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Hidden pressurized fluids prior to the 2014
phreatic eruption at Mt Ontake

Corentin Caudron 1,2 , Yosuke Aoki 3, Thomas Lecocq 4,
Raphael De Plaen4, Jean Soubestre 5, AurelienMordret2, Leonard Seydoux 2&
Toshiko Terakawa 6

A large fraction of volcanic eruptions does not expel magma at the surface.
Such an eruption occurred atMt Ontake in 2014, claiming the life of at least 58
hikers in what became the worst volcanic disaster in Japan in almost a century.
Tens of scientific studies attempted to identify a precursor and to unravel the
processes at work but overall remain inconclusive. By taking advantage of
continuous seismic recordings, we uncover an intriguing sequence of corre-
lated seismic velocity and volumetric strain changes starting 5 months before
the eruption; a period previously considered as completely quiescent. We use
various novel approaches such as covariance matrix eigenvalues distribution,
cutting-edge deep-learning models, and ascribe such velocity pattern as
reflecting critically stressed conditions in the upper portions of the volcano.
These, in turn, later triggered detectable deformation and earthquakes. Our
results shed light onto previously undetected pressurized fluids using stations
located above the volcano-hydrothermal system and hold great potential for
monitoring.

The 2014 eruption atMtOntake in Japan (Fig. 1) highlightedour limited
ability to anticipate small non-magmatic eruptions. In a country opti-
mally equipped to face natural disasters, the eruption claimed the life
of more than 50 hikers, becoming the worst volcanic disaster in Japan
in almost a century. These non-magmatic eruptions, so-called phreatic,
hydrothermal1, hydro-volcanic2 or steam-driven eruptions3, do not
release juvenile material but remain among the most difficult to fore-
cast, therefore representing a potential risk. The absence of forecast-
ing signals4 challenges volcanologists’ knowledge. Despite their
frequent occurrence, they remain poorly understood and have
recently caused human fatalities; the 2019 White Island eruption in
New Zealand also killed more than 20 people5. It is therefore para-
mount to better investigate such eruptions by integrating new meth-
odologies to fully understand the preparatory processes at play and
improve our ability to forecast these eruptions.

The Mt Ontake eruption was initiated without any clear surface
precursor6. It consisted of three phases starting with pyroclastic den-
sity currents flowing 2.5 km away from the craters, followed by
increased ash injection into the atmosphere and ejection of ballistics,
and finally, muddy hot water flowing from the craters7. Following the
eruption, numerous studies focused on detecting potential pre-
cursors. In retrospect, useful precursors were identified seconds to
minutes before the eruption (e.g., Kato et al.8), while long-term chan-
ges in spring water compositions and ground level were also docu-
mented (e.g., Sano et al.2). The former would be identified too late in
issuing a successful warning while the long-term precursors are based
on data too sparse to be useful for near-real-time forecasting6. Some
mid-term precursors (days to 1 month) were highlighted by re-
examining geodetic9 and seismic data10. The ground uplift from geo-
detic data remained ambiguous, whereas the deviation of the local
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stress field from seismic data10 would practically be difficult to imple-
ment in most volcano observatories. It would also require sustained
earthquake activity. The forecasting and precursory processes of this
eruption, therefore, remain difficult to untangle6.

Recent advances in volcanomonitoring took advantage of seismic
interferometry to better monitor volcanoes (e.g., Sens-Schönfelder
and Wegler11, Brenguier et al.12, Donaldson et al.13,14, Yates et al.15). This
technique has allowed detecting tiny changes in seismic wave propa-
gation prior to (Brenguier et al.12) and during magmatic eruptions
(Donaldson et al.13). The analysis of continuous seismic time series also
has recently seen a breakthrough due to the development of machine-
learning-based strategies. While the classification of seismo-volcanic
signals is performed routinely by analysts, recent studies have trained
models to automatically classify waveforms (e.g., for volcanic tremors,
volcano-tectonic earthquakes or long-period events16,17). In such
approaches, the models are supervised, i.e. the models are trained to
recognize events from a set of already labeled waveforms. Several
other studies have also developed unsupervised strategies such as
waveform clustering18,19. These other approaches allow to define clas-
ses with no a priori and are generally preferred when the dataset is
largely unlabeled or when the number of classes cannot be easily
inferred. Among the different deep-learning earthquake detectors,
several algorithms allow to pick the phases of earthquake-generated
signals20,21 and hence to invert the positionof the hypocenters in space.

In the present study, we first apply themost recent developments
in seismic interferometry22–24 to check for seismic velocity variations
before the 2014 eruption. In addition, we perform a systematic

detection of the sources in action by quantifying the degree of spatial
coherence from the continuously calculated cross-correlations (as in
Seydoux et al.25 and Soubestre et al.26). Finally, we use the most recent
deep-learning earthquake detector EarthquakeTransformer in a pre-
dictive mode directly, by considering the model trained on other
datasets27.

Results and discussion
Seismic velocity variations
In this study, we computed daily single-station inter-component auto-
correlations (ACF) and inter-station single-component cross-
correlations (CCF) at 11 seismic sensors of the Ontake network
(Fig. 1) to estimate seismic velocity changes in the shallow crust, fol-
lowing standard processing similar to Lecocq et al.28 and De Plaen
et al.29. The velocity variations, dv/v, are calculated from5-day stacks of
ACF and compared with the full period stack as reference.

At sensors located on the summit (red triangles in Fig. 1), we
observe a velocity drop from June to October 2014 in the 1–2Hz fre-
quency band (Fig. 2 for station ONTA). After the eruption, seismic
velocity kept decreasing for a few days. Such drop was only recovered
at seismic stations located on the summit of the volcano (Fig. 1) and in
the 1–2Hz frequency band (Fig. 2). Various processing parameters and
data processing approaches have been tested (see methods and sup-
plementary materials for details) and all gave similar results.

We then attempted to better constrain the nature of this obser-
vation through post-processing of dv/v observations. Non-volcanic
perturbations can decrease crustal seismic velocities, as recently

Fig. 1 | Map ofMtOntake network. Seismic station locations (triangles). MKO and
TKN are broadband seismometers (natural period of 120 s), whereas the others are
short-period sensors (natural period of 1 s). The locations of the meteorological
stations (purple transparent squares co-located with seismic stations N.KADH and
V.ONTN) and the groundwater station (red circle; the reference water level is 645

meters below the surface) are also indicated. The eruption site is shown as a green
diamond. The contour lines and shadings are created from an Aster Digital Eleva-
tionModel. The sensitivity kernels for stationONTAare shown as transparentwhite
and blue circles.
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observed throughout Japan byWang et al.22. Although the pre-eruptive
velocity decrease does not correlate with rain periods (Supplementary
Fig. 11), velocity variations at the stations located on the summit fluc-
tuate seasonally (Fig. 2 top panel). Such seasonal effects were miti-
gated by computing the pore pressure changes from daily
precipitation and snow depth22 (see Methods for technical details)
between 2012–2014. We used seismic velocities computed following
the approach developed by Brenguier et al.30, whose linear inversion
and regularization usually provide more stable results, particularly for
short time series. We only used the ACF recorded before the eruption
to prevent any contamination related to the eruption and post-
eruptive seismic signals.We do not interpret the absolute values of the
relative velocity changes using this procedure because they largely
depend on smoothing coefficients.

The procedure to correct for seasonal effects accounts for chan-
ges associated with abnormal snow events but not for changes in
atmospheric pressure. dv/v are sensitive to varying overlying load
induced by snow thickness and atmospheric pressure, which cause an
increase in seismic velocity, especially above 1 Hz14. Some abnormal
dv/v fluctuations between January andMarch 2014 are coincident with

high atmospheric pressure (Supplementary Fig. 21). We find coeffi-
cients (dv/v changes divided by the load (m) induced by atmospheric
pressure) on the order of 0.1–1%/m similar to the values estimated by
Donaldson et al.14. Spatial and temporal seismic velocity variations
could also be associatedwith large earthquakes, as observed following
the Tohoku-Oki30 and Kumamoto31 earthquakes, but large magnitude
events have not been recorded before the 2014 Mt Ontake eruption.
No seismic events larger than magnitude 4, within 100 km, were
reported in the regional seismic catalogue.

A long-term increase in dv/v occurred until late April 2014 (Fig. 3).
A greater velocity reduction is observed inMay 2014, directly followed
by a re-increase and another significant decrease (−0.04%) coincident
with the onset of volcano-seismicity late August (Fig. 3, red and green
dots) reported in numerous studies. The dv/v fluctuations between
May and mid-August 2014 occurred during complete quiescence
reported in the previous studies6.

Spatial constraints
The pre-eruptive velocity perturbations were restricted within a
small volume on the eastern flank because they could only be

Perturbed system 

Abnormally high
atmospheric pressure

Fig. 3 | Seismic velocity combined with complementary observations. dv/v is
estimated using daily ACF at station ONTA and inverting for a continuous velocity
change time as in Brenguier et al.30 with a weighting coefficient of 100,000 (black
line). The dv/v curve has been corrected for external perturbations due to rain and
snow accumulation, following Wang et al.22. We have also smoothed the dv/v curve
usingaHodrickPrescottfilter63with a factorof 10,000 (red line). Thewater level data
(blue line) are from Koizumi et al.41. The sensor is located between MKO and MTB

stations (GOT, blue square, Fig. 1). The spikes in July and August 2014 correspond to
a period attributed to sensor problems41. The red vertical solid line indicates the 27
September 2014 eruption, whereas black vertical dashed lines correspond to local
earthquakes detected by our study. Long Period (LP) and Volcano Tectonic (VT)
catalogs shown as red and green dots fromAugust onwards and are fromZhang and
Wen44. Rain and snow data were recorded at the station located nearby ONTN
between 2012–2014 (Fig. 1) to remove the seasonal component.

dv/v 
anomaly

Fig. 2 | Relative velocity variations from AC. Temporal evolution of relative
seismic velocity at station ONTA using different frequency bands (1.0–2.0, 0.5–1.0,
and 0.1–1.0Hz). The vertical red line indicates the 27 September 2014 eruption.

Errors are shown as shaded values around each curve and are estimated following
Lecocq et al.28. A velocity anomaly is observed from June to October 2014 in the
1–2Hz frequency band.

Article https://doi.org/10.1038/s41467-022-32252-w

Nature Communications |         (2022) 13:6145 3



observed between 1–2 Hz at some sites (red triangles on Fig. 1). This
is consistent with sensitivity kernels of coda waves32,33 to seismic
velocity changes that show high sensitivity close to the stations but
not beyond (Fig. 1, from Supplementary Fig. 17). The absence of dv/v
changes at lower frequencies (Fig. 2) corresponding to larger
depths can be ascribed to the greater confining pressure that causes
smaller dv/v changes34.

The velocity variations do not depend on the lag time (Sup-
plementary Fig. 6) but depend on the frequency band (Fig. 2), sug-
gesting surface wave propagation rather than body wave
propagation35. The sensitivity kernels computed for Rayleigh and
Love waves suggest that the velocity changes occurred ~1–1.5 km
below the station sites (Supplementary Fig. 17). These results are in
line with other studies (Yamaoka et al.6 and references therein) that
estimated the source depth to less than 1–2 km beneath the crater.
We also calculated the sensitivity kernels in 2D36,37 and included
diffusion and absorption effects. The kernels were computed with a
velocity of 1 km/s, a mean free path of 1 km, for a time in the coda of
15 seconds, over a 500m equally spaced grid surrounding station
ONTA (Fig. 1). Changing these parameters only slightly affect the
shape and total extent of the kernel.

Seismic waves are subject to strong attenuation. Contrary to
ACFs, we could not detect such variations using the more traditional
Cross-Correlation between station pairs approach (CC) (Supplemen-
tary Fig. 11). The coherence between CCF of station pairs is often lost
depending on the interstation distance35. A potential problem with
ACFs is the contamination of ambient noise by earthquakes and
tremor38. To account for this problem, we also computed the phase
cross-correlation (PCC39) using station ONTA and found the same pre-
eruptive dv/v pattern (Supplementary Fig. 8).

Complementary observations
The most significant velocity reduction (Fig. 3) coincides with slight
crustal deformation in mid-August, highlighted by retrospective
stacking of deformationdata9. Twoweeks later, another slight inflation
occurred9, volcano-earthquakes around sea level were triggered8, and
stress changes were detected in the region10. Such activity may have
opened cracks in the shallow portions of the edifice, thereby reducing
seismic velocity propagation.

We applied a network-based method for detecting different
kinds of seismic signals and among them volcanic tremor. The
method is based on the analysis of eigenvalues of the seismic net-
work covariance matrix25, the Fourier-domain representation of the
cross-correlation matrix. The waveforms were band-pass filtered
between 0.5 and 15 Hz. The decimated (50 Hz) traces were divided
into 50% overlapping time windows of which the amplitude is 1-bit
normalized (independently for every station) instead of the more

common spectral whitening procedure26. Every pre-processed win-
dow was then subdivided into overlapping subwindows of 100 sec-
onds, on which cross-spectral matrices are computed. From the
covariance matrix eigenvalues distribution, we infer the degree of
spatial coherence (spectral width, see Seydoux et al.25) that we can
relate to the presence of seismic sources. The analysis revealed a
coherent tremor between 1.3–4.0 Hz indicated by low spectral
width25 between 15 to 18 August (Fig. 4); the only of its kind in the
May-August 2014 time period (Supplementary Fig. 19). We could not
locate the signal with the network available. It is therefore difficult to
determine the origin of these signals. Two days later, the final seis-
mic velocity reduction started (Fig. 3). Another period of volcanic
tremor was associated with the eruption (Supplementary Fig. 16) on
27 September and has been extensively described by Ogiso et al.40.

Our retrospective work reveals unsteady behavior as early as
April-May 2014 (Fig. 3). We next ran the EQTransformer pre-trained
deep-learning model27 applied in a transfer learning fashion (without
retraining) on the continuous data recorded at stations KID andONTA,
and detected and picked 3265 earthquakes. We used low threshold
values for the detection and picking since EQTransformer is robust to
false positives. After visual inspection, most of the detections have
been found consistent with earthquake signals. Two periods of
enhanced seismicity have been recorded (Supplementary Fig. 15). A
burstwith S-P timesbetween3.2–3.6 secondsoccurredon22 Julywhen
the intermediate seismic velocity drop was registered (Fig. 3, black
vertical dashed line). These earthquakes correspond to seismic activity
~30 km to the North of the volcanowithmaximummagnitudes around
4 and were directly followed by a seismic velocity decrease. A larger
burst of regional earthquakes occurred on 3 May 2014 near the Yake-
dake volcano, located 45 kilometers fromMt Ontake with magnitudes
up to 4 when the seismic velocity started decreasing (black vertical
dashed line in Fig. 3).

To further explore this intriguing seismic velocity behavior, we
then investigated complementary parameters. We reviewed most
studies published since the eruption (some are listed in Yamaoka
et al.6) and could not find any clear correlation with the dv/v changes
except for a pressure change recorded in GOT well (Fig. 1) located
10 km SE of the summit of the volcano41. The groundwater pressure is
measuredwith a resolution of about 2mmby agauge in a sealedwell at
~650m depth41. Based on the data, Koizumi et al.41 concluded that the
2014 eruption was not preceded by any significant magma intrusion
but rather by heat transfer or small magma intrusion. The correlation
between the dv/v time-series and the pressure change is striking
(Fig. 3), although the pressure sensor experienced some problems
between the end of July and October 2014, limiting high-frequency
(~daily) comparisons between our dv/v time series and groundwater
level during this period.

Fig. 4 | Volcanic tremor.Volcanic tremor detected by the network-based approach
between 1.3 and 4Hz. The width of the network covariance matrix eigenvalues
distribution, called spectral width, is a proxy of the number of independent seismic

sources composing the wavefield. A low value indicates a coherent signal in the
network (stations used: KAD, KID, KMD, MKO, MTB, NGR, ONTA).

Article https://doi.org/10.1038/s41467-022-32252-w

Nature Communications |         (2022) 13:6145 4



Mechanisms driving seismic velocity changes before phreatic
eruptions
Seismic velocity increased for one year, from May 2013 to May 2014.
Our time series is too short to assess whether this trend was abnormal.
Similar long-term dv/v trends have been observed at Whakaari/White
Island volcano in the months preceding phreatic eruptions42. This
1-year dv/v increase may therefore indicate reduced permeability,
referred to as sealing, either due to the closure of cracks or pre-
cipitation of minerals in pores42,43 (stage 1, Fig. 5).

Shortly before the end of the increase (April 2014, stage 2), our
observations include several cycles of volumetric strain variations
correlated to localised dv/v changes (stage 2, Fig. 5) that indicate
reversible processes. Stress sensitivity of the edifice in a linear elastic
regime, density perturbation due to magma intrusion and damage
accumulation beyond the linear elastic regime are three mechanisms
that could explain our observations.Magma intrusion is unlikely based
on other studies at Mt Ontake8,44, whereas damage would have prob-
ably caused detectable microseismicity and deformation45–47. We
hypothesize that the SE flank of the volcano became stressed in April
2014, following a 1-year dv/v increase.

During this period (stage 2, Fig. 5), the dv/v started responding to
distal earthquakes, but only on the SE flank. The seismic velocity drop
could reflect a pulse of fluid48 or indicate that the hydrothermal system
was critically pressurized through dynamic stress changes49. The flow
of magma or a pulse of fluid from the source of earthquakes would be
too slow to account for the observations48. Instead, this sensitivity to
distal earthquakes in May and July most likely reflects the presence of
highly pressurized fluids beneath the surface of Mt Ontake. Hydro-
logical responses to earthquakes are mainly triggered by changes in

permeability50 that in turn, can affect seismic velocity49. As proposed
by Taira et al. for geothermal reservoirs49, ground shaking can increase
apparent crack density through unclogging of fractures due to pore
pressure fluctuations, thereby reducing seismic velocity. Areas of
higher stress sensitivity have been found correlatedwith hydrothermal
fluids30 that reduce the effective confining pressure, leading to greater
crack density and an increase in stress sensitivity49.

The stress sensitivities of seismic velocity changes are in the same
range as measured at other volcanoes14,34,51. Considering the volumetric
strain sensitivity of the groundwater pressure41, the 20 cm drop in
groundwater pressure was equivalent to an increase in the volumetric
strain at GOT of about 95 nstrain (0.02m/0.0021mm/nstrain) or
assuming a bulk modulus of 18GPa34, a stress sensitivity K of 1.7 e−7 Pa−1

(K =dv/v*ɛ−1 here dv/v is ~0.02% and ɛ is the relative strain difference51).
These sensitivities are consistent with the range of values measured by
Yamamura et al.52. The temporal agreement between our dv/v time
series between 1–2Hz andvolumetric strain (Fig. 3) likely reflects a cycle
of pressurization/depressurization in the SE sector of the volcano
between April−August 2014 (stage 2, Fig. 5).

Recent numerical modelling53 shows that volumetric strain
can increase in the medium due to inflation of a spherical source 1500
meters below the surface. The volcanic edifice overall experiences
extension with increased strain values close to the surface compared
to the flanks. This is compatible with the absence of clear dv/v changes
away from the summit between April and August 2014. These
numerical simulations are also consistent with our observations
wherebydv/vdecreaseswhengroundwater level decreases atGOTdue
to enhancement of fracture permeability, but future modelling would
help clarifying this.

Fig. 5 | Conceptual model. Conceptual model for the precursory activity prior to
the 2014 eruption atMt Ontake (not to scale). We define 3 stages corresponding to
Stage 1: sealing of the sub-surface/Stage 2: pressurization/Stage 3: Over-
pressurization. The red triangle corresponds to seismic stations located on the

summit, yellow stars to earthquakes, blue and red colors to extensive and com-
pressive strains, respectively, and the blue rectangle on the eastern flank to the
water level in the well at GOT.
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Several studies demonstrated the presence of over-pressurized
fluids beneath the eastern flank of Mt Ontake a few days prior to the
phreatic eruption10,54. Sano et al.2 attributed high b-values and an
increase in long-period earthquakes to the infiltration of hot fluids
~10 days prior to the eruption. Our observations extend the detections
of deviations of the local stress field in September highlighted by
Terakawa et al.10 using focal mechanisms. They indicate that stress
changes may have actually started at least as early as April 2014, but
only triggered detectable ground uplift9 and microseismicity in late
August 2014 when the fluids became over-pressurized10 (stage 3,
Fig. 5). Recent fluid injection experiments indicated that seismic
velocity changes are sensitive to changes in effective stress (super-
position of mechanical stress and pore pressure) producing volu-
metric strain while shear dislocation, therefore irreversible
deformation, cannot be detected using seismic velocity55. This places
further constraints on the processes responsible for the correlation
between volumetric strain and dv/v. We postulate that our observa-
tions reflect a period of reversible but disturbed stress field induced by
pressurized fluids on the eastern flank of Mt Ontake as early as April
2014. Seismic velocity could therefore be used as a proxy to detect and
map the pressurized volumes caused by poroelastic effects.

The seismic velocity kept decreasing a few days after the eruption
(Fig. 2) at most stations on the easter flank (Supplementary Fig. 9),
consistent with a few weeks of vigorous gas emissions56. The cross-
correlation coefficient between the reference ACF and the daily func-
tions recovered the pre-eruptive values in December 2014 (Supple-
mentary Fig. 4). This observation suggests that the shallow portions of
the edifice were not extensively disrupted by the event, at the scale of
the seismic waves, which is consistent with pressurized fluids acting as
the driving forceof the eruption. The absence ofpermanent damage in
the hydrothermal system suggests that the shallow edifice could
experience the same cycle of pressurization in the future.

Perspectives and limitations
The precursory activity and driving processes for the 2014 eruption at
Mt Ontake had remained hitherto unclear. This study sheds light on
both aspects using single-station seismic interferometry, as previously
shown for magmatic eruptions14,29,57. The 27 September 2014 phreatic
eruption at Mt Ontake was most likely instigated by the progressive
ingress of gas/steam that accumulated below the eastern crater at
shallow depths (1–2 km below the crater), leading to critically stressed
conditions in August 2014. Such accumulation was initiated as early as
5months before the eruption. Seismic interferometry and its temporal
resolution holds great promise for the future of volcanology as it can
detect slow, early onsets of both magmatic29 and non-magmatic
events. Yet our results also show its limited spatial sensitivity above
1 Hz. Care is also needed when averaging over a network of seismic
stations, especially at high frequencies14.

The absence of clear dv/v changes outside the summit region
while a volumetric strain is still detected in boreholes suggests that
seismic instruments need to be installed close to the summit and/or in
regions characterized by high fluid pore pressure, such as volcano-
hydrothermal systems where velocity-stress sensitivity is increased.
Importantly, the use of single-station seismic interferometry allows
probing the shallow portions of the volcano where stress sensitivity is
increased due to lower confining pressure34.

The seismic observations presented in this study can be collected
in real-time using free and open-access programs. Yet, we stress the
need to use complementary observables to properly interpret dv/v
results andmitigate seasonal variations,which canbe challenging from
a real-time monitoring perspective. Our observations extracted could
then be incorporated into machine learning forecasting5 for real-time
monitoring purposes. Seismic velocity variations are increasingly
being computed at volcanoes, and the model developed for Whakaari
using tremor could be expanded by including dv/v42 and the

parameters measured in this study, then tested at Mt Ontake in a
transfer-learning fashion. Such models have the potential to reveal
similar patterns prior to phreatic eruptions at other volcanoes world-
wide. Seismic velocity increase has also been found in the months
preceding phreatic eruptions at Whakaari/White Island volcano, sug-
gesting pressurization in the edifice42. A comprehensive study using
data recorded prior to phreatic eruptions is required to isolate distinct
behaviors prior to such eruptions and discriminate between different
processes; top-down processes such as sealing58 and/or bottom-up
processes such as magmatic gas influx4. Novel techniques such as the
network-based approach to detect coherent signals or unsupervised
machine-learning models, therefore, hold great potential for volcano
monitoring and forecasting.

Methods
Data processing
A table (Supplementary Table 1) is summarizing the parameters used
to present the results. Seismic records were preprocessed by carefully
checking for their timing (sample alignment) and gaps (interpolating
or tapering between gaps), then bandpass prefiltered between 0.01
and 8.0Hz and finally resampled to 20Hz. The rest of the processing
followed De Plaen et al.'s29 workflow. The seismic stations have been
operated by Nagoya University (KID, KMD, MKO, MTB, MUR, TKN),
JMA (ONTA, and ONTN), Gifu prefecture (GNDT), and NIED (KAD).

Auto and cross-correlation functions
Autocorrelations (AC) were generated by cross-correlating vertical
components with themselves, except for ONTN whose vertical data
were not available (NN results are shown in this study). Contrary to the
cross-correlation approach, the spectral whitening that sets the
amplitude of the signal to 1 for all frequencies was not applied since
only the phase of the signal would remain. The signals were then fil-
tered between 1–2Hz, whichwas found to bemore sensitive to rainfall
and volcanic events29. Figure 2 shows that the processing in different
frequency bands (0.1–1 Hz, 0.5–1.0Hz, and 1.0–2.0Hz) did not provide
the same dv/v. Our results agree with De Plaen et al.29 who recovered
more reliable changes between 1–2Hz. At Mt Ontake, we generally do
not detect persistent volcanic tremor between 1–2Hz, as for example
observed at Whakaari/White Island volcano15. Lower frequency bands
did not recover the velocity reduction because they are sensitive to a
larger volume below the stations and/or they are contaminated by
other sources of noise (e.g., oceanic, meteorological). We ascribed
such observation to spatially localized areas of velocity variations. The
waveforms were then clipped to 3 rms (root-mean-square) which was
found to provide the most stable results29. The dv/v results were only
minimally influenced by this parameter (Supplementary Fig. 1). We
then produced 5-day stacks (linear stacks). We opted for the 5-day
stacks to present the results as it represents a good trade-off between
acceptable errors and sufficient time resolution (Supplementary
Fig. 2). The 1-day dv/v were for example, excessively noisy (no errors
shown around the line a few days after the eruption).

Velocity variations
The daily velocity changes were first obtained by comparing the daily
AC functions to a reference AC function. Temporal variations in seis-
mic velocity (dv/v) were derived from dt/t in the frequency domain
using the Moving Window Cross Spectral Analysis (MWCS) and
assuming a homogeneous velocity change. The reference used to
compute the dv/v corresponded to the entire period. The post-
eruption period (Supplementary Fig. 3) was not coherent enough to
compute reliable dv/v estimates, as observed in Supplementary Fig. 5.
We tested the approach developed by Brenguier et al.30, who applied
the MWCS analysis to daily functions and inverted for a continuous
velocity change time series for each station pair separately (last sub-
plot in Supplementary Fig. 3, weighting coefficient of 100,00030). The
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results were similar (last subplot in Supplementary Fig. 3), but the
computation timewasmuch longer. The cross-correlation coefficients
between the reference of the daily AC functions (between + −5 to
+ −35 s) were generally above 0.7 (Supplementary Fig. 4) except
between the eruption and December 2014. Pre-eruptive values were
only recovered in December and may indicate that the medium was
not extensively disrupted by the eruption. We also processed the 2015
data, but the dv/v estimates had excessive errors (Table S1 for the
parameters).

Velocity variationswere then estimated between ±5 to ±35 s of the
AC functions. We tested the influence of the coherence, as defined by
Lecocq et al.28, and different time lags on the final dv/v estimate. As
seen in Supplementary Fig. 5 and S6, these parameters only merely
affect the pre-eruptive dv/v drop. It is worth noting that low coherence
values (<0.9) are observed between October and December 2014.

Other processing schemeswere tested to assess the robustness of
these results. The waveform stretching method11 was used to estimate
the relative velocity variations. Although seasonal variations may be
slightly more pronounced with the stretching than the MWCS
approach (Supplementary Fig. 7), perhaps due to changes in the
source spectrum as suggested by Zhan et al.59, dv/v estimates are very
similar. Phase Cross-Correlation39 was tested against the classical
Cross-Correlation approach. This approach consists of measuring the
similarity of instantaneous phases of analytical traces and as such
removes the need for temporal or spectral normalization before cross-
correlation. This processing provided similar results as well (Supple-
mentary Fig. 8).

We used the vertical component of the data to compute the AC
and estimate the dv/v, for example Richter et al.35. Autocorrelations
(AC) using horizontal components and cross-component correlations
(SC)were alsocomputedbut resultswere too scattered, and stretching
results were for example unreliable. The origin of this discrepancymay
be related to the enhanced sensitivity of horizontal components to
different sources of noise (meteorological, anthropic) and hence,
spurious dv/v estimates. Although beyond the scope of this study,
further research should explore such discrepancies.

Figures S9 and S10 show the results for the individual stations
located on the eastern flank and elsewhere, respectively. Results from
stations not shown on these figures did not pass the quality criteria
described in Table S1.

Modeling
Rainfall data (Supplementary Fig. 12) were used to compute the pore
pressure change P(r,t)22:

∑n
i= 1δpierfc r=ð4c n� ið ÞδtÞ1=2

h i
,

where δt is the time increment from the first day i, δpi is the pre-
cipitation load changes (ρ g δhi, where ρ is the density (1000 kg/m3)
and g is the acceleration of gravity (9.81m/s2)) at the instant ti and c is
the diffusion rate (m2/s). erfc is the complementary error function.
c = 1 m2/s was considered as in Wang et al.22. The pore pressure mean
value within r = 8 km was estimated every day, and the modeled seis-
mic velocity change was estimated using a transfer function22 and is
shown in Supplementary Fig. 13.

Snow cover (Supplementary Fig. 12) can induce an elastic loading
effect and decrease pore pressure by impeding infiltration and
recharging of the groundwater22. These effects were considered
through a linear relationship combining the effect of pore pressure
and snow depth:

ðdv=vÞsyn =aPr +bS+C,

where the synthetic (dv/v)syn depends on a and b, coefficients of the
daily mean precipitation Pr and the mean snow depth S, respectively,

and C is a constant with offset parameters. a = −1.488*10−4Pa−1 and
b = 2.5 × 10−4 cm−1. The results are shown in Supplementary Fig. 14.

Thephase-velocity sensitivity kernelswere computed forRayleigh
and Lovewavesusing 1D velocitymodels and the surf96 program60.We
tested the 3models shown in Terakawa et al.10 and consider themodel
of Kato et al.8 as the most likely. All the results point to dv/v changes
occurring between 0 and 2 km below the seismic station (Supple-
mentary Fig. 17).

Data availability
The auto correlation functions generated in this study have been
deposited in the Zenodo database [add hyperlink here]. The raw
seismic data are protected and are not available due to data
privacy laws.

Code availability
All the computer codes are freely and/or will be soon available (e.g.,
sensitivity kernels which will be a new plugin of the next version of
MSNoise).
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