isolate Genotype ITS1 5.8S Position 31 in 5.8S ITS2 Total length Accession number Reference

7853 T1 42 175 C 106 323 AY376149 [1]

AR12 T2 42 175 T 106 323 X96564 [2]

LEE T3 86 175 T 106 367 X96562 [2]

Ch2-1-f2 T4 86 175 T 106 367 AJ132030 [3]

Na 420c T5 84 175 C 106 365 AJ132028 [3]

J2B2 T6 114 175 C 106 395 FR875287 [4]

M4E T7 142 175 T 106 423 X96563 [2]

C0504 T8 130 175 T 106 411 FR875288 [4]

DW1 T2 42 175 T 106 323 MW677629 This study

LW1 T2 42 175 T 106 323 MW677627 This study

PW12 T2 42 175 T 106 323 MW676178 This study

PW8 T5 84 175 C 106 365 MW677628 This study

[1] Zhou et al., 2003.

[2] De Jonckheere, 1998.

[3] Pélandakis et al., 2000.

[4] De Jonckheere, unpublished.

https://doi.org/10.1371/journal.pone.0256659.t005

Fig 6. Phylogenetic tree of Naegleria isolates for the ITS sequences. Phylogenetic tree inferred using neighbor-

joining cluster analysis of the sequence obtained and the sequences from ITS1, 5.8S rRNA and ITS2 sequences of

various Naegleria strains, with special reference to N. fowleri produced in MEGA X. Bootstrap values are based on 1000

replicates.

https://doi.org/10.1371/journal.pone.0256659.g006
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Acanthamoeba spp. are free-living amoebas that have suitable growth in various water sources

worldwide, but detection rates at different regions may be influenced by water types and geo-

graphical conditions.

The qPCR assay is a method that can effectively detect and quantify amoeba even it was

failed to culture due to low sample. However, standard curves characterizing the relationship

between plasmid copy number and qPCR data can facilitate the quantification of microorgan-

isms in environmental water samples [8, 17]. In this study, the lowest detection limit (one plas-

mid copy) was detected for Acanthamoeba and N. fowleri for each reaction by qPCR method.

In previous reports, similar results was identified the lowest detection limit of one plasmid

copy DNA [9]. In this study, the quantitative amount of Acanthamoeba spp. DNA obtained

from direct water samples was ranged from 3.2x105 to 1.4x102 plasmid copies/l. In previous

studies performed in Germany and Taiwan, Acanthamoeba spp. was reported to range from

2.0–3.0×103 and 2.0×102–9.0×104 and 3.4–5.0×103−2.2–1.4×103 amoebae/l, respectively [8,

36]. We thought that might be the reason why Acanthamoeba is detected in high concentra-

tions in seawater samples is due to the mixing of sewage wastes or industrial wastewater to the

beaches. Moreover, The World Health Organization (WHO 2006) reported the presence of

Acanthamoeba in seawater to be associated with sewage and waste effluent outlets. Lorenzo-

Morales et al. reported the high rate of isolation (49.6% and 64.0%) for Acanthamoeba in sea-

water due to the sewage-waste and industrial effluent [30, 37]. In our study, the quantitative

amount of N. fowleri in dam, lake, and pool water samples was determined as between 11x102

and 8.0x103 plasmid copies/l. Recent study performed in Belgium was reported that Naegleria
spp. in cooling water samples was 6.3x102–4.1x103 cells/l [7]. In Australia, Naegleria spp. have

been reported in the range of 4–3.4×102 cells/l in the drinking water sample [38]. Naegleria
spp. concentration has been reported in the range of 1.1–24.2 cells/l in hot spring and drinking

water samples in Taiwan [39].

Up to date, 22 genotypes (T1-22) of Acanthamoeba have been identified as a result of the

sequence analysis of the DF3 region of the 18S rRNA gene, but this classification containing

both pathogens and non-pathogens genotypes [3, 40]. Among these genotypes, it has been

reported that the T4 genotype was found the most common in environmental and clinical

samples and is the pathogen of different diseases (AK, GAE, skin lesions) [5, 41]. Furthermore,

the other genotypes including T2, T3, T5, T6, T10, T11, T12, T15, and T18 was reported the

association with human infections [1, 42, 43]. In our study, genotype T4 (51.85%) was deter-

mined as the most common genotype in water samples. Apart from that, T5 (22.22%), T2

Table 6. Result of non-parametric test showing the relationship between five different water quality parameters and the presence/absence of Acanthamoeba spp. in

various water sources.

Water quality parameters Mann-Whitney U test

TW PW WW LW StW SeW

pH value P = 0,390 P = 0,223 P = 0,004
�

P = 0,692 P = 0,135 P = 0,495
Temperature (˚C) P = 0,744 P = 0,271 P = 0,515 P = 0,235 P = 0,618 P = 0,495
Free Cl (ppm (mg/l)) P = 0,163 P = 1,000 P = 0,118 P = 1,000 P = 0,091 P = 1,000
a EC (0–9990 μs/cm) P = 0,624 P = 0,002� P = 0,146 P = 0,002� P = 0,135 P = 0,008�
b TDS (0–9990 ppm) P = 0,540 P = 0,002� P = 0,051 P = 0,002� P = 0,618 P = 0,040�

a Electrical conductivity,
b Total dissolved solids

� Statistically significant p< 0.05
TW: Tap water, PW: Pool water, WW: Well water, LW: Lake water, StW: Stream water, SeW: Seawater

https://doi.org/10.1371/journal.pone.0256659.t006
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(14.81%), and T15 (11.11%) genotypes were detected in water samples. In earlier studies, geno-

types T1, T2, T3, T4, and T7 of Acanthamoeba spp. were detected in freshwater resources in

Egypt [44]. In another study, the genotype T4 (51%), as well as T14 (18%), T5 (11%), T3, T15,

T16 and T10 (4% per each), T11 (3%) and T7, T9 (1% per each) was reported the most com-

mon genotype in water samples in Tunisia [45]. The most common genotypes, T4 (93.7%) and

T2 (6.25%) were determined in the geothermal river in the southwest of Iran by Niyyati et al.

[46]. The most common T4 and T2, T3, T5, T11, T15 genotypes of Acanthamoeba were

detected in environmental water samples in Turkey [34, 47–50]. In the previous study T4 and

T5 genotypes were reported in keratitis wild birds in İzmir [51]. Moreover, Acanthamoeba T4

genotypes were detected in corneal scraping samples taken from patients with suspected

Acanthamoeba keratitis in Turkey [52, 53]. Acanthamoeba genotypes T4 and T5 commonly

found in environmental samples pose a greater risk to humans and animals.

N. fowleri, which is the pathogen type of the Naegleria genus for humans, causes fatal PAM.

N. fowleri is also a protist pathogen widely found in the environment including rivers, lakes,

dams, hot springs, geothermal springs, untreated and treated domestic water sources, and

swimming pools [54, 55]. In this study, N. fowleri was found positive for the first time in envi-

ronmental water resources collected in İzmir province, Turkey. N. fowleri was found positively

in various water sources including in 7.69% (2/26) pool water, 10% (1/10) dam water and 5.5%

(1/18) lake water. The presence of Naegleria species has been reported to be positively detected

in environmental water samples at a rate of 13.2–60.9% in Europe, 3–46% in the USA and 0.6–

56.9% in Asia [7, 56–58]. Up to date, there are 47 species in the genus of Naegleria and also

eight genotype of N. fowleri [58, 59] were identified. N. fowleri genotypes are characterized that

difference 1, 2, 3, and 4 types are the only C to T transition at position 31 in the 5.8S rRNA

sequence, because of the equal of the ITS lengths. However, N. fowleri type 5 has not identical

the ITS1 lengths with the T at position 31 in the 5.8S rRNA sequence [23, 60, 61]. In this study

N. fowleri type 2 and type 5 were isolated for the first time from water sources in Turkey. N.

fowleri type 2 and 3 have been reported in many patients and water samples worldwide. Type

2, 3, 4, 5, 6, 7, and 8 in Europe, types 1, 2, and 3 in the USA, types 2 and 3 in Asia and only one

type of type 5 in the Western Pacific (Oceania and Japan) has been found in human specimens

and water samples [18, 23, 62]. Since there are a limited number of studies typing N. fowleri,
the information about the pathogenicity of the types is insufficient. However, there is not yet

conclusive evidence of any difference in virulence for any of the detected N. fowleri types. It is

likely to be detected in humans, as types 2, 3, and 5 are the most common in waters.

Conclusions

In conclusion, the present study reports both the presence and the concentration of Acantha-
moeba and N. fowleri in various water sources and demonstrates their rapidly determination

by qPCR. Although the presence of Acanthamoeba was found higher in stream samples, the

quantitative value of Acanthamoeba was detected higher in seawater samples. Therefore, it

should be kept in mind that it may pose a risk for people during sea activities in summer in

Izmir, which is a holiday region. Acanthamoeba T4 and T5 genotypes, which are commonly

detected as causal agents of AK and GAE infection, were found at a high rate in various water

sources in our study. In this study, N. fowleri type 2 and type 5 were isolated the first time from

water sources in Turkey. Since the genotypes of Acanthamoeba spp. and N. fowleri types can

be detected in many environments, they have pathogenic potentials that may pose a risk to

human health. For this reason, a mandatory inspection is necessary, especially in potable

waters, as it may pose a risk to people in swimming and recreational waters. In this study, the

presence of pathogenic potential of the identified strains has been revealed. However, further
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studies needs to be done using environmental samples across Turkey. Also, clinicians and pub-

lic health professionals should increase awareness about these issues by the help of civilian

authorities.
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