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Many bacterial species use secreted quorum-sensing autoinducer molecules to regulate cell density- and growth phase-
dependent gene expression, including virulence factor production, as sufficient environmental autoinducer
concentrations are achieved. Bacillus anthracis, the causative agent of anthrax, contains a functional autoinducer (AI-2)
system, which appears to regulate virulence gene expression. To determine if the AI-2 system is necessary for disease, we
constructed a LuxS AI-2 synthase-deficient mutant in the virulent Ames strain of B. anthracis. We found that growth of the
LuxS-deficient mutant was inhibited and sporulation was delayed when compared with the parental strain. However,
spores of the Ames luxS mutant remained fully virulent in both mice and guinea pigs.

Introduction

Bacillus anthracis is a rod-shaped, Gram-positive bacteria and the
etiological agent of anthrax.1 In response to nutrient depletion,
B. anthracis forms highly resistant spores and can remain dormant
and viable in the soil for decades.2 When these spores are
deposited in the lungs, gastrointestinal tract, or skin lesions of a
susceptible animal, they germinate3 to form toxin-producing,
vegetative bacilli, which can rapidly proliferate and overwhelm the
host.4 Improved and novel anthrax treatments are needed to
address the risks posed by possible antibiotic- and/or vaccine-
resistant B. anthracis strains.5

Many Gram-negative and -positive bacteria use methods of
intracellular communications, referred to as quorum sensing (QS),
to coordinate gene expression in response to local cell density.
One QS pathway that is common to both Gram-negative and
-positive bacteria is the autoinducer-2 (AI-2) pathway. This
system has been well described in Vibrio harveyi where the LuxS
synthase produces the AI-2 signal molecule from S-ribosylhomo-
cysteine, a byproduct of S-adenoxylmethionine metabolism.6 The
membrane-permeable AI-2 signal molecule binds to LuxP in
neighboring cells to initiate a phosphate transfer cascade, which
leads to the deactivation of the negative response regulator LuxO.7

AI-2 signal molecules have been shown to regulate genes encoding
a variety of functions, including toxin expression and other
bacterial virulence determinants.8-12

A functional AI-2 molecule was identified in the Sterne strain
of B. anthracis.8 Researchers found subsequently that AI-2 QS
inhibitors limit growth and toxin gene expression in the
bacterium.9 Recently, a luxS-deficient mutant of the B. anthracis
Sterne strain was shown to exhibit similar phenotypic defects.13

These findings suggest that opportunities might exist to treat
B. anthracis infections using QS inhibitors. Therefore, we
challenged mice and guinea pigs with a luxS-deficient mutant of
the fully virulent Ames strain to determine whether disrupting the
B. anthracis AI-2 QS pathway limited the severity of B. anthracis
infections in small animal models. As reported here, our study
failed to reveal statistically-significant differences in survival rates
between animals challenged with B. anthracis Ames wild-type or
luxS mutants.

Results

Disrupting the luxS gene eliminates AI-2 production in
B. anthracis Ames. The luxS gene (BA5047) encodes an AI-2
synthase, which produces the AI-2 QS reporter molecule. Because
the luxS gene is monocistronic and downstream open reading
frames (BA5045 and BA5046) are encoded in the opposite
direction,14,15 disruption of the luxS gene would not have a
downstream polar effect. Therefore, using a technique previously
applied by ourselves and others to study B. anthracis pathogen-
esis,16-20 we disrupted the B. anthracis Ames luxS gene by inserting
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the erythromycin-resistant pEO3 plasmid into the middle of the
coding region by homologous recombination. We then confirmed
proper formation of the merodiploid mutant by PCR-amplifying
a gene fragment that spanned the junction of the pEO3 plasmid
and the luxS open reading frame. Similarly assaying multiple
colony isolates from media- and animal passaged-mutants
confirmed stable retention of the insert, even in the absence of
the selective antibiotic (data not shown).

We created the B. anthracis Ames luxS mutant to eliminate
endogenous production of the AI-2 reporter molecule and
evaluate the effect of AI-2-deficient bacteria on mouse and guinea
pig survival. Therefore, to show that we successfully eliminated
AI-2 signal molecule production in the luxS mutant, we used
filtered conditioned medium from wild-type and mutant
B. anthracis cultures to induce bioluminescence in the V. harveyi
BB170 reporter strain.21 Filtered medium collected from
stationary phase cultures of both the wild-type and luxS bacteria
were added to the reporter strain and luminescence measured.
The conditioned medium from the wild-type strain was able to
induce bioluminescence, thus demonstrating the production of a
functional AI-2 molecule in the Ames strain. However, when
conditioned medium from the Ames luxS mutant was added to
the reporter strain, the bioluminescence detected was no greater
than what was observed with buffer alone (Fig. 1). These data
confirm that the AI-2 signal molecule is not produced by the
Ames luxS mutant.

The luxS mutant is deficient in growth and delayed in
sporulation. A previous report indicated that a luxS mutation in
the attenuated Sterne strain of B. anthracis led to decreased growth
in liquid culture.13 Given this relationship between LuxS activity
and bacterial growth, we compared the growth kinetics of the
Ames wild-type and luxS mutant strains in brain heart infusion
(BHI) broth. Consistent with the findings for B. anthracis Sterne,
the Ames luxS mutant grew slower than wild-type Ames in liquid
culture (Fig. 2).

We also found that the luxS mutant was impaired for growth in
Difco Sporulation Medium (DSM) when compared with the
parental strain (data not shown) and measured about a log
reduction in the total number of colony forming units (CFU)/ml
at the 24 h time point (Fig. 3). While the drop in measured
CFU/ml is likely due in part to slower growth, it may also be
attributable to the more extensive aggregation of vegetative bacilli
in luxS cultures than in wild-type cultures, which exhibited more
free-floating spores under a light microscope (data not shown).
Although luxS mutant was impaired for growth in DSM, the time
at which the culture left exponential growth and began to
sporulate was similar to that of the wild-type bacteria.

To confirm that the luxS mutant was producing fewer spores
than wild-type bacteria, we analyzed sporulation by measuring the
number of heat-resistant spores at 24 and 48 h after the onset of
sporulation. Heat-resistance appears at an intermediate point in
sporulation and is a reliable measure of progression through all
but the final stages of spore formation.22 At 24 h, only 15% of the
viable luxS mutant cells were heat-resistant compared with 92% of
wild-type bacteria. However, by 48 h, 100% of the luxS cells were
resistant to high temperature (Fig. 3). These data suggest that

while the luxS mutant is not significantly defective in spore
production, it is defective in the progression through at least the
early stages of the process. As a result, luxS cells progress through
sporulation less efficiently or less rapidly than wild type.

Finally, to assess the stability of luxS cointegrate mutants, 200
colonies from the sporulation assay were picked and patched onto
Luria-Bertani (LB) agar plates with and without erythromycin.
No erythromycin-sensitive colonies were detected, indicating that
the cointegrate mutant was genetically stable during the in vitro
culture conditions. We further validated mutant stability by PCR
analysis of DNA derived from several of the antibiotic-resistant
colonies. PCR analysis indicated that the luxS gene in each of the
sampled colonies were disrupted by a pEO3 integrant (data not
shown).

LuxS-deficient mutants remain as virulent as wild-type
bacteria in mouse and guinea pig models. Because QS has been
linked to virulence gene expression in many pathogens, including
toxin gene expression in B. anthracis,9,13 we evaluated the Ames
luxS mutant in multiple small animal models of anthrax infection.
First, we compared survival of BALB/c mice challenged with
either wild-type or luxS spores via intranasal (~2.65 � 106 spores
in 50 ml of water) or intraperitoneal (~2,700 spores in 100 ml of
water) delivery. For these challenge models, previous studies
calculated the Ames strain LD50 for mice to be 3.7 � 104 and 500
spores, respectively.23,24 As shown in Figure 4, there were no
statistically significant differences in survival or time to death
between mice challenged with wild-type or luxS mutant bacteria,
regardless of challenge route.

In addition to the mouse models of infection, guinea pigs
(n = 10 for luxS and n = 5 for Ames wild-type) were challenged
intramuscularly (~350 spores in 200 ml of water). A previous
study calculated the Ames strain LD50 for a guinea pig to be ~100
spores.25 Our study used a relatively low challenge dose so as to
avoid overwhelming the animals and to ensure that a low level of
attenuation in the virulence of spores could be observed.
However, all animals similarly succumbed to infection with either
strain by day 3, and no differences in survival or time to death
were observed (data not shown).

Finally, to exclude the possibility that reversion of the luxS
mutant to the wild-type form could be occurring during infection,
guinea pig spleens were removed and bacteria recovered. A
representative sample of bacteria (100 CFU from each mutant-
challenged animal) was screened on LB agar plates with and
without erythromycin. All plated CFU remained antibiotic
resistant, indicating that the guinea pigs had succumbed to
infection by luxS mutants and not wild-type revertants.

Discussion

Many bacterial species possess density- and growth phase-
dependent genes, which respond to extracellular signaling
molecules that accumulate in the environment. These QS signals
regulate various bacterial functions and have been shown to affect
the expression of numerous virulence factors.8-12 B. anthracis
contains a functional AI-2 system that regulates the gene encoding
the S-layer protein as well as other virulence genes, such as pagA,
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pagR, lef and cya.8,9,13 These findings suggest that the AI-2 QS
system might provide an effective therapeutic target against
B. anthracis infection. To further evaluate this possibility, we
constructed a LuxS-deficient mutant of the fully virulent
B. anthracis Ames strain to determine if the LuxS AI-2 synthase
is necessary for virulence in mouse and guinea pig models of
infection.

The B. anthracis Ames luxS mutant exhibited an in vitro
growth defect (Fig. 2) similar to that previously observed in a
luxS-deficient Sterne strain.8 Additionally, a temporary delay was

observed for completion of sporulation with the luxS mutant
when compared with the parental strain (Fig. 3). To date, a role
for the LuxS AI-2 synthase protein in B. anthracis sporulation has
not been demonstrated. Furthermore, a recent microarray study,
which compared the parental and luxS mutant Sterne strains,13

did not reveal expression differences of known sporulation genes.
However, a luxS mutant in the related Bacillus subtilis natto strain
exhibited delayed formation of fruiting bodies during spore
development.26 B. subtilis sporulation is regulated by both the
ComX peptide autoinducer27 and small RNAs (sRNA).28 Because

Figure 1. Conditioned medium from the B. anthracis luxSmutant does not induce a V. harveyi QS response. AI-2 activity is shown as luminosity expressed
from V. harveyi strain BB170 during growth in response to the addition of autoinducer buffer or filtered, conditioned medium from V. harveyi (BB170), the
wild-type B. anthracis strain (Ames wt), or the B. anthracis luxS mutant (Ames luxS). (A) Luminosity values at 3 h of growth. The error bars represent the
standard deviation from the readings of six replicates. The difference between the wild-type Ames and luxS mutant was statistically significant (p = 3.15
� 10−6). (B) Luminosity values at various growth times of the assay. These data are representative of the results of two independent experiments.
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AI-2 and sRNA are synergistic in regulating Vibrio cholera29 and
possibly B. anthracis13 toxin expression, perhaps such combined
regulation may explain the delayed sporulation results observed
with the luxS mutant of B. anthracis.

The main goal of this study was to determine if the AI-2 QS
pathway is significant for B. anthracis virulence. Therefore, we
created and then evaluated virulence of an Ames luxS mutant in
several small animal models for B. anthracis infection. BALB/c mice
were tested by both intranasal and intraperitoneal routes of
infection. In addition, guinea pigs were challenged intramuscularly.
Despite previous studies linking AI-2 signal molecules to toxin and
virulence factor regulation and the fact that our B. anthracis luxS
mutant was deficient in growth, we saw no statistically significant
differences in either the time to death or survival rates for animals
challenged with mutant and wild-type isolates (Fig. 4). These
results demonstrate that the intact AI-2 QS pathway does not play a
significant role in B. anthracis infection in these animals and suggest
that the AI-2 synthase enzyme would not provide an effective
therapeutic target. Although LuxS activity is known to affect
virulence in other bacterial species,30-32 our study using these rodent
models of anthrax infection demonstrates that B. anthracis may be
among those bacteria for which the AI-2 synthase does not play a
significant role in infection.33-36

Methods

Bacterial growth and sporulation. Escherichia coli were cultured
in LB medium supplemented with 50 mg/ml of ampicillin. The
Ames strain of B. anthracis37 was cultured in either LB medium or

Figure 2. The B. anthracis luxS mutant exhibited impaired growth in BHI
broth. Comparison is made of growth between the Ames wild-type
(circles) and the luxS (squares) bacteria in BHI broth. These data are
representative of the results of at least three independent experiments.

Figure 3. LuxS-deficient bacteria show signs of delayed sporulation. Ames wild-type and luxS bacteria were inoculated at equal concentrations (by OD600)
in DSM. CFU counts were obtained at 24 h and 48 h by plating culture samples before and after heating for 30 min at 65°C. The percentages of heat-
resistant spores at each time point are indicated above the colony counts and are based on the fraction of heat-resistant cells in the sampled media.
These data are representative of three independent experiments.
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BHI broth. For construction and selection of the luxS mutant,
medium was supplemented with 5 mg/ml of erythromycin,
otherwise the mutant was grown under the same conditions as the
wild-type strain. To induce sporulation, B. anthracis was grown in
DSM38 and spores were purified as previously described.16

Because B. anthracis spores are resistant to heat, spore formation
was measured by counting CFUs before and after incubating the
bacterial cultures at 65°C for 30 min.

Mutant construction. The luxS mutant was constructed by
PCR-amplifying an internal fragment of the B. anthracis Ames
luxS gene (nucleotides 120–224, where ATG = 1–3) using
two internal primers (5'-TTGCCAACCGAATAAAC-3' and
5'-TCAAAATGTGGATAACGAT-3') and cloning the PCR
product into the pEO3 plasmid.19 The resulting construct was
integrated into the B. anthracis Ames chromosome to form a

merodiploid mutant as previously described.16 PCR analysis was
used to confirm stabile disruption of the luxS gene in both
culture- and animal-passaged bacteria.

AI-2 production. A previously published bioluminescence assay
was used, with minor modifications, to detect endogenously
produced AI-2 signal molecules in wild-type and luxS B. anthracis
cultures.21 Briefly, an overnight culture of V. harveyi strain BB170
(ATCC) was grown in LB at 30°C, diluted 1:5,000 into
autoinducer buffer, and 990 ml aliquots were distributed into
optical-grade micro-titer plates preloaded with 10 ml of condi-
tioned medium. The filtered, conditioned medium was prepared
from liquid bacterial cultures of B. anthracis Ames wild-type or
luxS strains grown to stationary phase in BHI at 37°C. Similarly
prepared filtered medium from V. harveyi was used as a control.
The assay plate was incubated at 30°C with orbital shaking, and
luminescence was measured at 490 nm every hour using a Victor2

Multilabel Counter (Perkin-Elmer). Each test subject was
averaged from six replicates across a single microtiter plate.

Animal challenges. To assess potential changes in virulence
associated with disrupting the B. anthracis Ames AI-2 QS
pathway, spores from both wild-type and mutant strains were
used in mouse intraperitoneal and intranasal models,39 as well as
the guinea pig intramuscular model.25 Research was conducted
under an IACUC-approved protocol in compliance with the
Animal Welfare Act, PHS Policy and other federal statutes and
regulations relating to animals and experiments involving animals.
The facility where this research was conducted is accredited by the
Association for Assessment and Accreditation of Laboratory
Animal Care, International and adheres to principles stated in
the Guide for the Care and Use of Laboratory Animals, National
Research Council, 2011.

Statistics. Survival rates were compared between groups by
Fisher exact tests with permutation adjustment for multiple
comparisons using SAS Version 8.2 (SAS Institute Inc., SAS
OnlineDoc, Version 8). For comparing data from biolumin-
escence experiments and time to death studies of mouse
challenges, statistical significance (p , 0.05) was determined by
the two-tailed Student’s t-test.
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Figure 4. Loss of LuxS AI-2 synthase activity does not affect B. anthracis
virulence in mice. There was no statistical difference between the
survival curves for BALB/c mice challenged with B. anthracis Ames luxS
spores (squares; n = 10) or wild-type spores (circles; n = 10) regardless of
whether the spores were administered intranasally (A) (~2.65 � 106

spores; p = 0.72) or intraperitonally (B) (~2,700 spores; p = 0.49).
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