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Abstract Deregulated BCR-ABL oncogenic activity
leads to transformation, oncogene addiction and drives
disease progression in chronic myeloid leukemia (CML).
Inhibition of BCR-ABL using Abl-specific kinase inhib-
itors (TKI) such as imatinib induces remarkable clinical
responses. However, approximately only less than 15 %
of all chronic-phase CML patients will remain relapse-
free after discontinuation of imatinib in deep molecular
remission. It is not well understood why persisting
CML cells survive under TKI therapy without develop-
ing clonal evolution and frank TKI resistance. BCR-
ABL expression level may be critically involved.
Whereas higher BCR-ABL expression has been de-
scribed as a pre-requisite for malignant CML stem cell
transformation and CML progression to blast crisis,
recent evidence suggests that during persistence TKI
select for CML precursors with low BCR-ABL expres-
sion. Genetic, translational and clinical evidence is
discussed to suggest that TKI-induced maintenance of
low BCR-ABL signaling output may be potently tumor
suppressive, because it abrogates oncogenic addiction.
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Introduction

Neoplastic transformation is considered to involve a se-
quence of independent mutations, which activate

oncogenes or inactivate tumor suppressor genes [1, 2].
In contrast, chronic myeloid leukemia (CML) transfor-
mation is commonly viewed to originate from a single,
causative genetic mutation, Bcr-Abl, which emerges at
the level of a hematopoietic stem cell [3–6]. There is
evidence that increased BCR-ABL expression contributes
to progression from chronic to accelerated phase and
blast crisis [7] (reviewed in [8]). Supposedly, also the
conversion of BCR-ABL-positive, pre-malignant stem
cells into malignant CML stem cells (reviewed in [2])
may involve rising BCR-ABL levels. BCR-ABL tyrosine
kinase inhibitors (TKI) induce durable molecular remis-
sions and potently protect from progression into acceler-
ated phase and blast crisis [9–12]. This provides indirect
evidence that TKI treatment prevents the evolution of BCR-
ABL overexpressing clones. In other words, TKI could be
tumor suppressive by preventing spontaneous emergence of
clones with high BCR-ABL signaling output.

On the other hand, TKI therapy rarely leads to CML stem
cell eradication (reviewed in [13]). BCR-ABL positive prog-
enies and stem cells persist [14–16•] despite the fact that their
BCR-ABL kinase activity is potently inhibited [17–19]. Since
recurrences after TKI cessation are always ABL-TKI sensitive
[20–22], the underlying nature of CML stem cell persistence
is evidently BCR-ABL-independent. Selection of persisting
clones with low BCR-ABL signaling output has been
suggested as an underlying mechanism of CML persistence
by preventing BCR-ABL addiction and thus TKI sensitivity
[16•, 23].

Together, several lines of evidence suggest that
whereas increased BCR-ABL dosage controls CML
transformation and progression [7, 8], TKI treatment
reverts this by suppressing survival of cells with high
BCR-ABL signaling output [16•, 24, 25]. This effect of
TKI could be an important prerequisite for long-term
disease control in chronic phase.
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BCR-ABL-Mediated Stem Cell Transformation: Dose
Really Matters

In vitro replating results and in vivo transplantation experi-
ments support the notion that BCR-ABL is a comparably
weakly transforming oncogene. Unlike, for example, AML
oncogenes such as MOZ-TIF2 or MLL-ENL, BCR-ABL is
incapable of conferring self-renewal to non-stem cells [26]
unless additional mutations are also present [27–32].
Translational evidence shows that BCR-ABL mRNA can
frequently be detected also in healthy individuals who will
never develop CML [33, 34], suggesting that BCR-ABL
alone may not suffice to transform directly. On the other hand,
BCR-ABL transduction-transplantation models [3, 6, 35, 36]
and transgenic CML models [37–39], including conditional
transgenic CMLmicemodels, in which BCR-ABL expression
was targeted to stem cells [40, 41], suggest that BCR-ABL is
suff i c i en t to in i t i a t e a rap id ly fa ta l CML-l ike
myeloproliferation. However, unlike in the chronic phase of
the human disease, BCR-ABL expression in transgenic CML
is artificial: BCR-ABL is overexpressed—often frommultiple
BCR-ABL copies and active promoters located outside of the
endogenous Bcr locus. In contrast, when only one or two
copies of BCR-ABLp210 are expressed from the endogenous
promoter in the Bcr locus, transgenic BCR-ABL animals do
not develop CML during their entire lifetime [42•]. In fact,
BCR-ABL-positive hematopoiesis in these mice behaved
completely normal with the exception of a slightly better
engraftment potential. This was due to faster proliferation,
not increased stem cell self-renewal. BCR-ABL-positive he-
matopoiesis was also not BCR-ABL-addicted and conse-
quently not TKI sensitive [42•]. Authors concluded that
BCR-ABL on its does not transform, but requires cooperating
mutations. However, this conclusion still remains to be prov-
en. Alternatively, the time needed to select for high BCR-ABL
levels could be beyond the lifespan of a mouse. Moreover,
additional mutations—instead of being directly cooperative
with BCR-ABL in transformation as suggested—might be
required to enable tolerance against high BCR-ABL expres-
sion levels (see section below: barriers against transforma-
tion). There is precedence for this genetic concept from
Myc-dependent tumor models. Whereas induction of Myc
causes tumorigenesis, subsequent Myc repression rarely
leads to a complete elimination of the tumor. Tumors
eventually become Myc-independent [43–45]. This
means, that although an oncogene such as Myc (or
BCR-ABL) can be instrumental for the initiation of
tumorigenesis, secondary genetic or epigenetic changes
may be required to tolerate elevated oncogenic stress
and subsequently also allow independence from the
causative oncogene [46]. This has been demonstrated
for the emergence of Kras2 mutations in Myc-
dependent mouse mammary tumors [44].

However, before oncogenic signaling stress causes trans-
formation, it usually engages tumor suppressive barriers. It is
important to discuss, therefore, barriers against transformation
in hematopoietic stem cells, when they are activated and how
they fail.

Tumor Suppressive Mechanisms in CML

General Barriers Against Transformation

Two major tumorigenesis barriers exist. Oncogene-induced
DNA damage response (DDR) [47–50] (reviewed in [51]) is
characterized by expression of oncogene-induced DNA dam-
age checkpoints such as ATM, ATR, γH2AX and chk2 [47,
52]. Increased expression of the tumor suppressors p16INK4A

and p19Arf has been shown to act as an alternative tumor
suppressive barrier governed by oncogenic signal flux
[53–56]. Both barriers, DDR and induction of p16INK4A and
p19Arf, converge at the level of p53 and stabilize its expression
to restrain transformation by elicitation of apoptosis, senes-
cence or differentiation (for review: [51, 54, 57]). Mutations in
both pathways breach off these barriers, rescue oncogene-
induced proliferation and allow malignancy to develop.

Engaging Arf-p53 by BCR-ABL in Stem Cells

It is remarkable that p53-inactivating mutations—one of the
most common mutations in tumors – are absent in chronic
phase of CML. Even CML blast crisis patients relatively
seldom acquire p53 mutations (20–25 %) [58]. Indeed, p53
remains functional upon appropriate challenge in most pa-
tients in chronic and progressed phases of CML [59, 60, 61].
This suggests a lack of genetic pressure to mutate the p53
checkpoint during BCR-ABL-induced stem cell transforma-
tion. What are possible reasons for this?

First, CML arises from a normal pluripotent stem cell,
which lacks expression of relevant functional levels of p53,
because in stem cells, p53 negatively regulates self-
renewability, quiescence [62–65] and pluripotency by
reprogramming [66]. Secondly, polycomb repressor com-
plexes epigenetically silence the Cdkn2a/b gene cluster
(encoding INK-4A/ARF) in hematopoietic stem cells. This
ameliorates the Arf-HDM2-p53 pathway and explains the
failure to select for CDKN2A deletion in the presence of
BCR-ABL [67–69] (Fig. 1). Third, BCR-ABL signaling has
different consequences in stem versus progenitor cells. For
example, BCR-ABL activates PI3K-Akt signaling and thus
inactivates FoxO transcription factors in CML progenitors.
This results in apoptosis inhibition and proliferation
[70–73•]. In contrast, in stem cells, BCR-ABL-dependent
Akt pathway activation is repressed by TGF-beta signaling,
which limits oncogenic stress [72]. Bcl-6 – as a downstream
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target of FoxO3 has also been demonstrated to bind to and
repress Arf and p53 promoters in BCR-ABL-positive ALL
[74] and in CML [73•], which also compromises the p53
checkpoint (Fig. 1). Finally, reduced p53 function was shown
to result from BCR-ABL-induced overexpression of the
deacetylase SIRT1, which selectively increases survival of
CML stem cells [59, 75]. Together, several factors contribute
to BCR-ABL stress tolerance in hematopoietic stem cells by
inhibition of an Arf-p53 response.

BCR-ABL is an oncogenic driver mutation [1]. Driver
mutations are not directly transforming, but initially induce
only mild increases in cell proliferation, e.g., on the order of
0.4 % growth difference between cell birth and cell death.
However, it has been estimated that this mild proliferative
advantage over normal cells leads within years to massive
expansion of driver mutation-positive cells, which are amena-
ble to acquire secondary hits [76] and tolerate higher onco-
gene levels (Fig. 1). Indeed, in the mouse model by Foley
et al., BCR-ABL did not transform into CML, but conferred a
growth advantage of BCR-ABL-positive over normal hema-
topoiesis [42•].

BCR-ABL-Triggered Progression in Non-Stem Cells

Mechanisms of CML progression in progenitors have been
well established [8, 77] and are not in the focus of this review.
A myriad of secondary, cooperating genetic mutations [8, 77]
and gene expression changes [78] have been shown to be
associated with the reprogramming of progenitors into sec-
ondary leukemia initiating cells. Some of these mutations
obviously directly or indirectly disrupt the Arf-p53 tumor
surveillance pathway highlighting its importance during pro-
gression. Prominent examples would be the deletion of the
CDKN2A locus (deleting INK4A and ARF) [30, 69, 79], p53
mutations [58], β-Catenin overexpression [28], by conferring
self-renewal and helping to maintain polycomb-mediated si-
lencing of CDKN2A/B, as well as other mutations.

CMLTransformation: Escaping Tumor Suppressive
Barriers

Compelling evidence suggests that distinct thresholds of on-
cogenic Ras- or Myc-signaling decisively control biologic
output during tumorigenesis. Whereas low levels of oncogenic
Ras andMyc suffice to drive proliferation, they are insufficient
to engage tumor suppression via activating p53-INK4A-Arf-
dependent tumor suppressive barriers [80, 81••, 82].

According to this concept and the data that have been
discussed in the previous two sections, pre-malignant BCR-
ABL-positive stem cells may initially tolerate BCR-ABL
without engaging endogenous tumor suppression pathways
(Fig. 1). However, the requirement to sustain such low BCR-

ABL expression levels to prevent transformationwill establish
an intrinsic selection advantage favoring, exactly, BCR-ABL
overexpression. BCR-ABL overexpression is subject to pos-
itive selection, because it confers increased aggressiveness to
the evolving leukemia. There is also translational evidence for
this in vivo: clonal heterogeneity of lower BCR-ABL expres-
sion level at diagnosis [16•] is followed by BCR-ABL over-
expression as an undisputed hallmark of CML progression
[8]. However, tolerance to raising BCR-ABL activity neces-
sitates further erosion of the p53 tumor suppressor pathway
(Fig. 1, arm A), or spontaneous mutagenesis inactivates the
engaged p53 checkpoint (Fig. 1, arm B). Either way, the result
would be tolerance of high-level of BCR-ABL and thus
progression.

CML Persistence: Limiting BCR-ABL Signaling Strength

The basis for clinical ABL kinase inhibitor responsiveness in
CML is a strict survival dependence on the BCR-ABL kinase
activity, so-called oncogene addiction [83]. The emergence of
BCR-ABL kinase mutations enables survival in the presence
of TKI and thus unequivocally proves addiction of the resis-
tant clone to BCR-ABL. Notably, CML patients in stable
molecular remission (MMR, MR4 or better) harbor BCR-
ABL-positive residual disease [14–16•, 24, 25], but have a
neglectable chance to develop TKI resistance or BCR-ABL
kinase mutations. This excludes BCR-ABL addiction of
persisting CML. There are a plethora of proposedmechanisms
to explain persistence [13, 84]. However, due to a notorious
difficulty to investigate rare BCR-ABL-positive residual
clones, most of the suggested imatinib and TKI persistence
mechanisms have been derived using cell lines or pre-
therapeutic CD34+ CML samples, which may not exactly
reflect in vivo regulations during long term persistence [8,
85–90].

We have recently found that imatinib treatment shapes the
BCR-ABL expression repertoire in patients from “high” in
pre-therapeutic CD34+ CML clones to “low” during persis-
tence [16•]. In the context of the presumed fundamental role
that increasing BCR-ABL levels play to ultimately establish
malignant CML stem cells, this finding suggests that imatinib
treatment reverses CML leukemogenesis by leaving behind
low level BCR-ABL expressing CML stem cells (Figs. 1 and
2). Studies on persisting BCR-ABL-positive long-term culture
initiating cells (enriching for stem cells) supported our find-
ings in a different patient population. It was demonstrated that
low-level BCR-ABL expressing stem cells persist long-term
under imatinib [24]. Modeling high versus low BCR-ABL
expression in primary human CD34+ precursors and murine
progenitors suggested that high-level BCR-ABL expression
sensitizes to imatinib by induction of oncogene addiction [16•,
23] (Fig. 2).
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Fig. 1 BCR-ABL levels govern
engagement and evasion of tumor
suppression in hematopoietic
precursors, thereby controlling
CML transformation. In normal
hematopoietic stem cells, p53
negatively regulates self-renewal
and p53 pathway activation is
suppressed (left). During CML
evolution, increasing BCR-ABL
expression level must be tolerated
(middle) by adjustment of
pathways that suppress Arf-p53
activation (arm A), or by
alternatively mutating the Arf-
p53 checkpoint to resolve a
pressure on this pathway (arm B).
The consequence of both
scenarios (arm A or B) would be
tolerance of high-level BCR-
ABL, which results in BCR-ABL
overexpression induced
transformation and CML
progression

normal 
stem cell

BCR-ABL-positive
pre-malignant
stem cell

Evading
Arf-p53

BCR-ABL-positive
malignant
stem cell

BCR-ABL
diagnosis

TKI treatment BCR-ABL high
level

BCR-ABL low
level

molecular
remission

Imatinib sensitivity
BCR-ABL signaling output

BCR-ABL addiction
tumor suppressive barriers

Fig. 2 Suppression of high-level deregulated BCR-ABL-signaling in-
tensity as a putative tumor suppressive mechanism of TKI. CML evolu-
tion is characterized by a continuous selection of high-level BCR-ABL-
expressing clones, because high-level oncogene activity provides an
increased aggressiveness and thus a growth advantage. BCR-ABL will
engage intrinsic tumor suppressive pathways (such as Arf -p53) and cause
a selective pressure against these pathways. Resolving this pressure by
pathway mutagenesis will lead to CML progression. However, increasing
BCR-ABL levels are also associated with strong BCR-ABL addiction

and thus sensitivity to BCR-ABL kinase inhibitors such as imatinib. By
depleting BCR-ABL-overexpressing clones and selecting for low-level
BCR-ABL signaling output (indicated by decreasing red-staining inten-
sity of nuclei), imatinib would counteract BCR-ABL addiction, and
become tumor suppressive. It could be proposed that only TKI therapy-
mediated suppression of BCR-ABL expression below a certain threshold
(indicated as dotted line) may enable long-term persistence of residual
CML clones

12 Curr Hematol Malig Rep (2014) 9:9–16



In the context of the finding that imatinib selects for
survival of clones with low-level deregulated BCR-ABL
[16•] (Fig. 2), we suggested that potent and durable
suppression of deregulated BCR-ABL activity is an
important mechanism of tumor suppression by inhibiting
oncogenic addiction. The recently published Australian
TWISTER study, which shows that essentially all pa-
tients, who successfully discontinue imatinib will remain
BCR-ABL DNA positive, may add another important
aspect to this model [22]. Low-level BCR-ABL DNA
detection could be also compatible with the presence
not only of low BCR-ABL expressing malignant clones,
but as well represent pre-malignant BCR-ABL positive
populations.

Potential Clinical Implications

1. Imatinib’s tumor suppressive role during persistence is
mediated, at least in part, by its ability to induce potently
and durably and maintain a low level of BCR-ABL on-
cogenic output. Patients failing to rapidly eradicate high-
level BCR-ABL expressing clones (e.g., presumably mir-
rored by slow decline of BCR-ABL ratio), therefore, have
a greater chance of developing resistance.

2. Once stable persistence of low-level BCR-ABL expres-
sion has been achieved (low BCR-ABL ratio), evolution
of resistance is unlikely, because persisting disease is
characterized by low oncogenic signaling output. If nec-
essary due to side effects, less intensive ABL-TKI therapy
may then control residual disease without risk of progres-
sion. The clinical implication would be that TKI therapy
could be de-escalated once optimal molecular response
has been documented.

3. An inclusion criterion for imatinib discontinuation trials
was presence of a stable MR4.5. This is achieved by
approximately 34 % of all CML-CP patients after 8 years
[22]. Since residual disease is BCR-ABL-independent, it
is not clear whether more potent Abl kinase inhibition will
indeed increase the absolute number of patients that re-
main relapse-free after TKI discontinuation in stable
MR4.5.

4. If confirmed in other oncogene-addicted cancers [91] and
leukemias such as Flt3-ITD-dependent acute myeloid
leukemia [92], suppression of high oncogene levels may
be established as a general mechanism to predict effec-
tiveness of kinase inhibitor therapy.
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