
Mitochondrial Targeting Therapeutics:
Promising Role of Natural Products in
Non-alcoholic Fatty Liver Disease
Jingqi Xu1†, Jiayan Shen2†, Ruolan Yuan2, Bona Jia3, Yiwen Zhang1, SijianWang2, Yi Zhang1,
Mengyang Liu1,2* and Tao Wang1,2*

1State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China,
2Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China, 3Department of
Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China

Non-alcoholic fatty liver disease (NAFLD) has become one of the most common chronic
liver diseases worldwide, and its prevalence is still growing rapidly. However, the efficient
therapies for this liver disease are still limited. Mitochondrial dysfunction has been proven to
be closely associated with NAFLD. The mitochondrial injury caused reactive oxygen
species (ROS) production, and oxidative stress can aggravate the hepatic lipid
accumulation, inflammation, and fibrosis. which contribute to the pathogenesis and
progression of NAFLD. Therefore, pharmacological therapies that target mitochondria
could be a promising way for the NAFLD intervention. Recently, natural products targeting
mitochondria have been extensively studied and have shown promising pharmacological
activity. In this review, the recent research progress on therapeutic effects of natural-
product-derived compounds that target mitochondria and combat NAFLD was
summarized, aiming to provide new potential therapeutic lead compounds and
reference for the innovative drug development and clinical treatment of NAFLD.
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INTRODUCTION

With the increasing prevalence of obesity, type 2 diabetes, and metabolic syndrome, non-alcoholic
fatty liver disease (NAFLD) has become one of the most common chronic liver metabolic diseases
(Adams et al., 2005; Zhao et al., 2020). NAFLD is generally characterized by excessive accumulation
of stored energy in liver fat that exceeds the ATP requirements of hepatocytes. Excess accumulation
of toxic lipids causes oxidative stress and inflammation, leading to damage and death of hepatocytes
(Nagalekshmi et al., 2011). It is estimated that approximately 25% of the global population are
affected by NAFLD, and its prevalence is still growing rapidly (Younossi et al., 2016; Huang et al.,
2020).

NAFLD is the early stage of many more severe hepatic metabolic diseases including a wide
spectrum of disorders ranging from non-alcoholic steatohepatitis (NASH) and liver fibrosis to
cirrhosis and even hepatocellular carcinoma (HCC) (Adams et al., 2005; White et al., 2012). Insulin
resistance (IR) is believed to play a causative role in the pathogenesis of NAFLD. Overnutrition-
induced insulin resistance could sensitize hepatocytes to mitochondrial dysfunction and oxidative
damage, leading to the increased inflammation and hepatic stellate cells (HSC) activation, which
promote the development of advanced forms of liver injuries (Tilg and Moschen, 2010; Nassir and
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Ibdah, 2014). In addition to the liver disease, NAFLD is also
strongly associated with the cardiovascular disease morbidity and
mortality. Indeed, patients with NAFLD are more prone to the
development of cardiovascular disease (Adams et al., 2017).

Recently, hepatic mitochondrial dysfunction has been
implicated in exerting an important role in the
pathophysiology of NAFLD. Mitochondrial structure and
function alteration are observed in patients with metabolic
syndrome and profoundly induce the metabolic disturbances
that contribute to the development of NAFLD (Einer et al.,
2018). In this review, we discuss the role of mitochondrial
dysfunction in NAFLD and focus on the potential therapeutic
effect of natural products on NAFLD, and the association
between the therapeutic mechanism and mitochondrial function.

Mitochondria in Non-Alcoholic Fatty Liver
Disease
Mitochondrial Homeostasis
The liver plays a predominant role in regulating energy
metabolism. While it is relatively small in volume compared
with the whole body, the proportion of liver cell respiration is
much higher. Under the physiological condition, 15% of the
organismal oxygen is consumed by the liver, suggesting that
hepatocytes are rich in mitochondria, which consume oxygen
to produce ATP (Shum et al., 2020). Indeed, mitochondria take
up to 18% of the whole hepatocyte volume and exert a key role in
the energy generation from nutrient (carbohydrates, lipids, and
proteins) oxidation (Di Ciaula et al., 2021). Therefore,
mitochondria are extremely important to maintain the normal
metabolic function of the liver.

Mitochondria are highly dynamic organelles, which act as the
dynamic hub of the cellular energy metabolism network. There are
hundreds of enzymes in mitochondrial matrix that are responsible
for pyruvate, fatty acids, and citric acid catabolism (Di Ciaula et al.,
2021). In physiological condition, glucose is metabolized into
pyruvate through glycolysis and then to acetyl-CoA, which is
subsequently oxidated to generate ATP by the TCA cycle and
oxidative phosphorylation in the hepatocyte mitochondria. In
addition, mitochondria can oxidize the fatty acids and amino
acids to produce ATP and ketones or urea for gluconeogenesis
during the fasting states (Shum et al., 2020). In addition to the
energy production, mitochondria also provide the carbon
intermediates for anabolic reactions, such as lipid biosynthesis.
Specifically, mitochondrion-derived citrate is converted into
acetyl-CoA in the hepatocyte cytosol, where acetyl-CoA is
consumed to synthesize fatty acids (Wellen and Thompson,
2012). Moreover, beyond nutrients metabolism, mitochondria
can also regulate the concentration of cytoplasmic calcium ions
and cellular redox status (Zhao et al., 2020). It also involved in the
programmed cell death and innate immunity process, in which
mitochondria provide energy and the signaling molecule that are
needed to communicate with other organelles such as the
endoplasmic reticulum and lysosome (Martucciello et al., 2020).
Therefore, maintaining mitochondrial homeostasis is particularly
important for the balance of cellular physiological and pathological
process in the liver.

The homeostasis of mitochondria is mainly maintained by the
balance of mitochondrial biogenesis, mitochondrial fission/
fusion, and mitochondrial autophagy. Once the homeostasis is
maladjusted, a certain degree of mitochondrial accumulation will
lead to the metabolic disorders of the liver and other tissues
(Figure 1).

Mitochondrial biogenesis plays a key role in cellular
homeostasis and survival, including mitochondrial DNA
(mtDNA) replication, transcription of mtDNA- and nuclear-
coding genes, translation, membrane recruitment, protein
introduction, and assembly of the OXPHOS complex (Zhu
et al., 2014). The process is tightly regulated by a suite of
transcription factors, including nuclear respiratory factors
(NRF1 and NRF2), estrogen-related receptors (ERRs), and the
peroxisome proliferator-activated receptor gamma co-activator
1α (PGC-1α), among which PGC-1α is considered as the master
regulator of mitochondrial biogenesis. It can orchestrate the
activation of NRFs and ERRs, which therefore regulated two
major mitochondrial proliferation involving factors, namely,
mitochondrial transcription factor A (TFAM) and
transcription factor B proteins (TFBs) (Dominy and
Puigserver, 2013; Zhu et al., 2014). Indeed, expression of
PGC-1α could promote the mitochondrial proliferation and
improve the mitochondrial respiration in mitochondrial defect
diseases (Viscomi et al., 2011). Additionally, AMP-activated
protein kinase (AMPK) is also involved in the regulation of
mitochondrial biogenesis through phosphorylation of PGC-1α
(Birkenfeld et al., 2011).

Mitochondrial dynamics includes fusion, fission, and
mitophagy, which are another three aspects that modulate
the mitochondrial homeostasis. The constant fission and
fusion can reshape the mitochondria and repair the damaged
components, while the redundant fission or severely damaged
mitochondria will be degraded through mitophagy, a
mitochondria-specific autophagy, which is the basic process
of selective isolation and degradation of damaged mitochondria
to maintain the functional integrity of the mitochondrial
network and cellular homeostasis. This process is highly
regulated by the PTEN-induced kinase 1 (PINK1)–Parkin
pathway. Through mitophagy, a cell can avoid excessive
reactive oxygen species (ROS) production caused by damaged
mitochondria and ensure redox homeostasis. In addition, the
mitophagy process can also promote the decomposition of lipid
droplets and release free fatty acids transported to intact
mitochondria for β-oxidation and increase the energy release
(Arroyave-Ospina et al., 2021).

Mitochondrial Dysfunction and Non-alcoholic Fatty
Liver Disease
Mitochondrial dysfunction is mainly characterized by ROS
excessive production, oxidative stress, and respiratory chain
reduction. These effects are closely associated with lipid
accumulation, inflammation, and hepatic cell death in the
NAFLD development. Thus, NAFLD is also considered as a
type of mitochondrial disorder (Pessayre and Fromenty, 2005).
Under physiological condition, normal mitochondrial fatty acid
oxidation (FAO) can support the ATP synthesis and energy
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supply with controlled superoxide generation. However, when
excessive free fatty acids (FFAs) accumulate in cells that cannot be
sufficiently handled by mitochondria, the superfluous FFAs will
be converted into triglycerides causing the lipid
overdecomposition in the liver and leading to steatosis
(Pessayre and Fromenty, 2005). In addition, the imbalanced
hepatocyte oxidative capacity will make the mitochondria
produce ROS greater than the detoxification ability of cellular
antioxidants, and these excessive ROS can potentiate oxidative
stress through inducing protein oxidation and lipid peroxidation
of mitochondrial membranes, impairing respiratory chain
activity and causing mtDNA damage (Pessayre, 2007; Besse-
Patin et al., 2017), which will further contribute to the
mitochondrial dysfunction. Therefore, as early stage of
NAFLD (steatosis) progresses to NASH, the impaired
mitochondria are becoming insufficient to protect the liver
from lipotoxicity due to the continuous FFAs deposition and
oxidative damage (Sunny et al., 2017). Additionally, the excessive
ROS production may also increase the mitochondrial
permeability transition (MPT) pore opening and promote the
release of cytochrome C and other proapoptotic factors into the
cytosol, causing the hepatocyte death and NASH progression
(Haouzi et al., 2000; Ricchelli et al., 2011). Apart from
mitochondrial dysfunction, long-term oxidative stress also
triggers the inflammation-related signaling pathways
activation, such as c-JUN N-terminal kinase (JNK) and
nuclear factor kappa B (NF-κB), causing cell inflammatory

cytokines release, inflammatory cell infiltration, or even
parenchymal hepatic cell death (Pessayre and Fromenty,
2005). For instance, the increased TNF-α can induce the
mitochondrial lipid peroxidation and the activation of
membrane permeability transition and its subsequent
cytochrome C release, resulting in the hepatocyte apoptosis or
necrosis, which is considered as a key event in NASH progression
(Pessayre et al., 2001). Moreover, the mtDNA released from
oxidative damaged liver cells can activate NOD-like receptor
family pyrin domain contain 3 (NLRP3) inflammasome and
toll-like receptor 9 (TLR9)-mediated inflammatory response
and further promote the transition to NASH (Garcia-Martinez
et al., 2016; Yang et al., 2020a). Besides, there is strong evidence
indicating that ROS and lipid peroxidation can also induce the
transforming growth factor beta (TGF-β) production in Kupffer
cell and activate the hepatic stellate cells into collagen-producing
myofibroblasts, leading to the hepatic fibrosis or even liver
cirrhosis (Fromenty et al., 2004).

Patients with more severe NAFLD, such as NASH, are also
more prone to mitochondria ultrastructural changes and
imbalance of mitochondrial dynamics. Cells failing to remove
the damagedmitochondria may cause a large number of damaged
mitochondria accumulation and further decrease the ability of the
liver to restore its normal function, eventually leading to the cell
death and development of advanced NAFLD (Wang et al., 2015).
Since mitochondrial autophagy is the major process that is
responsible for the clearance of surplus or damaged

FIGURE 1 | Overview of the association between mitochondrial homeostasis and NAFLD. Mitochondria are dynamic and complex organelles, and their
homeostasis is mainly maintained by the balance of mitochondrial biogenesis, mitochondrial fission/fusion, and mitophagy. Mitochondrial injury can aggravate the
hepatic lipid accumulation and ROS production and induce the inflammation and fibrosis that contribute to the pathogenesis and progression of NAFLD.
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mitochondria, mitophagy has played a key role in amending
NAFLD. Indeed, mitophagy disorders have been found in the
livers of both NAFLD patients and mice. Studies have shown that
PINK1 or Parkin deficiency leads to defective mitochondrial
phagocytosis and exacerbation of NAFLD (Edmunds et al.,
2020). In addition, inflammation-induced inactivation of
mitofusion2 (Mfn2) activity could also impair mitophagy by
decreasing the formation of autophagosome and aggravate
hepatic steatosis, resulting in the acceleration of the
progression of NASH (Hernández-Alvarez et al., 2019).

Therefore, the mitochondria function and antioxidant status
of the liver are crucial in the pathophysiological development of
NAFLD. When mitochondria-derived oxidative stress increases,
Kelch-like ECH-associated protein 1 (KEAP1) will release
nuclear factor (erythrocyte derived 2)-like 2 (Nrf2) and
promote its nuclear translocation (Xu et al., 2019a). Activated
Nrf2 induces its downstream targets, including nicotinamide
adenine dinucleotide phosphate (NADPH) oxidase, quinone
oxidoreductase 1 (NQO1), heme oxygenase 1 (HO-1),
superoxide dismutase (SOD), catalase, and γ-glutamate
cysteine ligase (GCL) expression and increase the antioxidant
capacity of the hepatic cell. Correspondingly, Nrf2 deficiency
affects the activity of mitochondrial complex I and increase the
production of ROS, while Nrf2-deficient mice with fatty liver
phenotype can be reversed by increasing the expression of liver
antioxidant genes and modulation of lipid metabolism-related
genes such as PPARα and SREBP1c (Arroyave-Ospina et al.,
2021).

Application of Natural Products in
Non-alcoholic Fatty Liver Disease
The current therapy for NAFLD include diet change, exercise,
and pharmacological intervention. However, there are still no
specific drug that has been approved for clinical use. Medications
for other conditions are often used to relieve NAFLD symptoms,
for example, insulin sensitization agents (pioglitazone), lipid-
lowering agents (statins), cholesterol absorption inhibitors
(ezetimibe), antioxidants (vitamin E), weight loss agents
(orlistat), and intestinal probiotics (Kikuzaki et al., 1996; Li
et al., 2005; Geng et al., 2011). Studies have shown that
regulating lipid metabolism, oxidation, and inflammation-
related targets can affect the occurrence and development of
NAFLD (Kibble et al., 2015). Especially, the mitochondrial
targeting therapy may be one of the effective options to
ameliorate liver injury. It has been proven that activation of
mitochondrial enzymes, such as PPARα, by specific agonists
could markedly increase the lipid metabolism and inhibit the
development of hepatic steatosis (Arroyave-Ospina et al., 2021).
Vitamin E, a lipophilic antioxidant, has been widely used to treat
the patients with NAFLD and NASH (Ji et al., 2014). High dose of
vitamin E can effectively improve the steatosis and alleviate the
liver injury in NASH patients (Chalasani et al., 2018). Thus,
antioxidants targeting mitochondria appear to be a valid strategy
for treating NAFLD.

Over the years, many medicinal plants derived from nature
have been developed, which are also important sources of many

biological compounds. Due to the special structure and molecular
diversity of natural products, their activities have been extensively
investigated and their important pharmacological role in anti-
inflammation, anti-oxidation, and liver protection revealed (Al-
Hrout et al., 2018; Hamza et al., 2018; Al-Dabbagh et al., 2019).
Recently, accumulating evidence has suggested that natural
products can increase mitochondrial function and further
improve its associated metabolic diseases, including fatty liver
disease such as NAFLD, diabetes, and diabetic complications (Lee
et al., 2020). Due to the low toxicity and side effects of natural
medicines, it has become a complementary option for the
prevention and treatment of NAFLD (El-Kharrag et al., 2017).
It is estimated that 40% of Food andDrug Administration (FDA)-
approved treatments are natural ingredients or derivatives (El-
Kharrag et al., 2017; Al-Hrout et al., 2018). Among the natural
products, terpenoids, such as tripterine and triptolide, phenolic
compound curcumin, and terpenoid berberine all have good anti-
inflammatory and antioxidant activities, suggesting their
application prospects in the treatment of mitochondrial
dysfunction-related liver disease (Figure 2).

Phenolics
Resveratrol (RSV), a polyphenolic organic compound, can be
extracted from grapes and other plants. RSV has pharmacological
effects such as inhibiting adipogenesis and promoting
mitochondrial biogenesis to enhance mitochondrial activity
(Kim et al., 2014). Studies have shown that resveratrol
(20 μM) can inhibit glucose-induced steatosis in HepG2 cells
and improve its mitochondrial activity without affecting the cell
viability, suggesting the beneficial role of RSV in the treatment of
mitochondrial dysfunction (Izdebska et al., 2018). Indeed, RSV
can reduce HFD-induced high triglyceride and restore the core
component of mitochondrial electron transport chain gene
expression, such as COQs. Importantly, the levels and ratios of
PINK1 and Parkin are also affected by the RSV intervention and
therefore affecting mitochondrial dynamics and mitophagy
(Meza-Torres et al., 2020). In addition, RSV can also improve
OA-induced lipid accumulation and mitochondrial dysfunction
in HepG2 cells and increase mitochondrial membrane potential
(MMP) and the expression levels of Sirt1, PPARγ and PGC-1α,
thus promoting mitochondrial biogenesis (Rafiei et al., 2019). A
recent study also suggests that RSV supplementation in HFD
diet-fed rodents could markedly induce hepatic uncoupling
protein 2 (UCP2) expression, increase mitochondrial numbers,
and inhibit inflammatory responses (Poulsen et al., 2012). In the
randomized double-blind crossover study, subjects treated with
150 mg resveratrol for 30 days could significantly reduce the
hepatic lipid content, serum triglyceride (TG), alanine
aminotransferase (ALT), and inflammatory markers.
Furthermore, resveratrol also improved the ex vivo
mitochondrial function (Timmers et al., 2011; Timmers et al.,
2016).

As a folk medicine, pomegranate fruit has been used to treat
various diseases. Currently, pomegranate juice and its derivatives
are widely used for health promotion (Cerdá et al., 2003). The
addition of pomegranate extract (PE) effectively reduced ATP
consumption and downregulated the expression of hepatic UCP2
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in SD rats, thus avoiding the possibility of ATP depletion (Zou
et al., 2014; Hou et al., 2019).

Of the polyphenols found in PE, punicalagin (PU) is the most
abundant ellagic tannin. It has been shown to exert antioxidant
and anti-inflammatory biological activity (Heber, 2008; Chen
et al., 2012) and plays a regulatory role in HFD-induced obesity,
insulin resistance, and NAFLD. PU treatment ameliorated
palmitate-induced mitochondrial membrane potential lost,
ATP depletion, and ROS production, while it increased the
mitochondrial complex activities, mtDNA copy number, and
mitochondrial fusion-related proteins expression in HepG2
cells (Yan et al., 2016; Cao et al., 2020). Thus, PU could
protect the mitochondrial function and restore the
mitochondrial morphology and further block mitochondria-
mediated caspase-dependent apoptosis. In addition, PU also
contribute to the elimination of oxidative stress by increasing
SOD activity in the liver (Zou et al., 2014; Yan et al., 2016; Cao
et al., 2020). These protective effects of PU are closely associated

with PGC-1α and Keap1-Nrf2 signaling pathway activation,
suggesting that PU might be a potential supplementary
therapeutic agent for mitochondria dysfunction-related liver
diseases.

Mounting evidence suggests that the antioxidant effect of
polyphenols may be beneficial for the improvement of hepatic
lipid accumulation, liver inflammation, and fibrosis. Litchi pulp
phenol (LPP) is a high content of phenolic compounds in litchi,
which has antioxidant activity in vitro and in vivo (Su et al., 2016).
Studies have shown that LPPs exert a protective effect on mice
liver. After LPPs treatment, the levels of ALT, aspartate
aminotransferase (AST), and thiobarbituric acid reactive
substance (TBARS) in serum were significantly decreased,
while the levels of glutathione (GSH), glutathione peroxidase
(GPX), SOD, and catalase (CAT) in the liver were increased. LPPs
can increase the activity of mitochondrial respiratory chain
complex and Na+ K+ ATPase and decrease the level of
mitochondrial membrane potential and the production of ROS

FIGURE 2 |Natural products ameliorate NAFLD by regulating mitochondrial dysfunction. Mitochondrial dysfunction includesmany aspects, such as the decreased
ATP generation, mitochondrial biogenesis reduction, impaired mitophagy, imbalanced fission/fusion, and increased ROS production. The natural products, including
phenols, alkaloids, flavonoids, isoflavones, and terpenoids, can significantly improve one or several aspects that linked to the mitochondrial dysfunction and
subsequently improve the NAFLD.
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(Su et al., 2016). These indicate that LPPs modulate liver injury
through scavenging free radicals and regulating mitochondrial
dysfunction. Moreover, it significantly reduced mitochondrial
protein oxidation by restoring complex I, II, and IV activities
(Xiao et al., 2017).

Procyanidins, mainly found in grapes, cocoa, and green tea,
are the most abundant polyphenols in human diet. They exert a
variety of biological functions such as antioxidant, anti-
inflammatory, and hypolipidemic effects. Grape seed
proanthocyanidins extract has been used as a bioactive dietary
supplement due to its regulatory function in metabolic disorders
(Akaberi and Hosseinzadeh, 2016). Açai seed extract (ASE), rich
in procyanidins (88%), shows better therapeutic effect than
rosuvastatin in improving oxidative damage under the
condition that it has similar effects on liver steatosis and
hyperlipidemia (Tavares et al., 2020). In addition, the
combination treatment of grape seed procyanidins and
metformin can more effectively reduce the hepatic TG levels
than metformin in NAFLD (Yogalakshmi et al., 2013). In fact, the
content of procyanidins B1, B2, and B3 isolated from
proanthocyanidins exhibited excellent antioxidant function
(Shimada et al., 2012). Both procyanidin B1 and B3
upregulated the expression levels of PGC-1α, NRF1, and
TFAM and improved the mitochondrial biogenesis.
Procyanidin B1 can also markedly reduce the expression of
Drp1 and increase the expression of Mfn2, while procyanidin
B3 induces the expression of Mfn1 and Mfn2, thereby
maintaining mitochondrial morphology and function (Tie
et al., 2020). Moreover, it is reported that procyanidin B2 can
significantly reduce lipid accumulation and excessive ROS
production in HepG2 cells. Mechanistically, it inhibits FFA-
induced hepatic steatosis and oxidative stress by regulating
TFEB-mediated lysosomal pathway and restoring
mitochondrial membrane potential (Su et al., 2018).

Zingiber officinale Roscoe, commonly known as ginger, exerts
a significant role in mitochondrial biogenesis and the lipid
metabolism (Deng et al., 2019b). Ginger extract (GE) can
promote OXPHOS of liver and activate the AMPK/PGC-1α
signaling pathway. GE induces the production of ATP and the
activity of mitochondrial respiratory chain complex I and IV,
which promotes mitochondrial biogenesis and improves
mitochondrial function. Consistently, 6-gingerol and 6-shogaol
extracted from ginger could induce the oxygen consumption and
intrascapular temperature in mice liver by increasing mtDNA
copy number (Deng et al., 2019b).

Helenalin isolated from Centipeda minima (L.) A. Braun
and Asch. (HCM) has been found to have anti-inflammatory
and antioxidative effects. HCM can significantly reduce
oxidative stress, lipid peroxidation, and production of ROS
by activating the Nrf2 pathway. Thereby, it protects
mitochondria function and reduces the liver damage.
Additionally, HCM could also significantly reduce the
production of inflammatory cytokines by inhibiting Toll-
like receptor 4 (TLR4) signal transduction and NF-κB
activation, which may further protect the mitochondria
from inflammation related injury and subsequently
decreasing the hepatocyte apoptosis (Li et al., 2019b).

Alkaloids
Benzoyl aconitine (BAC) is one of the representative traditional
alkaloids in Fuzi (Aconitum carmichaeli Debeaux). BAC induces
mitochondrial biogenesis through the activation of AMPK/PGC-
1α signaling cascade. AMPK is a kinase that responds to
mitochondrial function by regulating mitochondrial biogenesis
and autophagy (Rabinovitch et al., 2017; Foretz et al., 2018). It has
been reported that BAC could increase HepG2 cells’
mitochondrial mass and mtDNA copy number in a dose-
dependent manner without affecting cell proliferation. As for
ATP production, the most important function of mitochondria,
BAC can increase its production through promoting the oxygen
consumption rate and the expression of OXPHOS-related
proteins, including NDUFS1 (Complex I), SDHA (Complex
II), UQCRC1 (Complex III), COX4 (Complex IV), and
ATP5A1 (Complex V) in HepG2 cells (Deng et al., 2019a).
Consistently, BAC protects mice from liver steatosis and
inflammation by improving systemic glucose homeostasis,
reducing fat mass, and increasing autophagy flux (Garcia
et al., 2019).

Matrine (Mat) is a tetracyclo-quinolizidine alkaloid, which is
mainly derived from leguminosae such as Sophora flavescens
Aiton. It has been reported that Mat exerts pharmacological
effects on improving liver function in patients with hepatitis
(Liang et al., 2019). In addition, studies have shown that Mat and
oxymatrine (Oxy-Mat) can inhibit steatohepatitis (Mahzari et al.,
2018). Mechanistically, it was suggested that Mat could
downregulate the levels of lipogenesis-related proteins, such as
sterol regulatory element-binding protein 1c (SREBP-1c), fatty
acid synthase (FAS), and acetyl-coa-carboxylase (ACC) both in
HFD mice and L02 cells. The decreased fatty acid synthesis will
reduce the fatty acid overaccumulation-induced mitochondria
injury and improve the hepatic steatosis (Gao et al., 2018). In
addition to reducing lipogenesis in the liver, Mat can also
significantly reduce the palmitic-acid-induced mitochondrial
dysfunction and endoplasmic reticulum stress (ER stress) in
L02 cells. These effects are strongly associated with the
downregulated level of intracellular calcium, since the
abnormal release of ER calcium could lead to both
mitochondrial dysfunction and ER stress. Mechanistically, Mat
regulates cytosolic calcium homeostasis mainly through its
inhibition effect on sarcoplasmic/endoplasmic reticulum
calcium ATPase (SERCA) pump (Gao et al., 2018). Moreover,
it is also reported that Mat treatment can enhance the mitophagy
and alleviate the mitochondrial-damage-associated oxidative
stress (Wang et al., 2019a).

Dendrobium nobile Lindl. alkaloids (DNLAs) are the main
active ingredients of D. nobile, which were found to have a
protective effect on hepatic lipid homeostasis and
mitochondrial function (Li et al., 2019a). It has been shown
that DNLA can combat mitochondrial oxidative stress and reduce
its oxidative damage. DNLA treatment can improve oxygen
consumption, reverse mitochondrial respiratory depression,
and increase ATP production via regulating Nrf2 signaling
pathway in mice. Consequently, mitochondrial H2O2 content
and malondialdehyde (MDA) production were reduced, while
GSH level and Mn-SOD activity were significantly increased with
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DNLA treatment. Furthermore, DNLAs also decrease the level of
membrane-permeable ROS and further inhibit the oxidative
damage of mitochondrial lipids (Zhou et al., 2020).

Berberine (BBR) is an isoquinoline alkaloid that can improve
glucose metabolism and enhance insulin sensitivity. In addition,
BBR also has pharmacological effects on reducing body weight,
cholesterol, and triglyceride levels (Kong et al., 2008). As a
promising drug for metabolism disorders, BBR can effectively
improve mitochondrial swelling and promote mitochondrial
fusion (Yu et al., 2021). It has been reported that silent
mating-type information regulation 2 homolog 3 (SIRT3) can
regulate the mitochondrial β-oxidation through deacetylating
long-chain acyl-coenzyme A dehydrogenase (LCAD). In both
high-fat fed mice and rats, BBR intervention can notably promote
the SIRT3 expression and activation, thereby improving
systematic and inhibiting the progression of hepatic steatosis
(Teodoro et al., 2013; Xu et al., 2019b). Besides, BBR also
markedly reduced Nox2-dependent mitochondrial ROS
production and improve non-esterified fatty acid impaired
mitochondrial respiratory chain function by regulating Nrf2
signaling and PGC-1α expression (Sun et al., 2017; Shi et al.,
2018). Recently, a randomized controlled trial demonstrated that
berberine ursodeoxycholate has a broad spectrum of metabolic
activity in patients with NASH and diabetes. It can reduce the
liver lipid content with apparent improvement in hepatic
inflammation and injury. Importantly, it is relatively well
tolerated with oral administration, suggesting that berberine
ursodeoxycholate could be a feasibility way for the combined
treatment of NASH and diabetes (Harrison et al., 2021).

Flavonoids
Flavonoids are commonly found in vegetables, fruits, tea, coffee,
and other drinks in daily life. Currently, they have shown wide
range of biological pharmacological activities, such as
antibacterial, anti-inflammatory, and ROS clearance
(Martucciello et al., 2020).

Silymarin (SM), extracted from the Mediterranean plant
Silybum marianum (L.) Gaertn, contains various
flavonolignans. Silymarin is reported to optimize the electron
transport chain under oxidative stress, maintaining the integrity
of the mitochondrial respiratory chain, thereby reducing electron
leakage and directly reducing the activity of ROS-producing
enzymes in the mitochondria (Surai, 2015; Baldini et al.,
2020). In randomized trial, Silymarin remarkably attenuates
the NAFLD activity score (NAS) and fibrosis score in patients
with NASH, indicating that Silymarin can be a promising
phytotherapy for NAFLD and NASH patients (Wah Kheong
et al., 2017; Zhong et al., 2017). As the main component of
silymarin, silybin is found to eliminate ROS, reduce lipid
peroxidation, inhibit apoptosis, and reduce oxidative stress in
HepG2 cells (Esselun et al., 2019). In addition, Silybin can reduce
the activation of oxidative-stress-dependent transcription factor
NF-κB and promote autophagy by restoring aquaporin 9 (AQP9)
and glycerol permeability levels.

Recently, silybin-phospholipid (SILIPHOS), an antioxidant
complex, has shown hepatoprotective and antifibrosis effects
in rat NASH model. It regulates mitochondrial energy

metabolism by preventing proton leakage. Additionally, it can
also reduce glutathione consumption and mitochondrial H2O2

production and restore the decreased ATP synthesis caused by
chronic liver disease (Serviddio et al., 2010). Realsil is another
silybin complex containing vitamin E, which greatly enhances the
bioavailability of silymarin and also show antioxidant effects
against mitochondrial ROS and NO production (Grattagliano,
2013). In NAFLD and NASH patients, Realsil treatment could
significantly reduce the serum lipid peroxidation and NAS score
and restore antioxidant capacity of hepatocytes (Stiuso et al.,
2014; Federico et al., 2020).

Anthocyanins are one of the main color substances in plant
flowers and fruits and known as the seventh most essential
nutrient for the human body. Mulberry anthocyanins have
been widely used in the fields of food and health products due
to their high extraction rate and stable structure. Anthocyanins
extracted from bilberry and blackcurrant have been reported to
enhance the activation of AMPK/PCC-1α signaling pathway,
which in turn protects mitochondrial biogenesis and electron
transport chain in NASHmice (Tang et al., 2015). Cyanidin-3-O-
glucoside (C3G) is one of the main components of anthocyanin in
mulberry, which has been shown to reduce visceral fat and weight
gain in obese adults and rats (Li et al., 2020). During the onset of
NAFLD, if a large number of damaged mitochondria accumulate,
ROS excessive production and mitochondrial autophagy damage
may lead to a second hit in the development of NAFLD, causing
more serious liver disease. It was reported that C3G can inhibit
liver oxidative stress, NLRP3 inflammasome activation, and
steatosis in mice and NAFLD patients. In high-fat diet fed
mice, C3G treatment increases LC3-II protein abundance,
autophagosomes number, and mitochondrial localization,
promoting PINK1/Parkin-mediated mitophagy to clear the
damaged mitochondria [33]. Thus, the lipid droplets are
induced to decompose via lipophagy (McWilliams and Muqit,
2017; Schulze et al., 2017), thereby promoting more free fatty
acids release into mitochondria for β-oxidation to alleviate
hepatic lipid accumulation. At the same time, the damaged
mitochondria are also decomposed through mitochondrial
autophagy, which further reduces oxidative stress to maintain
mitochondrial homeostasis [33].

A growing number of epidemiological and clinical studies
have shown that citrus fruits, such as Citrus × aurantium L. (C.
aurantium), exert a positive effect on glucose and lipid
metabolism. Neohesperidin (NHP), as one of the most
abundant flavonoids in C. aurantium, is reported to enhance
mitochondrial biogenesis in HFD mice by activating the AMPK/
PGC-1α signaling pathway (Wang et al., 2020). After NHP
intervention, the mice hepatic lipid accumulation and the liver
steatosis were significantly improved. Indeed, NHP also promotes
fatty acid oxidation, reduces insulin resistance, and improves
glucose homeostasis in HFD mice.

Among all the bioactive molecules in lemons, eriocitrin is the
major flavonoid with antioxidant activity that can decrease lipid
levels and reduce oxidative stress without causing toxicological
manifestations. Eriocitrin can significantly upregulate the mRNA
levels of ACOX1 and ACADM. More importantly, it promotes
mitochondrial β-oxidation and biogenesis and ameliorates
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HFD-induced hepatic steatosis (Hiramitsu et al., 2015) in
palmitate-induced HepG2 cells. After treatment with eriocitrin,
mtDNA content was significantly increased in a dose-dependent
manner, accompanied with increased intracellular ATP
production. These suggests that eriocitrin may increase
mitochondrial biogenesis and restore the activity of respiratory
chain complex, thereby restoring the mitochondrial function.

Kaempferol-3-O-glucuronide (K3O) is a natural chemical
component extracted from Holly plants. It has antioxidant,
lipid metabolism regulation, and anti-inflammatory effects.
Studies have shown that K3O can reduce the oxidative stress
and lipid peroxidation in the liver, reduce hepatic steatosis, and
alleviate NAFLD. K3O treatment decreases H2O2-induced ROS
production in HepG2 cells. Additionally, it can also significantly
reduce MDA and increase the level of GSH-Px. In the mechanism
study, the results suggest that the protective effect of K3O is
associated with Nrf2/Keap1 signaling activation (Deng et al.,
2021).

In addition to activating mitochondrial biogenesis, AMPK can
also improve mitochondrial function by promoting
mitochondrial autophagosome formation and increasing
autophagy flux. Aspalasin is a rooibos flavonoid that can
activate AMPK signaling pathway to increase hepatic energy
expenditure and improve liver lipid metabolism. In palmitate-
induced liver cells, impaired hepatic substrate metabolism
together with defective insulin signaling pathway is strongly
associated with decreased Akt protein expression and
mitochondrial respiratory rate (Mazibuko-Mbeje et al., 2019).
However, aspalasin administration significantly improve
mitochondrial dysfunction through promoting the respiration
and ATP production. These results suggest that aspalasin could
protect from mitochondria-related liver injury by regulating
AMPK signaling, subsequently inhibiting the steatosis
development.

Isoflavone
Puerarin is isolated from the roots of Pueraria lobata (Wild.)
Ohwi. As an isoflavone compound, it has shown the biological
activity in restoring mitochondrial dysfunction, preventing
oxidative stress and inflammation, and improving lipid/
glucose metabolism. In high-fat high-sucrose (HFHS) diet
fed mice, puerarin has a certain therapeutic potential to
inhibit NAFLD. It can increase the mitochondrial
membrane potential and ATP generation, therefore
improving liver mitochondrial functional homeostasis and
decreasing the ROS production. It suggested that the effects
of puerarin are closely related to its role in NAD+ replenishing
and AMPK activation (HOU et al., 2020; Wang et al., 2019b).
Apart frommitochondrial function protection, puerarin is also
involved in regulating mitochondrial dynamics. It can
modulate the mitochondrial fission and fusion by increasing
the Mfn2 and Opa1 expression and decreasing Drp1
expression. Moreover, palmitate-impaired mitophagy is also
restored by puerarin via increasing PINK1/Parkin expression
(Chen et al., 2018) Thus, these results indicate that puerarin
could be a potential therapeutic agent for the treatment of
NAFLD.

Terpenoids
Celastrol is a potent anti-inflammatory pentacyclic triterpene
extracted from the root of Tripterygium wilfordii Hook. f. It has
been reported that rich accumulation of palmitic acid from the
diet can lead to elevated levels of diacylglycerol (DAGS) and
ceramides (Carta et al., 2017). These accumulated toxic lipids can
induce lipid toxicity, leading to mitochondrial dysfunction and
endoplasmic reticulum stress (Arroyave-Ospina et al., 2021). It
has been reported that celastrol can improve mitochondrial
dysfunction and insulin sensitivity through reducing
mitochondrial oxidative stress and thus enhance fatty acid
oxidation in palmitic-acid-induced C3A human hepatocytes
(Abu et al., 2017). Importantly, celastrol can stimulate
mitochondrial biogenesis and increase cell antioxidant capacity
by activating AMPK-SIRT1 signaling pathways, which is
associated with increased SIRT1 deacetylation activity and
activation of PGC-1α and coactivation of nuclear respiratory
factor 1 (NRF1) expression (Abu et al., 2020). In addition, Hu
et al. also found that celastrol could promote Nur77, a nuclear
receptor, translocation from the nucleus into mitochondria.
Nur77 interacted with tumor necrosis factor receptor-
associated factor 2 (TRAF2) and p62 to facilitate the injured
mitochondria clearance by mitophagy (Hu et al., 2017).
Therefore, celastrol might be a good candidate therapeutic
agent for the treatment of mitochondrial dysfunction and
inflammation-triggered NASH.

Sweroside is the secoiridoid extracted from Swertia
pseudochinensis H. Hara. A recent study demonstrated that
sweroside is a hepatoprotective agent against NAFLD. Mice
treated with sweroside were resistant to HFD-induced weight
gain, insulin resistance, and hepatic steatosis. Sweroside can
reduce the number of lipid droplets and inflammatory cell
infiltration in the liver. These beneficial effects of sweroside
are closely related to its role in regulating PPARα and CD36
and FGF21 expression (Yang et al., 2020b). There is evidence that
NLRP3 inflammasome is increased during the occurrence and
development of NAFLD (Mridha et al., 2017; Yang et al., 2020a).
Mitochondria-injury-related ROS release can induce NLRP3
inflammasome activation-mediated proinflammatory cytokine
expression and aggravate the NASH development (Kim et al.,
2020; Wu et al., 2020). Sweroside has been reported to alleviate
oxidative stress and intercellular ROS, which can therefore inhibit
the activation of NLRP3 inflammasome, reduce the levels of IL-
1β, and subsequently reduce inflammation and further improve
metabolic diseases (Ma et al., 2018). These results suggest that
sweroside may be a good therapeutic agent for NAFLD and
NASH treatment.

Gentianaceae plant extracts have been widely used in food
additives, tea, or medicine to treat various human diseases and
disorders (Dai et al., 2018). Amarogentin, a gentian iridoid, has
been shown to have a protective effect on liver injury and improve
mitochondrial dysfunction by regulating the expression level of
liver CYP450 system. When mitochondrial function is impaired,
the expression level of mtDNA-encoded genes will change, which
will eventually lead to the impaired energy production and liver
failure (El-Hattab and Scaglia, 2013). Amarogentin can reverse
mtDNA damage, significantly reduce mtDNA deletion in HepG2
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cells, and prevent cell apoptosis. In addition, amarogentin could
also reduce the production of ROS and increase antioxidant
capacity in HepG2 cells, thereby improving mitochondrial
damage (Dai et al., 2018).

Other Compounds
Polygonatum kingianum Collett Hemsl. (PK) has been used as
herb and nutritional ingredient for centuries. The main active
components in PK can be isolated as polysaccharides, steroid
saponins, triterpenoid saponins, and isoflavones (Zhao et al.,
2018). PK has the pharmacological activity of regulating lipid
metabolism and promoting mitochondrial function (Yang et al.,
2019), and it has been used to treat mitochondrial dysfunction
and alleviate NAFLD. The reduction in HFD-induced NAFLD by
PK is related to the improvement of mitochondrial antioxidant
status, energy metabolism, and β-oxidation of fatty acids. In
addition, PK can also inhibit the apoptosis of liver cells. PK
extract administration can restore the activities of GSH-Px, SOD,
Na+-K+-ATPase, and complex I and II in SD rats and reduce the
content of MDA in liver mitochondria. It can also markedly
upregulate the expression of CPT-1α mRNA and downregulate
the expression of UCP-2, thereby regulating mitochondrial
biogenesis and fatty acid metabolism. In addition, PK can
increase the expression of Bcl-2 in liver cells and inhibit
cytochrome C release from mitochondria and subsequent
apoptosis-related proteins expression.

Sulforaphane is an isothiocyanate extracted from
cruciferous vegetables, best derived from broccoli buds, and
most of its activity is attributed to its ability to regulate the
signaling pathway of Keap1-Nrf2-antioxidant reaction
element (Kubo et al., 2017). Sulforaphane and its precursor
glucoraphanin have been considered as the most effective
natural inducers of Nrf2. It is reported that glucoraphanin
can effectively inhibit the HFD-fed mice weight gain and
reduce liver steatosis through improving lipid peroxidation.
In addition, it also increases the energy expenditure and
mitochondrial uncoupled protein 1 (UCP1) level and
therefore suppress the development of NASH (Nagata et al.,
2017). Oxidative stress and calcium ion can induce the
mitochondrial permeability transition pore (mPTP) opening
and subsequent membrane depolarization, which is often
associated with cell death, while sulforaphane supplement
significantly inhibits the redox-induced mPTP opening and
protects from mitochondrial dysfunction in rats (Greco et al.,
2011). Furthermore, sulforaphane ameliorates the
mitochondrial swelling and promotes the mitochondrial
biogenesis through regulating PGC-1α-dependent pathway
(Lei et al., 2019). Taken together, sulforaphane and
glucoraphanin exert pharmacological activity of improving
mitochondrial function and inhibiting the development of
NAFLD.

DISCUSSION

As the prevalence of NAFLD increases over the decades, it has
become one of the most common chronic liver diseases

worldwide. However, the efficient therapies for this liver
disease are still limited. So far, only physical exercise and
dietary modification are recommended by FDA. Recently,
mounting evidence has suggested that mitochondrial
dysfunction is closely associated with the NAFLD
development. Mitochondrial injury can aggravate the hepatic
lipid accumulation and ROS production and induce the
inflammation and fibrosis that contribute to the pathogenesis
and progression of NAFLD. Thus, pharmacological therapies that
target mitochondria could be a promising way for the NAFLD
intervention in clinics. Indeed, many mitochondrial targeted
agents derived from natural products have been extensively
studied and have revealed good pharmacological activities in
combating the NAFLD (Rafiei et al., 2019).

Most of the natural products that regulate the mitochondria are
mainly through promoting mitochondrial function and adjusting the
mitochondrial dynamics to alleviate the NAFLD development.
Increased lipid flux can lead to insufficient mitochondrial
oxidation and aggravate ROS production, leading to oxidative
stress. The balance between oxidants and antioxidants plays a key
role in maintaining mitochondrial function during the development
of NAFLD. Natural products that act as mitochondrial biogenesis
inducer and selective antioxidants are essential in improving the
mitochondrial homeostasis and reducing oxidative stress and thereby
protecting fromNAFLD. As summarized in this review, the alkaloids
berberine, phenolic compounds 6-gingerol and 6-shogaol, flavonoids
NHP, and terpenoids celastrol and amarogentin all showed
pharmacological activities to produce functional mitochondria,
which can promote mitochondrial biogenesis. These natural
antioxidants increase liver antioxidant capacity by improving
mitochondrial homeostasis, thus providing effective treatment for
chronic metabolic liver diseases such as NAFLD.

Mitophagy affects the lipid phagocytosis process and can
eliminate damaged mitochondria. The maintenance of
mitochondrial homeostasis is closely related to mitochondrial
autophagy. Mitophagy of damaged mitochondria can ensure the
normal decomposition and energy release of lipid droplets.
Flavonoids C3G and aspalasin can promote mitochondrial
autophagy, increase autophagy flux, and reduce liver
inflammation and steatosis. In addition to improving
mitochondrial biogenesis, celastrol also improved NASH by
promoting mitophagy to inhibit inflammatory responses.

Although various pharmacological mitochondria-protection
activities have been exhibited by the core components of natural
products, the therapeutic utility of some chemicals are partly
compromised due to their poor water solubility and low
bioavailability. For instance, to achieve therapeutic efficacy,
berberine has to be used at relatively large oral doses in mice
(Turner et al., 2008), which limits the development and
application of berberine as the pharmacological preparation.
Therefore, the design and structural modification of these
natural chemicals to get eligible derivatives with good
pharmacological and pharmacokinetic profile are extremely
important for the future development of mitochondrial
targeting medicine (Gaba et al., 2021). Recently, combination
therapy is considered as a potential therapeutic option for the
mitochondria-related liver disorders. This therapeutic strategy
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TABLE 1 | Mechanisms of natural products and active components in the treatment of NAFLD.

Classification Natural Product Animal model Cell model Function Mechanism/Target Reference

Phenolics Resveratrol (RSV) C57BL/6 mice (RSV
20 mg/kg)

HepG2 cells (RSV
1 μM) AML-12 cells

Mitochondrial biogenesis
promotion, ROS
reduction

eNOS/NO/cGMP
pathway, Akt/Nrf2
pathway

Kim et al. (2014)

— HepG2 cells (RSV
10, 20 μM)

Mitochondrial dynamic
and β-oxidation
promotion

FAS, p-AMPK, CPT1α,
Sirt1, PPARγ, SREBP-1c

Izdebska et al. (2018);
Rafiei et al. (2019)

C57BL/6J mice — Mitophagy promotion PINK1/Parkin pathway,
CoQs

Meza-Torres et al.
(2020)

Wistar rats (RSV
100 mg)

— Mitochondrial number
elevation

UCP2 Poulsen et al. (2012)

Punicalagin (PU) SD rats (PE 50,
150 mg/kg)

HepG2 cells (4 μg/ml
PU and 10 μg/ml PE)

ROS reduction, increase
ATP production

Nrf2/HO-1/NQO1
pathway, UCP2, PGC-1α,
ACADL, ACADM (MRC
complex)

Zou et al. (2014)

C57BL/6J mice (PU
50, 200 mg/kg)

HepG2 cells (PU 10,
20 μg/ml)

Mitochondrial biogenesis
promotion, MMP
recovery

Nrf2, PGC-1α, FAS,
ACC1

Cao et al. (2020)

— HepG2 cells (PU 10,
20 μg/ml)

ROS reduction;
mitochondrial
translocation reduction

Keap1-Nrf2 pathway Zou et al. (2014)

Litchi pulp phenol
(LPPs)

Kunming mice (LPP
50, 100 and
200 mg/kg)

— ROS reduction; MMP
recovery

MRC complex, Na+ K+

ATPase
Su et al. (2016)

Procyanidins ICR mice
(procyanidins 50,
200 mg/kg)

3T3-L1 cells (flavan-
3-ols 0–100 μM)

Mitochondrial biogenesis
promotion

PGC-1α, NRF1, TFAM,
Mfn1, Mfn2, Drp1

Tie et al. (2020)

C57BL/6 mice
(procyanidins 50,
150 mg/kg))

HepG2 cells
(procyanidin B2
10 μg/ml)

ROS reduction C/EBPα, SREBP-1c,
TNFα, TFEB

Su et al. (2018)

6-gingerol, 6-
shogaol

Balb/c mice (GE
1,2 g/kg)

HepG2 cells (6-
gingerol 25, 50, 100,
200 μM)

ATP production,
OXPHOS and
mitochondrial biogenesis
promotion

AMPK/PGC1α pathway,
MRC complex

Deng et al. (2019b)

Helenalin (HCM) C57BL/6 mice (HCM
0.75, 1.5 and
3 mg/kg)

— ROS reduction; MMP
recovery

Nrf2 pathway, NQO1,
HO-1, NF-κB

Li et al. (2019b)

Alkaloids Benzoyl
aconitine (BAC)

Balb/c mice (BAC
10 mg/kg)

HepG2 cells (BAC
25, 50, 75 μM)

OXPHOS, mitochondrial
biogenesis, and
mitophagy promotion

AMPK pathway, NDUFS1,
SDHA, UQCRC1, COX4,
ATP5A1

Deng et al. (2019a)

Matrine (Mat) C57BL/6J mice (Mat
0.5, 2.5, 10 mg/kg)

L02 cells (Mat 200
and 400 μM)

Maintain cytosolic
calcium homeostasis,
mitophagy protection

SERCA pump, SREBP1c,
FAS, ACC

Gao et al. (2018)

Dendrobium nobile
Lindl. (DNLA)

Wild-type and
Nrf2−/−mice (DNLA
10 mg/kg)

— ROS reduction; increase
ATP production

Nrf2 pathway Li et al. (2019a); Zhou
et al. (2020)

Berberine (BBR) C57BL/6J mice
(BBR 0.075,
1.4 g/kg)

— Mitochondrial swelling
improvement;
mitochondrial fusion
promotion

SCD1, FABP1, CD36,
CPT1α

Yu et al. (2021)

C57BL/6 and Sirt3−/−

mice
— Mitochondrial β-oxidation

promotion
Sirt3, LCAD Teodoro et al. (2013)

SD rats (BBR
100 mg/kg)

— Increase ATP production;
MMP recovery

Sirt3 Xu et al. (2019b)

SD rats (BBR
300 mg/kg)

Huh7 cells (BBR
5,10 μM)

ROS reduction Nrf2, MRC complex Shi et al. (2018)

Holstein cows Bovine hepatocyte
(BBR 10, 20 μM)

Increase ATP production AMPK pathway, PGC1α Sun et al. (2017)

Flavonoids Silybin (Sil) — Rat hepatoma FaO
cells (Sil 50 μM)

Mitophagy promotion miR-122, AQP9, UCP2,
NF-κB

Baldini et al. (2020)

Silybin-
phospholipid
complex
(SILIPHOS)

Wistar rats (Sil or
SILIPHOS 0.4 g/kg)

— ROS reduction MRC complex, H2O2 Serviddio et al. (2010);
Grattagliano (2013)Increase ATP production

MMP recovery

(Continued on following page)
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includes both backbone and complementary treatment, which
can maximize the therapeutic effects of two or more natural
products, or even combined with common chemical medicine.
Thus, combination therapy may also be a good way to make full
use of natural mitochondria medicine.

Herein, we revealed the relationship between
mitochondrial function and the pathogenesis of NAFLD
and summarized the protective effect of natural products
on NAFLD and its subsequent chronic liver diseases by
improving mitochondrial homeostasis (Table 1). By
developing natural-products-derived compounds that target
mitochondria will provide new potential therapeutic
approaches and clinical perspective for treating
mitochondrial dysfunction and spare the liver from NAFLD.
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TABLE 1 | (Continued) Mechanisms of natural products and active components in the treatment of NAFLD.

Classification Natural Product Animal model Cell model Function Mechanism/Target Reference

Cyanidin-3-O-
glucoside (C3G)

Over expression and
knockdown of PINK1
mice (C3G 0.2%)

AML-12 cells
HepG2 cells (C3G
100 μM)

Mitophagy promotion PINK1/Parkin pathway,
NLRP3

Li et al. (2020)

Neohesperidin
(NHP)

C57BL/6 mice (NHP
50 mg/kg)

HepG2 cells (NHP
100 μM)

Mitochondrial biogenesis
promotion

AMPK/PGC-1α pathway Wang et al. (2020)

Eriocitrin Zebrafish
(32 mg/day)

HepG2 cells (Erio 1,
3, 10 μM)

Mitochondrial β-oxidation
and biogenesis, ATP
production promotion

MRC complex, ACOX1,
ACADM

Hiramitsu et al. (2015)

Kaempferol-3-O-
glucuronide (K3O)

Zebrafish (10,
20, 40 μM)

HepG2 cells (K3O
10, 15, 20 μM)

ROS reduction ATP
production promotion

Nrf2/Keap1 pathway Deng et al. (2021)

Aspalasin — C3A liver cells
(Aspalasin 10 μM)

Mitophagy promotion PI3K/Akt signaling
pathway

Mazibuko-Mbeje et al.
(2019)

Isoflavone Puerarin C57BL/6 mice (100,
200, 400 mg/kg)

HepG2 cells (0.1,
1, 10 μM)

ROS reduction PINK1/Parkin signaling
pathway, PI3K/Akt
signaling pathway, AMPK,
OPA1, Mfn2

HOU et al. (2020); Wang
et al. (2019b); Chen
et al. (2018)

MMP recovery
ATP and mitochondrial
autophagy production

Terpenoids Celastrol SD rats (Celastrol 1,
3 mg/kg)

C3A human cells (30,
100 nM)

Mitochondrial biogenesis
promotion

AMPK and SIRT1
signaling pathways,
PPARγ, PGC-1α, NRF1

Abu et al. (2017); Abu
et al. (2020)

C57BL/6 and
Nur77−/− mice
(Celastrol 0.1 mg/kg)

HepG2, SMMC-
7721, QGY-7703
cells (Celastrol
2, 4 μM)

Increase mitochondrial
antioxidant activity and
biogenesis

Nur77, p62 Hu et al. (2017)

Sweroside C57BL/6 mice
(Sweroside 5, 30, 60,
120, 240 mg/kg)

Bone marrow-
derived
macrophages
(BMDMs)

ROS reduction PPARα, CD36, NLRP3
inflammasome, IL-1β

Yang et al. (2020b);
Mridha et al. (2017);
Yang et al. (2020a)

Sweroside (25,
50,10 μM)

Amarogentin — HepG2 cells
(Amarogentin 12.5,
25, 50 μM)

ROS reduction CYP450 system Dai et al. (2018)
Mitochondrial biogenesis
promotion
Reverse mtDNA damage

Other
compounds

Polygonatum
kingianum (PK)

SD rats (PK 1, 2,
4 g/kg)

— Mitochondrial biogenesis
promotion

CPT-1α, UCP-2, MRC
complex

Yang et al. (2019)

Sulforaphane Rats — Increase mitochondrial
antioxidant defenses and
inhibits redox-sensitive
PTP opening

Keap1-Nrf2 pathway Kubo et al. (2017);
Nagata et al. (2017);
Greco et al. (2011)

C57BL/6JSlc mice

Wistar Rats (SFN
20 mg/kg)

HHL-5 cells (SFN 1,
5, 10 μM)

Mitochondrial biogenesis
promotion

Nrf1, TFAM, PGC-1α,
ATGL, HSL

Lei et al. (2019)

Mitochondrial swelling
improvement
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