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is of C–H activation by oxo
complexes supports diverse thermodynamic
control over reactivity†

Joseph E. Schneider, McKenna K. Goetz and John S. Anderson *

Transition metal oxo species are key intermediates for the activation of strong C–H bonds. As such, there

has been interest in understanding which structural or electronic parameters of metal oxo complexes

determine their reactivity. Factors such as ground state thermodynamics, spin state, steric environment,

oxygen radical character, and asynchronicity have all been cited as key contributors, yet there is no

consensus on when each of these parameters is significant or the relative magnitude of their effects.

Herein, we present a thorough statistical analysis of parameters that have been proposed to influence

transition metal oxo mediated C–H activation. We used density functional theory (DFT) to compute

parameters for transition metal oxo complexes and analyzed their ability to explain and predict an

extensive data set of experimentally determined reaction barriers. We found that, in general, only

thermodynamic parameters play a statistically significant role. Notably, however, there are independent

and significant contributions from the oxidation potential and basicity of the oxo complexes which

suggest a more complicated thermodynamic picture than what has been shown previously.
Introduction

The activation of C–H bonds through proton-coupled electron
transfer (PCET) underpins a wide range of biological and
synthetic processes. The applications of this reaction include
drug metabolism by cytochrome P450 enzymes as well as
synthetic methods for the preparation of ne chemicals.1–3 In
many cases PCET reactions are mediated by transition metal
oxo intermediates generated within either protein-based or
synthetic ligand scaffolds. In these reactions, both a proton and
an electron are transferred to an oxo complex resulting in the
net removal of a hydrogen atom from the organic substrate. The
generality of this reaction combined with the ubiquity of C–H
bonds in synthesis has led to considerable interest in deter-
mining what properties govern the PCET reactivity of transition
metal oxo species.

A large body of work supports that the free energy of reaction
(DGPCET) is central to transition metal oxo mediated C–H acti-
vation and also offers a great deal of explanatory and predictive
power.4–7 Recently however, additional properties have been
cited as important although it is not clear if any have
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a widespread effect on reactivity. Individual cases support the
inuence of O-centered spin density,8 spin state,9–11 steric
environment,12–14 the free energies of proton and electron
transfer (DGPT and DGET),15–20 or the asynchronicity (h) of the
reaction,21–24 but there is a lack of consensus regarding their
generality and relative importance (Scheme 1).8,25–27 Very few
studies have explored these parameters outside of a narrow
range of complexes,4,6,10,20,21,28 and none have statistically
examined the signicance of parameters other than DGPCET on
the reactivity of a broad set of metal oxo complexes.
Scheme 1 Investigated parameters of metal oxo species.
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We previously found an atypical dependence on DGPT in the
concerted C–H activation reactivity of a terminal CoIII oxo
complex which contrasts with the expected rate dependence on
DGPCET.15 Given the disparity of this result with the literature,
we sought to understand the interplay of characteristics
affecting a broad range of transition metal oxo mediated PCET
reactions using multivariable linear free energy relationships
(LFERs). These models can be used to relate experimentally
determined data, such as reaction rates, to multiple predictor
variables simultaneously. LFER models have recently been used
as versatile tools to optimize organic methodology, predict
reaction barrier heights, and investigate underlying
mechanisms.29–33,116,117

We have applied this analysis to examine trends in rates of
PCET mediated C–H activation for a broad dataset of previously
reportedmetal oxo complexes. This analysis enables a statistical
examination of several hypotheses regarding what parameters
of metal oxo species determine their PCET reactivity. Unsur-
prisingly, we observe that DGPCET is the most important factor.
However, we also observe a signicant role for DGPT and DGET

beyond and independent of their contribution to DGPCET.
Furthermore, the other parameters investigated do not have
broad signicance. These results suggest that thermodynamic
factors are generally the dominant contributors to transition
metal oxo C–H activation reactivity, but also demonstrate that
thermodynamic parameters beyond the commonly invoked
DGPCET are inuential.
Results and discussion

We began our analysis by compiling an extensive data set of
second order rate constants (k2) for the oxidation of 9,10-dihy-
droanthracene (DHA) by thirty well-characterized metal oxo
complexes.12,13,15,17,34–51 This diverse data set comprises
complexes of ve different transition metals, tetragonal and
trigonal geometries, spin multiplicities from 1 to 5, charges
from �1 to +3, and d-electron counts from 0 to 6. We manually
divided the data set into a training set of seventeen metal oxo
complexes and a test set of thirteen metal oxo complexes such
that each set had a diverse mix of species. For our analysis, we
calculated the values of parameters that have been hypothe-
sized as important to metal oxo mediated PCET reactivity for
each metal oxo complex. The investigated parameters include
the steric environment (quantied by percent buried volume, %
BV),52 the spin density on the oxygen atom (via intrinsic bond
order (IBO) analysis),53,54 the energetic cost of accessing a higher
spin state if one lies closer to the product spin multiplicity than
the reactant ground spin state (spin excitation), the thermody-
namic free energies DGPCET, DGPT, and DGET, and the magni-
tude of the asynchronicity parameter (|h|).21 The detailed
approaches used to determine the values for these parameters
are provided in the methods section. Importantly, none of these
parameters require transition state optimizations which are
relatively difficult and less reliable than ground state calcula-
tions.55,56 While this precludes a direct estimation of transition
state effects, we expect to indirectly capture some of them. For
4174 | Chem. Sci., 2021, 12, 4173–4183
instance, parameters such as DGPCET and |h| have been shown
to correlate with tunneling.23,57

We examined the effect of each of these parameters on
experimental reaction barriers by building multivariable free
energy models via ordinary least squares regression of the
barrier heights against the parameters. Each model consists of
a set of coefficients (with variable units such that the product
with the respective parameter gives units of kcal mol�1) and an
intercept (with units kcal mol�1). These models were used to
generate predicted reaction barriers for each data point, which
could be compared with experimental reaction barriers to
assess the utility of the model. Because DGPCET has strong
theoretical and experimental support for affecting reaction
barrier heights,4–6 we analyzed each parameter in combination
with DGPCET and compared the resulting model to regression
against DGPCET alone.

We evaluated each regression based on R2, leave-one-out
(LOO) R2 (sometimes referred to as Q2), and a statistical F-
test.58–61 R2 is a goodness of t measure which quanties the
amount of variation explained by a model. The predictive ability
of a model is gauged with LOO R2, in which each data point is
le out and predicted by the remaining data points and the
goodness of t is then reevaluated. Critically, unlike regular R2

this metric does not necessarily improve with an increase in
parameters; overtted models with too many parameters
perform poorly with LOO R2. For each R2, a value close to 1
indicates a good t. Finally, we report the p-value from an F-test
on each model, which shows the probability the observed
correlation arises from statistical noise. The lower this p-value
is, the more signicant a given parameter. Additionally, the
calculation of p-values considers the number of parameters
added to a model, so, as with LOO R2, an F-test is not biased in
favor of adding more parameters.

A summary of our ndings is presented in Table 1. In line
with previous reports, we nd a strong correlation between the
experimental reaction barriers and DGPCET. This parameter
alone explains 70% of the variation in reaction barriers within
the training set (R2 ¼ 0.70) and has high predictive ability (LOO
R2 ¼ 0.60). Interestingly, most other parameters do not signif-
icantly improve the model. While we do observe a small corre-
lation with %BV steric metrics, the magnitude of the effect is
too small to be statistically signicant. Compared to the DGPCET

only model, spin-based parameters and |h| barely improve R2

and perform similarly or worse in LOO cross-validation. While it
is difficult to rule out the importance of these parameters in
individual cases, an F-test indicates they do not have a statisti-
cally signicant effect across our entire data set.

In contrast, addition of DGPT and DGET does signicantly
improve the t. For this {DGPCET, DGPT, DGET} model, R2

increases from 0.70 to 0.86 and LOO R2 increases from 0.60 to
0.71, indicating both better explanation of the available data
and better predictive ability. An F-test gives p < 0.01 which
suggests the observed effect is statistically signicant. The
equation from this t is DG‡ ¼ 0.31DGPCET + 0.07DGPT +
0.12DGET � 0.26 (all coefficients unitless; free energies and
intercept in kcal mol�1). Typically, DGPCET is a negative value
while DGPT and DGET are positive values. Thus, the coefficients'
© 2021 The Author(s). Published by the Royal Society of Chemistry



Table 1 Statistical results of various models

Parameter(s) Regressed
with DGPCET

Training set on DHAa

All data for
multiple
substratesb

R2 LOOc R2 p-valued R2 LOOe R2

DGPCET only 0.70 0.60 <0.001f 0.45 0.36
%BV steric metrics 0.77 0.64 0.15 0.48 0.28
Oxo spin density 0.70 0.55 0.78 0.53 0.37
Spin excitation 0.71 0.50 0.49 0.50 0.39
|h| 0.73 0.53 0.22 0.50 0.30
DGPT, DGET 0.86 0.71 0.0082 0.64 0.50

0.023g

0.0038h

a A subset of the reactions of 17 metal oxo complexes with DHA.
b Excluding outlier metal oxo complexes (Ru oxos and oxo complexes
of 13-TMC); substrates are DHA, 1,4-cyclohexadiene, xanthene, and
uorene. c Leave-one-out. d From an F-test where the null hypothesis
is that only DGPCET has an effect. e Leave-one-out, slightly modied
such that all reactions for a given metal oxo are le out together.
f From an F-test where the null hypothesis is that DGPCET has no
effect. g From an F-test where the null hypothesis is that DGPT has no
effect. h From an F-test where the null hypothesis is that DGET has no
effect.
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positive signs mean a more exergonic reaction will have a lower
barrier while increases in DGPT and DGET will raise the barrier.
The larger coefficient of DGPCET indicates the reaction barrier is
most sensitive to this free energy. Satisfyingly, the DGPCET

coefficient agrees with experimental data: for metal oxo
complexes that have a demonstrated trend of log(kobs) vs.
substrate bond dissociation free energy (BDFE), the average
slope of DG‡ vs. substrate BDFE is �0.3 (see Table S1†), very
similar to the 0.30 observed in our analysis. The intercept of
�0.26 contains contributions to the average error not accounted
for by the three free energies.

The signicance of DGPT and DGET is intriguing because the
literature discussion of these values has oen been framed in
terms of how they contribute to DGPCET rather than in terms of
their intrinsic contribution to reaction barrier heights.16–19,27

However, DGPT and DGET as dened here are the energies to
form the intermediates involved in stepwise reactivity – the
protonated metal oxo with the deprotonated substrate, or the
reduced metal oxo with the oxidized substrate (Scheme 1).
Critically, DGPT and DGET do not form a full thermodynamic
cycle with DGPCET and thus are fundamentally distinct. This fact
is statistically supported by poor correlations between DGPCET

and DGPT and between DGPCET and DGET (�0.12 and 0.31,
respectively, see Regression S6†). Finally, we nd that DGPT and
DGET have importance independent of a contribution to DGPCET

as clearly demonstrated by the LOO R2s and F-tests. All of our
analyses therefore suggest that the combination of DGPT and
DGET is an independent and signicant contributor to C–H
activation barrier heights.

While the observation of a dependence on DGPT and DGET

that arises from our linear regressions is principally empirical,
it is consistent with prior theoretical models in the literature.
© 2021 The Author(s). Published by the Royal Society of Chemistry
The physical underpinning of this dependency on DGPT and
DGET is likely due to mixing of proton transfer and electron
transfer intermediates into the concerted transition state
despite these intermediates never being fully realized.62–64

Within transition state theory, this can be envisioned by a More-
O’Ferrall–Jencks plot in which the transition state lies not on
a one-dimensional line connecting reactant and product but on
a two-dimensional plane containing reactant, product, and
intermediates.65,66 In this case, the intermediates arise from
proton transfer and electron transfer, and when either DGPT or
DGET lowers in energy the transition state can adopt structural
and electronic components of these intermediates resulting in
a lower barrier height. While the use of these classical struc-
ture–energy relationships to analyse PCET reactions has been
questioned recently,26,27 proton transfer and electron transfer
states and their energies also have roles in nonadiabatic rate
theories of PCET which treat proton transfer in a quantum
mechanical fashion.67,68 Therefore, the use of DGPT and DGET to
predict barrier heights of PCET is consistent with prior theo-
retical foundations.

Assigning a direct role for DGPT and DGET is in line with
recent computational studies of PCET transition states which
invoke off-DGPCET diagonal thermodynamic terms from Scheme
1, such as asynchronicity (h), as key contributors to DFT derived
reaction barriers.21–24 Asynchronicity is derived not from the
sum of DGPT and DGET, but rather their difference. Conversely,
we instead nd that the sum of DGPT and DGET have a more
signicant effect than |h|. The reason for this discrepancy is
unclear, but a possible explanation is that experimental noise
prevents us from observing a comparatively more subtle trend
between |h| and the experimental reaction barrier heights.
Furthermore, the well-controlled nature of the series of
complexes previously investigated for asynchronicity may have
too little variation in (DGPT + DGET) to manifest similarly to the
effects we observe here.

Another way in which our data may not be amenable to
investigating the effect of |h| is the variable reorganization
energy of the metal oxo complexes examined here. |h| is
specically framed as an adjustment to the Marcus reorgani-
zation energy;21 therefore |h|'s effect may only be clear when
reorganization is properly accounted for. While it is clear that
the reorganization energy is important to PCET reactivity, there
is no established way to compute it without computationally
expensive transition state geometries.11,67–69 We have made
multiple attempts to derive reorganization or deformation
parameters using the optimized metal oxo and metal hydroxide
geometries and frequencies, but none of these parameters have
statistically signicant contributions to predicted reaction
barriers with or without |h| (see ESI†). Therefore, a combination
of noise in the experimental data and our inability to compute
a reliable reorganization parameter could preclude us from
observing an effect of |h| on the barrier heights. Nonetheless,
previous studies as well as this current work offer increasing
support that off-DGPCET diagonal thermodynamic terms such as
DGPT and DGET have important effects on reactivity indepen-
dent of DGPCET.
Chem. Sci., 2021, 12, 4173–4183 | 4175



Fig. 1 Regression analysis of the experimental reaction barrier vs.
DGPCET, DGPT, andDGET for variousmetal oxo complexes reactingwith
DHA. Specific cases discussed in the main text are given unique
symbols. The grey line marks where predicted equals experimental.
Predicted values are computed using the given formula.
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The all-thermodynamic model we nd here provides insights
and possible alternative explanations for previously reported
trends in PCET reactivity. In one study,12 steric and spin state
effects were invoked to explain the comparatively high reactivity
of the S ¼ 2 complex [FeIV(O)(TMG2dien)(CH3CN)]

2+. A higher
rate of C–H activation as compared to S ¼ 2 [FeIV(O)(TMG3-
tren)]2+ was ascribed to reduced steric hinderance in the
TMG2dien complex,13 and the higher rate of C–H activation as
compared to the S ¼ 1 complexes [FeIV(O)(N4Py)]2+ and
[FeIV(O)(TMC)(CH3CN)]

2+ was ascribed to the S ¼ 2 spin state in
the TMG2dien complex.36,44 However, it was noted that the even
faster reactivity of [FeIV(O)(Me3NTB,CH3CN)]

2+, which is S ¼ 1
and has a similar %BV prole to [FeIV(O)(TMG2dien)(CH3-
CN)]2+,34 is not easily explained by either hypothesis. Our anal-
ysis suggests that the thermodynamic properties of these
complexes may provide an alternative explanation in these
comparisons (see Table S9†). The Me3NTB complex has by far
the most exergonic reaction with DHA (DGPCET ¼
�16 kcal mol�1), followed by the TMG2dien complex (DGPCET ¼
�9 kcal mol�1), followed by the complexes of TMG3tren, TMC,
and N4Py (DGPCET ¼ �7, �6, and �6 kcal mol�1, respectively).
Thus, thermodynamic parameters would predict the Me3NTB
complex to have the lowest reaction barrier and fastest rate of
reaction, with the TMG2dien complex being the next most
reactive, and the remaining complexes the least reactive as is
observed experimentally.

In another study, it was observed that the rates of PCET
reactions performed by [FeIV(O)(TMC)(X)]n+ decrease with more
strongly donating axial ligands X.36 Variation in DGPCET was
ruled out as a cause of this trend, as it was calculated to be
similar for all complexes investigated. It was suggested that the
accessibility of a high-spin state may explain this variation in
the rates, as the energy of the quintet excited state decreased
with stronger X ligands. However, our calculations indicate that
while stronger axial donors increase DGET, DGPT decreases more
substantially (see Table S9†). In our model, these changes result
in a net decrease in the reaction barrier, suggesting that despite
a similar DGPCET, the reactivity trend could be explained by
thermodynamic effects. These analyses do not rule out that spin
state or steric effects may be important in the previous studies,
but suggest that thermodynamics may also play an important
role.

The t of the training data to {DGPCET, DGPT, DGET} and this
model's performance on the test set is depicted graphically in
Fig. 1. It is clear that the reaction barriers for most metal oxo
complexes in the test set are well predicted. Nonetheless,
several metal oxo complexes (given unique symbols in Fig. 1)
deserve further discussion.

The {DGPCET, DGPT, DGET} model behaves the poorest in
predicting reaction barriers for the FeIV oxo and CoIV oxo
complexes of the ligand 13-TMC.49,70 Essentially no barrier is
predicted for these reactions which is not observed experi-
mentally. This is due to a large negative calculated DGPCET in
both cases; in fact, these complexes are outliers even in the
DGPCET only t (see Regression S1†). The cause of this
discrepancy is not entirely clear. However, it appears to be
systemic to the particular ligand scaffold rather than the
4176 | Chem. Sci., 2021, 12, 4173–4183
identity of the metal center, which suggests this discrepancy
could arise from ambiguity in the primary coordination sphere
of these complexes. No structural characterization is reported
for the FeIV complex, and while a short Co–O bond is identied
by EXAFS for the CoIV complex, it is difficult to conclusively
determine the primary coordination sphere. Any discrepancy in
coordination sphere would render our calculated parameters
incorrect, potentially explaining their inability to predict the
experimental reaction barriers.

The reaction barrier is overestimated for all Ru oxo
complexes, and for three of them by more than two kcal mol�1.
As Ru is the only second row transition metal in our data set, we
suspect this overestimation is due to a consistent difference
between rst and second row transition metals rather than Ru
examples not following the same trends. For instance, it is
possible that the Ru oxo complexes have relatively low structural
reorganization energy or that relativistic effects inuence the
coefficients. It may also simply be a change in the systemic DFT
error upon going to the second row. Regardless, regression of
barriers from the kinetics of an individual Ru oxo complex
reacting with several different substrates reveals there is a trend
with DGPCET, DGPT, and DGET with similar coefficients to those
obtained from the more general model with multiple different
oxo complexes (see ESI†). This supports that the same trends in
free energies are at play in the Ru oxo complexes.

Interestingly, the {DGPCET, DGPT, DGET} model only moder-
ately underestimates the reaction barrier (by �2 kcal mol�1) for
a terminal CoIII oxo complex which has unusual trends in its
reactivity with various substrates.15 Unlike most metal oxo
complexes, the reactivity of this complex does not have a clear
trend with DGPCET; its kinetics are instead dominated by DGPT.
Therefore, its adherence to trends in {DGPCET, DGPT, DGET} as
seen for the broad set of metal oxo complexes deserves further
© 2021 The Author(s). Published by the Royal Society of Chemistry



Fig. 3 Regression analysis of the experimental reaction barrier to
PCETmediated C–H activation vs. DGPCET, DGPT, and DGET for all non-
outlier metal oxo complexes reacting with DHA, CHD, xanthene, and
fluorene. The grey line marks where predicted equals experimental.
Predicted values are computed using the given formula.
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investigation. We regressed the experimental reaction barriers
for the reactivity of this complex with several substrates against
only DGPT as well as against {DGPT,DGPCET} (Fig. 2). We nd that
the inclusion of DGPCET signicantly improves the model,
increasing R2 from 0.94 to 0.97 and LOO R2 from 0.93 to 0.95
and having an F-test p-value of 0.02 (see ESI†). However, the
relative weighting of the contribution from DGPCET is quite
different than for the broader set of complexes.

In the broader set we observe that DGPCET has a larger effect
on the reaction barriers than either DGPT or DGET, which is re-
ected in the larger coefficient for the DGPCET term than for the
DGPT and DGET terms in the t equation (Fig. 1). In contrast,
DGPT has a greater effect than DGPCET on the reaction barriers
for the CoIII oxo complex, again reected in the magnitude of
their coefficients (Fig. 2). Furthermore, the addition of DGET

signicantly improves the model for the broader set of metal
oxo complexes (Table 1) but is insignicant for the series of
substrates reacting with the CoIII oxo complex (p-value > 0.05,
see Regressions S42 and S43†). Overall, this CoIII oxo complex is
not so dissimilar from the broader set of metal oxo complexes in
that the same thermodynamic free energies explain the reac-
tivity of both. However, this individual case demonstrates
a different weighting of parameters than those observed in the
broad set.

Our analysis of the CoIII reactivity rests on the assumption
that the coefficients of the model do not change appreciably
from substrate to substrate. To test this assumption, we
extended our analysis of the larger set of metal oxo complexes to
include reactivity with 1,4-cyclohexadiene (CHD), uorene, and
xanthene in addition to DHA. We ret the model with reported
data for the reactions between each substrate and all metal oxo
Fig. 2 Regression analysis for a CoIII oxo. The {DGPT} fit is shown in
black with predicted values computed using the indicated formula; R2

¼ 0.94 and LOO R2 ¼ 0.93. The {DGPT, DGPCET} fit is shown in red with
predicted values computed using the indicated formula; R2 ¼ 0.97 and
LOO R2 ¼ 0.95. The negative barriers are due to overestimation of the
entropy of association. The grey linemarks where the predicted barrier
matches the experimentally determined barrier.

© 2021 The Author(s). Published by the Royal Society of Chemistry
complexes (excluding the previously discussed Ru and 13-TMC
oxo complexes). As with our regressions for DHA alone, the
inclusion of DGPT and DGET notably improves the t (Table 1,
Fig. 3). Other parameters offer comparably little improvement
to the t and do not perform well by LOO cross validation. The
equation for this model is DG‡ ¼ 0.23DGPCET + 0.04DGPT +
0.10DGET + 2.10, which is satisfyingly similar to the equation of
the t to DHA data alone, supporting the assumption that the
coefficients of the model are not appreciably affected by the
identity of the substrate.
Conclusions

Overall, this thorough analysis of the reported C–H activation
reactivity of transition metal oxo complexes demonstrates that
DGPCET, DGPT, and DGET have a statistically signicant correla-
tion with the reaction barrier. Interestingly, no other parame-
ters examined here, including steric environment and spin-
based parameters, provide a signicant improvement to
a DGPCET only model. This is in contrast to previous literature
reports which implicate such factors in explaining metal oxo
mediated PCET. The {DGPCET, DGPT, DGET} model predicts all
but ve of the reaction barrier heights for reactivity with DHA
within 2 kcal mol�1, and predicts most of these barrier heights
within 1 kcal mol�1. We nd that the asynchronous reactivity of
a CoIII oxo complex is also well-predicted, although a t to just
this complex alone reveals changes in the relative importance of
DGPCET, DGPT, and DGET. The structural and electronic bases for
such variation, and whether concomitant changes in selectivity
can be leveraged, are exciting avenues for future research.

While the relative importance of these thermodynamic
parameters can vary between specic cases, this study on
a broad set of metal oxo complexes suggests that thermody-
namic parameters provide the most general contribution to
Chem. Sci., 2021, 12, 4173–4183 | 4177



Chemical Science Edge Article
reaction barriers. Furthermore, while a strong dependence on
DGPCET is observed, as is expected based on literature prece-
dent, signicant and independent contributions from DGPT and
DGET are observed. This conclusion adds to the growing body of
literature supporting the importance of thermodynamic
parameters beyond DGPCET.
Methods
Tabulation of experimental kinetics

In this study we used thirty reported k2 values of metal oxo
species reacting with DHA.12,13,15,17,34–51 For each of these oxo
complexes, we tabulated various descriptors (metal, valency, d-
count, coordination number, etc.), experimental parameters
(M–O bond length and vibrational frequency, BDFE, pKa, etc.),
and the reported kinetics for reactions with various substrates
(k2, and, if reported, the statistical correction to this k2, exper-
imental DH‡ and DS‡, and the KIE) along with the conditions
these data were reported in (temperature and solvent). A full
tabulation is found in the ESI.† We excluded a few metal oxo
species from our analysis despite having reported kinetic data
for reactivity with DHA. The reasons for these exclusions were
varied: several did not have a well-dened primary coordination
sphere,71–74 we were unable to calculate the reduced form of
MnIII oxo complexes without deprotonation of the hydrogen-
bonding ligands,17,20 one VV oxo has too much experimental
uncertainty in its k2 value,75 corrolazine complexes were too
large to calculate their vibrational frequencies using our
methods,16,76 vibrational frequencies did not converge for the
reduced form of two RuVI dioxo complexes,50 we did not include
third row complexes or complexes with ligand radicals,37,77–79

and in one case saturation was reported at higher concentra-
tions of DHA.80 We also found several reports of metal oxo
mediated C–H activation of substrates besides DHA14,39,70,81–94

and useful reviews.95,96

All rate constants utilized here were reported as k2 values
with the exception of several rate constants used in the CoIII oxo
reactivity analysis.15 In this case, for substrates which did not
have a reported k2, the pseudo-rst order rate constant kobs at
0.0125 M of substrate was divided by 0.0125 M to obtain an
approximate k2. We used all substrates with reported kinetic
data in this analysis except for 1,1,3,3-tetraphenylpropene. This
substrate reacts unusually slowly, which we believe to be due to
large steric hindrance of the reacting C–H bond. The remaining
substrates were sterically similar enough that there is no steric
effect on their kinetics (see Regression S41†).
Determination of experimental barrier heights

Before determining barrier heights from experimental k2 values,
we rst multiplied each k2 by any reported stoichiometric and
statistical adjustments so as to start from consistently unad-
justed k2 rate constants (experimental k2 rate constants are
oen reported with statistical corrections to facilitate compar-
isons between substrates, either for the stoichiometry of the
substrate's reactivity or for the number of benzylic C–H bonds).
We assume that where no adjustment is noted in a paper, none
4178 | Chem. Sci., 2021, 12, 4173–4183
has been made. The barriers of PCET reactivity were then
determined from the unadjusted experimental k2 values by
solving the Eyring equation97 and subtracting approximate
expressions for the free energy of metal oxo-substrate
association:

DG‡
PCET ¼ RT ln

�
k2h

nCHnORT

�
� RT

"
ln

 �
2pmRT

h2

�3=2
1

C�

!
þ 5

2

#

(1)

where h is Planck's constant, nCH is 2 for DHA and CHD and 1
for uorene and xanthene, nO is the number of oxo ligands in
the metal oxo complex, RT is the thermal energy, m is the
reduced mass of the metal oxo and the substrate, and C� is 1 M.
Our nCH adjusts for the typical stoichiometry of each substrate's
oxidation (DHA and CHD tend to lose two H-atoms, uorene
and xanthene one H-atom); we do not adjust for the number of
reactive H-atoms, as ring puckering of the substrates means
that not all reactive C–H bonds are equivalent. For instance,
DHA has four benzylic C–H bonds, with two lying equatorial to
the central ring and two lying axial. It is unlikely that the
equatorial and axial positions are equally reactive, and it is
entirely possible that reactivity predominantly occurs at only
one of the positions. It is therefore not necessarily true that
DHA is four times as reactive as an otherwise similar substrate
with only one benzylic C–H bond.

The second term in eqn (1) is an approximation for the free
energy of association of the metal oxo and the substrate.97 This
adjustment allows us to compare kinetic data collected at
different temperatures. As C–H bonds are poor hydrogen bond
donors, we assume that the cost of association is purely
entropic (or at least that enthalpic components vary minimally
between different metal oxo complexes and substrates) and
further assume this entropy cost is solely the loss of trans-
lational entropy. This neglects the loss of rotational entropy and
the gain of low frequency metal oxo-substrate vibrational
modes, but these effects will partially cancel. Regression with
DGPCET and RT does not t DHA reaction barrier heights
signicantly better than a t to DGPCET alone (see Regression
S10†), indicating that this adjustment satisfactorily accounts for
the temperature dependence of the reaction barrier.

We do not take into account hydrogen bonding between the
metal oxo complexes and protic solvents as we were unable to
derive a suitably accurate correction. However, in the ESI† we
demonstrate that our best attempt to do so does not change the
main conclusions herein (see Table S11†).28,98–100
Calculation of parameters

For each of these oxo complexes we calculated the values of
parameters that have been proposed to inuence metal oxo
mediated PCET reactivity. Specically, the parameters investi-
gated were %BV steric metrics, spin density on the oxygen atom,
available spin states, thermodynamic free energies DGPCET,
DGPT, and DGET, and the magnitude of the asynchronicity
parameter (|h|). Geometry optimization and frequency calcula-
tions were performed in ORCA using the def2 basis sets of
Weigend and Ahlrichs and the O3LYP functional.101–106 For the
© 2021 The Author(s). Published by the Royal Society of Chemistry
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wider set of metal oxo complexes, all transition metals were
given the def2-TZVPP basis set, all metal-bonded atoms and the
transferring hydrogen atom the def2-TZVP basis set, and the
remaining atoms the def2-SV(P) basis set. Substrates were
calculated entirely with the def2-TZVP basis set. For calcula-
tions regarding the CoIII oxo and various substrates, Co, N, O,
the carbene carbons of the ligand, and the carbon undergoing
C–H activation was given def2-TZVPP; all other atoms were
given def2-SVP. For both sets of calculations solvent effects were
included as a polarizable continuum (CPCM with the dielectric
constant of acetonitrile for the broader set of metal oxo
complexes; COSMO with the dielectric constant of THF for the
CoIII oxo with substrates). This is primarily to mitigate the effect
of self-interaction error;107 we assume that the solvent dielectric
has little effect on the rate of PCET, as reported solvent effects
on similar reactions are typically limited to hydrogen
bonding.28,100,108 The def2 ECP was used for ruthenium.109 The
resolution of identity approximation was used for coulomb
integrals and the chain of spheres approximation for exchange
integrals (with def2/J as the auxiliary basis). No change was
made to ORCA's default grid settings. Free energies were
derived from the electronic energies and vibrational calcula-
tions using the quasi-harmonic oscillator formulation of
Grimme and coworkers.110

Unfortunately, several of our optimized structures have
small imaginary frequencies (see ESI†), which we believe is due
to numerical noise of CPCM solvation. Occasionally these
frequencies lie below �100 cm�1 but in each of these cases the
mode is isolated to a so dihedral motion, e.g. methyl rotation
on an acetonitrile ligand. We used the absolute value of these
frequencies when calculating the thermodynamic enthalpy and
entropy values, believing that to be a better approximation for
these modes than either nonexistence or a frequency of 0 cm�1.
We were unable to reoptimize these structures to remove the
imaginary frequencies.

In many cases, the correct ground state multiplicity of
a species was not immediately clear. In such cases we conrmed
our initial assignment by running ten geometry optimization
cycles on alternate spin states and conrming these alternate
assignments were several kcal mol�1 uphill of the assigned spin
state. In a few cases were the energy was within 5 kcal mol�1 and
the optimization was not close to convergence, we fully opti-
mized the alternate spin state. Whenever two spin states had
nearly the same energy, we chose the higher spin state as the
ground state due to the typically higher entropy of high spin
states.

To quantify the steric environment around each metal oxo
center or substrate reactive C–H bond, we calculated percent
buried volume (%BV) steric metrics using the online SambVCA
web application.52 We centered the calculation on the oxygen
atom (for oxos) or the transferring hydrogen (for substrates),
dened the negative z-axis as going through the metal center
(for oxos) or the reacting carbon center (for substrates), and
dened the xz plane as containing another atom bonded to the
metal or carbon (the rst such atom in the .xyz le). We had the
center oxygen or hydrogen atom deleted from the calculation,
included hydrogen atoms in the calculation, and le all other
© 2021 The Author(s). Published by the Royal Society of Chemistry
settings to their default value (using Bondi radii scaled by 1.17,
a sphere radius of 3.5 angstroms, and a mesh setting of 0.10
angstroms). The application returns a total percent buried
volume, as well as that for individual quadrants of the sphere.
For metal oxo complexes, we used the total percent buried
volume (%BV Tot) and the standard deviation of these four
quadrants (%BV Dev) in our regressions in order to capture
both overall steric bulk and how evenly distributed this bulk is
around the metal oxo moiety. For substrates, we solely used %
BV Tot. See the ESI† for a further discussion of steric parameters
and their effect on reaction barrier heights.

To evaluate the effect of spin and spin state on reactivity, we
used two parameters that have been discussed in the literature:
spin density on the oxo ligand and the energy to excite to
a higher spin state.8,10 Atomic spin populations were deter-
mined via IBO analysis using the freely available IBO Viewer
soware.53,54 We recorded the spin density on the metal and on
oxygen for each metal oxo complex as well as how much spin
both atoms gain upon PCET reduction; we also tabulated
similar values for the IBO charges. In the regression analysis we
solely used the spin density on the oxo ligand. The “Spin Exci-
tation Energy” is the vertical energy from the ground spin state
of the initial oxo complex to the lowest lying excited spin state
that is within one spin multiplicity of the resulting metal
hydroxide ground spin state. If the ground spin state is already
one spin multiplicity greater or lower than the product
hydroxide spin state, then the spin excitation energy is taken to
be zero. For instance, in the case of a triplet FeIV oxo reacting to
give a sextet FeIII hydroxide the spin excitation energy is the
energy of the quintet FeIV oxo relative to the triplet FeIV oxo at
the ground state optimized geometry. This is the scenario for
most FeIV oxos in the data set. But in the case of the two non-
heme FeIV quintet oxos,12,13 the spin excitation energy is zero
because the ground spin state is already within one spin
multiplicity of the sextet hydroxide product. Essentially, the
spin excitation energy is the energy needed to reach a spin
surface on which reduction to the metal hydroxide's ground
spin state is spin allowed. While this simple metric ignores the
nuances of two state reactivity theory (such as the spin inversion
probability) it is relatively simple to compute and has precedent
as a quantitative measure of PCET reactivity.10,36

For each metal oxo-substrate combination assessed here, we
tabulated the free energies of proton coupled electron transfer
(DGPCET, eqn (2)), proton transfer (DGPT, eqn (3)), electron
transfer (DGET, eqn (4)), and the asynchronicity as dened by
Srnec and coworkers (h, eqn (5)):21

DGPCET ¼ GM–OH + GC$ � GM]O � GC–H (2)

DGPT ¼ GM–OH+ + GC:� � GM]O � GC–H (3)

DGET ¼ GM–O� + GC–H+ � GM]O � GC–H (4)

h ¼ GM�OHþ þ GC:� � GM�O� � GC�Hþ
. ffiffiffi

2
p

(5)

where GM]O is the calculated free energy of the oxo species, GC–

H is the calculated free energy of the substrate, and all other free
energies are dened analogously. We also tabulated the
Chem. Sci., 2021, 12, 4173–4183 | 4179
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absolute value of the asynchronicity (|h|), the average of DGPT

and DGET (DGCT Average), and the analogous electronic energies
(same notation, with G replaced with E).
Statistical analysis

All statistical analysis was performed in Python using the
Numpy, Scipy, Pandas, Sklearn, and Matplotlib packages.111–115

A script ran a prescribed set of regression models and reported
statistics on each model. All regressions were performed with
ordinary least squares. Prior to tting any regression, we sepa-
rated the data into a test set and a training set of metal oxo
species. While we show both test and training sets for each
regression in the ESI,† we initially did not plot the test set or
calculate statistics with it. We solely used the training set in the
earlier stages of our analysis, where we determined which
parameters improved a t to DGPCET only and which did not. We
then examined if the good ts to the training set extrapolated
well to the test set. We had to make a few changes to the initial
division of the training and test sets, however. Initially, the CoIV

oxo was included in the training set,49 but that was interfering
with the t to DGPCET. Wemoved it to the test set, and to provide
insight into this poor t we calculated the FeIV oxo complex of
13-TMC and added it to the test set.70 We also saw, visually, that
the inclusion of a RuIV oxo in the training set was interfering
with the addition of other parameters and moved all Ru oxo
complexes to the test set.38,43,45,50,51

The simplest metrics reported from these models are the
mean square error (MSE) and the goodness of t R2.58–61 These
both give an indication of how well a model ts the available
data but are prone to overtting; more complicated models can
only improve these metrics, regardless of whether or not the
model is actually better.

We also evaluated each model with cross validation (CV)
metrics, which can become worse upon overtting. In K-fold
cross validation, the training data is further subdivided into K
subsets, and each subset is predicted by the K � 1 remaining
subsets.59,61 When K is the number of data points, i.e. each data
point being predicted by the rest of the data points, this is
known as leave-one-out (LOO) cross validation. These predicted
data points can be used to calculate the MSE and R2 as above.
The MSE from LOO cross validation is an approximately unbi-
ased estimate of the expected error of a test set; however, it has
high variability from training set to training set because each
prediction uses nearly every point in a given training set. By
repeatedly subdividing into larger groups and averaging the
resultant K-fold MSEs, one obtains a pessimistic but less vari-
able estimate of the expected test error. As we see similar trends
for both LOO and 5-fold CV, we only report LOO R2 in the main
text but show all metrics in the ESI.†

Another way to determine the signicance of the model is to
use a statistical F-test.58,60 This allows one to compare an unre-
stricted model with a more restricted one (fewer parameters
used as regressors, or no parameters regressed, or restrictions
placed on the relationship between coefficients, etc.). In the
language of hypothesis testing, the null hypothesis is that the
unrestricted model offers no improvement on the restricted
4180 | Chem. Sci., 2021, 12, 4173–4183
model and the alternate hypothesis is that there is an
improvement. When both models are t to the data, the unre-
stricted model will have less total squared error than the
restricted model. Assuming said error of each data point is
normally distributed (or that there is enough data such that the
error is approximately normally distributed), that the average
error is zero, and that the model is properly formulated, it is
possible to determine the probability that this reduction in total
squared error is spurious. This probability is known as the p-
value. The test relies on a well-dened number of degrees of
freedom in both the restricted and unrestricted model to draw
out what the statistical distribution of total squared error ought
to be.

For regressions on multiple substrates at once, the unequal
weighting of different metal oxo complexes (depending on how
many substrates are reported for them) renders these statistical
metrics unreliable.61 We ameliorate this issue for LOO cross
validation by leaving out all reaction barriers for a given metal
oxo complex together rather than one at a time. That is, we leave
one metal oxo complex out and predict its reaction barrier
heights based on all other metal oxos' reaction barrier heights
rather than leave one reaction barrier height out and predict
this barrier based off all other barriers. We accordingly only
report LOO CV metrics for this set of regressions.
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