
1Scientific RepoRts | 5:11726 | DOi: 10.1038/srep11726

www.nature.com/scientificreports

Direct measurement on the 
geometric phase of a double 
quantum dot qubit via quantum 
point contact device
Bao Liu1, Feng-Yang Zhang2, Jie Song3 & He-Shan Song4

We propose a direct measurement scheme to read out the geometric phase of a coupled double 
quantum dot system via a quantum point contact(QPC) device. An effective expression of the 
geometric phase has been derived, which relates the geometric phase of the double quantum dot 
qubit to the current through QPC device. All the parameters in our expression are measurable or 
tunable in experiment. Moreover, since the measurement process affects the state of the qubit 
slightly, the geometric phase can be protected. The feasibility of the scheme has been analyzed. 
Further, as an example, we simulate the geometrical phase of a qubit when the QPC device is 
replaced by a single electron transistor(SET).

In recent years, quantum computation and quantum information are developing rapidly. As a result peo-
ple have devoted much effort in searching for physical settings as quantum bits, such as quantum optical 
system1,2, diamond NV center3–5 and quantum dot system6–8. Quantum dot is a promising candidate of 
solid-state qubit. The number of charges, which confined in a quantum dot can be controlled by electrical 
gates surrounding it. Quantum dot has the merit that the charges and spins confined in it can be directly 
manipulated optically or electrically, and has a long coherent time.

The fluctuation of charges or nuclear spins will diminish the coherence time of quantum dot qubits9,10. 
Combating decoherence is an critical task in quantum memory. Geometric phase, which is robust to the 
fluctuation of the bath, is an important resource to construct phase gates9,11 in quantum information 
systems.

Theoretically geometric phase was discovered in context of adiabatic and cyclic closed quantum sys-
tem by Berry in 198412, and then it has been generalized to non-adiabatic cyclic system, non-adiabatic 
and non-cyclic system13–21. Recently, Yin and Tong have studied the effect of the environment on the 
geometric phase in open quantum dot qubit system22,23. However, the methods to get the geometric phase 
are mainly by interference effect of the system. As the method proposed by Pancharatnam, in a quantum 
optical system, people usually need to compare phases of two beams of polarized light. The measurement 
of the geometric phase always lead to the destruction of information carried by the quantum system. 
Therefore, to propose a scheme that the geometric phase can be measured without spoiling information 
embedded in quantum system is very important and interesting for the fundamental concepts of quan-
tum theory and the quantum information process.

In this paper by studying a well known model we propose a direct measurement scheme on the 
geometric phase via the current through the QPC device. Since the QPC affects the quantum state of the 
double quantum dot system slightly24,25, the read out operation conserves the phase information. Then 
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we studied the feasibility of the scheme. As an example of our theory we simulate the geometric phase 
when the QPC device is replaced by a SET.

Results
Model and master equation. Our model composed by a double quantum dot qubit and a QPC 
device as shown in Fig. 1. Two quantum dots in the qubit are coupled to each other with the strength Ω 0. 
We assume that there is only one energy level in each quantum dot(E1 and E2). One electron is confined 
in the qubit and tunnels between these two levels. The QPC device contains two leads. The chemical 
potential of the left lead μL is higher than that of the right lead μR. Therefore, electrons can tunnel from 
left lead to right lead. The qubit interacts with the QPC device by changing the coupling strength between 
two leads. When the electron in the qubit occupies E2 state, the coupling strength between two leads is 
Ω . Once the electron jumps to E1 state, the coupling strength will be changed to Ω ′ . At low temperature 
two leads of the QPC are filled to their Fermi energies by electrons. The Hamiltonian of our model reads
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where ai and ai
†(i =  1, 2) are the annihilation and creation operators of the electron confined in the qubit. 

While cl/r and cl r/
†  are the annihilation and creation operators of the electrons in the left/right lead, 

respectively. Here El/r is the energy of left/right lead. We defined δΩ  =  Ω  −  Ω ′ . Hs, Hd are the Hamiltonian 

Figure 1. A typical model for quantum point contact measurement. In this model the energy level of 
the two quantum dot are E1 and E2 respectively. Ω 0 is the coupling coefficient of the qubit. The potential 
between electrodes varies dependent on the place of the electron on the qubit.
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of the qubit and the QPC device, respectively. The QPC is connected to a large electron source. Therefore, 
the Fermi energy of each lead is not changed by the tunneling between two leads. And the voltage Vd 
between two leads is a constant. Hi describes the interaction between the qubit and the QPC device. 
Hence, there is no electron tunnels between leads and the qubit.

Since the the whole system contains qubit and QPC device is a closed system. From the Schödinger 
equation of the whole system t H tt∂ Ψ( ) = Ψ( ) , and the method proposed by Gurvitz26–29, we obtain 
a hierarchical equation of the qubit

ρ ρ ρ ρ ρ= − ′ + ′ + Ω ( − ), ( )( ) ( ) ( − ) ( ) ( )
 D D i 4n n n n n

11 11 11
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In these expressions ρ is the reduced density matrix of the qubit. The bases of ρ are |1〉  and |2〉 , where 
|i〉  means the electron in the qubit occupies Ei(i =  1, 2) energy level. Hence, the superscription n counts 
the number of electrons, which passed the QPC30,31. Here D =  2π|Ω |2ρlρrVd(D′  =  2π|Ω ′ |2ρlρrVd) is the 
coupling strength between the two leads when the electron in the qubit occupies E2(E1) energy level. We 
have used ρl/r to describe the density of states of the left/right lead32,33.

Sum of the superscriptions of the hierarchical equation we obtain a master equation of the qubit as
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This master equation can be abbreviated to

ρ ρ ρ= − , − ( ), ( ) i H[ ] 1
2 10s

where  dρ σσ ρσ σ σ σρσσ( ) = Γ ( + )† † † †  is the dissipative part. We have defined D Dd
2Γ = ( − ′ )  

as the decoherence rate of the qubit. Hence, σ =  |E1〉 〈 E2| is the pseudospin operator of the qubit.
Further, we can obtain the current through the QPC device as

I D D 1111 22ρ ρ= ′ + . ( )

Direct measurement scheme on geometric phase. We use the formula proposed by Tong et al. 
in Refs. 18,19 to calculate the geometric phase of the qubit. The geometric phase of a two level system 
can be written as
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where ωk(0), ωk(τ) and |Ψ k(0)〉 , |Ψ k(τ)〉 (k =  1, 2) are the instantaneous eigenvalues and eigenvectors 
of the qubit at time t =  0, τ. For simplicity the initial condition of the qubit is taken as ρ11 =  1 and 
ρ22 =  ρ12 =  ρ21 =  0. Under this initial condition the geometric phase of the qubit is
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An arbitrary density matrix of a two level system can maps in a Bloch sphere
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where r is the length of the Bloch vector. We have defined θ(zenith angle) and φ(azimuth angle) to depict 
the direction of the Bloch vector. Without lose of generality, we obtain the instantaneous eigenvalues and 
the eigenvactors of an arbitrary two level system as
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The initial condition of the qubit implies that ω1(0) =  1, ω2(0) =  0 and 0 1 0 T
1Ψ ( ) = ( , ) , 0 0 1 T

2Ψ ( ) = ( , ) . 
Therefore, the geometric phase of our system reads
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Finally, with our method we obtain a simple expression of the geometrical phase, which relates the 
geometric phase of the qubit to the current through the QPC device.

I D
D I

dt
2 180∫γ τ( ) =
Δ − ′

−
. ( )

τ

Here Δ  =  E2 −  E1 is the energy difference between the two levels in the qubit.
It has a very important merit that all the parameters in the expression are observable and can be 

measured or tuned in experiment. From the expression of the current Eq. (11) we find that D(D′ ) is 
nothing but the current through the QPC when the electron in the qubit occupies E2(E1) energy level. 
We can trap the electron in the qubit in E2(E1) by the gate electrode between these two dots, while the 
current through the QPC device is D(D′ ). Hence, Δ  can be tuned by the back electrodes behind the two 
quantum dots. The formula Eq. (18) is feasible when the qubit is weakly measured. Moreover, since the 
QPC device does not damage the state of the qubit, our measurement scheme can protect the informa-
tion of geometric phase against destruction.

In Fig.  2 we show the geometric phases of the qubit(red solid line) and the results from Eq. 
(18)(dash-dot line). In these two figures we take modulus of the geometrical phase γ(τ) by π and take 
π as a unit. The parameters are chosen as Ω 0 =  2, Δ  =  4 and D =  1. In the upper figure the geometric 
phase from Eq. (18) matches the exact solution well. The lower figure shows, the geometric phase from 
our formula differs gradually from the actual one as D′  decreases.

The feasibility of the measurement scheme. In this section we proceed to analyze the feasibility 
of our direct measurement scheme. There are two major factors affecting the measurement result of the 
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Figure 2. In these figures we compare the geometric phases from Eq. (18)(dash-dot line) and the exact 
ones(red solid line). The parameters are chosen as Ω 0 =  2, Δ  =  4 and D =  1. In upper and lower figure 
D′  =  0.9D and D′  =  0.8D, respectively.
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scheme. One is the length change of Bloch vector. If it varies too fast the approximation we used will be 
invalid. The other one is the current quality measured by the QPC device.

We first analyze the influence of the length change of the Bloch vector. We rewrite Eq. (31) in spher-
ical polar coordinate as
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In Eq. (18) we have assumed that the length change of the Bloch vector is slow enough. The slower 
the length change of Bloch vector the more accurate Eq. (18) will be. According to Eq. (22), the length 
change of the Bloch vector is affected by Γ d and θ. A small Γ d can be obtained via diminishing the dif-
ference of the distances between the QPC and two quantum dots of the qubit. The second factor affecting 
the length change of Bloch vector is the path trace of the qubit in Bloch spere. During the evolution, 
the smaller θ is the more slowly r diminishes. To keep θ small, we need a properly large Δ . Therefor the 
path trace of the qubit in Bloch sphere approaches the north pole.

The other factor to affect the feasibility of Eq. (18) is the quality of the QPC current. According to 
Ref. 34 the Signal-to-Noise ratio of our model can be expressed as  D D
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Where 
2
dΓ = Γ , 4r

2
0
2ω = Δ + Ω  To obtain a high quality measurement current we need a smaller 

difference between D and D′ . This result is consistent with the analysis above.

An application of the direct measurement scheme. Recently, Yin and Tong have studied the 
effects of environment parameters on the geometric phase of quantum dot systems22,23. Moreover, in Ref. 
23 a model similar to ours is studied, in which the QPC device is replaced by a SET. In this section, as 
an application of our scheme we investigate how to simulate the time evolution of the geometric phase 
in this model via Eq. (18). Further, We provide a method to determine the parameters, with which we 
can obtain the geometric phase from our model.

In case that there is no backaction23. With definitions  111 22 11 22ρ ρ= − = +  and 
 12 21 13 24ρ ρ= = +⁎  the master equation can be simplified as

ρ ρ ρ= − ( − ), ( ) is 2311 12 21

ρ ρ ρ= − ( − ), ( ) is 2422 21 12

ρ ρ ρ ρ= − − ( − ) − , ( ) ϵi is iU 2512 0 12 11 22 24

   ρ= −(Γ + Γ + + ) + Γ − ( − ). ( ) ϵi iU is 26L R L24 0 24 12 22 44

For simplicity, here we choose a condition that the coupling strength of the left lead to QD0 is smaller 
than the strength of DQ0 to right lead(Γ L =  1, Γ R =  8). Under this condition QD0 have a very small prob-
ability to be occupied. Therefore,   022 44− 

 and the variation of 24 is very little, namely,  024� � . 
Hence, we can adiabatically replace 24 in Eq. (25) by �

εi iU24 12
L

L R 0
ρ= Γ

Γ + Γ + +
. Then we obtain an effec-

tive equation of motion as
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Obviously, this master equation have a similar form as Eq. (7–9). Hence, these two master equations 
have the same steady state. Therefore, we can simulate the time evolution of geometric phase with Eq. 
(18).  Comparing these two master equations we obtain parameters Ω 0 =  − s 
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, with which we can obtain the geometric phase from our setup.

In Fig. 3 we compare the exact geometric phase from the model of Ref. 23 (red solid line) and the 
result from Eq. (18) (dash-dot line). In this figure the parameters are chosen as s =  2, 0 =  5, Γ L =  1, 
Γ R =  8 and U =  0.1.

Discussion
In conclusion, we have proposed a direct measurement scheme on the geometric phase of a double quan-
tum dot qubit via the QPC current. An effective formula, which relates the geometric phase to the QPC 
current has been derived. All parameters in our expression are measurable in experiment. Moreover, 
since the QPC device affects the state of the qubit slightly, our measurement procession protects the 
geometric phase from destruction. The feasibility of the scheme has been studied. When the QPC meas-
urement is weak, the measurement scheme will be feasible. As an application of our theory, we simulate 
the evolution of the geometric phase of the model in Ref. 23, in which the QPC is replaced by a SET. This 
simulation shows the usefulness of our scheme. This investigation should be helpful to design experiment 
setups based on quantum dot systems, which can measure the information of geometric phase without 
damaging the phase.

Methods
For Eq. (18), we map master equation Eq. (10) onto the Bloch sphere. Under the Cartesian coordinate 
system the new master equation in this space is
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Figure 3. In this figure we simulate the time evolution of geometric phase of Yin and Tong’s model(red 
solid line) with Eq. (18)(dash-dot line). The parameters are chosen as s =  2, 0 =  5, Γ L =  1, Γ R =   8 and 
U =  0.1.
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Here we define rx =  ρ12 +  ρ21, ry =  i(ρ12 −  ρ21), rz =  ρ11 −  ρ22, ω =  2Ω 0 and Δ  =  E2 −  E1. Under spherical 
polar coordinate system we have rx =  r cosθ cosφ, ry =  r sinθ sinφ and rz =  r cosθ. Master equation Eq. 
(30) can be rewritten as
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If the decoherence rate Γ d is small. In a short time scale, the path trace of Eq. (30) approximately 
parallel to the path trace of a close system, where Γ d =  0. We first study the dynamics of this close system. 
Under initial condition ρ11 =  1 and ρ22 =  ρ12 =  ρ21 =  0, the solution of the closed system reads
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2 2ω ω= Δ +  is the Rabi frequency of the qubit. The path trace in Bloch sphere when 
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Further, since the orbit is perpendicular to the yoz plane, we can parameterize the projection of the 
orbit on xoz coordinate plane
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According to the initial condition we have

r r 1 35x zω
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If the length of the Bloch vector r→ changes slowly. In a short time scale we can omit the length change 
of the Bloch vector, namely, r 1≡ . With (31) and (35) we obtain an effective formula of the azimuth 
angle
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Further, in a short time scale we have r cosz θ
(r =  1). Finally by using all these approximations 

we obtain an expression of the geometrical phase as
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According to the expression of current Eq. (11), rz can be rewritten as
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Insert this expression into Eq. (37), we obtain formula Eq. (18).
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