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Abstract. Ultrafast mapping of short reads to transcriptomic and metagenomic references via
lightweight mapping techniques such as pseudoalignment has demonstrated success in substantially
accelerating several types of analyses without much loss in accuracy compared to alignment-based ap-
proaches. The application of pseudoalignment to large reference sequences — like the genome — is,
however, not trivial, due to the large size of the references or “targets” (i.e. chromosomes) and the pres-
ence of repetitive sequences within an individual reference sequence. This can lead to multiple matching
locations for a k-mer within a single reference, which in turn can lead to false positive mappings and
incorrect reference assignments for a read when the colors across the k-mer matches for a read are aggre-
gated. Even when the read is determined to map to the appropriate reference, the increased occurrence
of k-mer multi-matches within a reference can prevent the determination of the correct approximate
position of the read, which is often critical in applications that map short reads to the genome.

We propose a new and modified pseudoalignment scheme that partitions each reference into “virtual
colors”. These are essentially overlapping bins of fixed maximal extent on the reference sequences that
are treated as distinct “colors” from the perspective of the pseudoalignment algorithm. A mapped k-
mer is assigned a virtual color id that encodes the combination of the reference and within-reference
bin in which the k-mer occurs. When the k-mers across a read are aggregated, the intersection is
performed on virtual colors instead of the original colors (references), to determine the compatible set
of targets (bins). The virtual colors can then be mapped back to the original references to provide
the final mappings. The projection of the original reference sequences into virtual color space, and
the corresponding modifications to the pseudoalignment procedure, can be applied dynamically at
program invocation and without any modification of the underlying index itself. This makes the setting
and modification of instance-appropriate parameters efficient and straightforward and the approach
widely applicable.

We apply this modified pseudoalignment procedure to process and map single-cell ATAC-seq data
in our new tool alevin-fry-atac. We compare alevin-fry-atac to both Chromap and Cell Ranger
ATAC. Alevin-fry-atac is highly scalable and, when using 32 threads, is approximately 1.78 times
faster than Chromap (the second fastest approach) while using approximately 3 times less memory
and mapping slightly more reads. The resulting peaks and clusters generated from alevin-fry-atac
show high concordance with those obtained from both Chromap and the Cell Ranger ATAC pipeline,
demonstrating that virtual color-enhanced pseudoalignment directly to the genome provides a fast,
memory-frugal, and accurate alternative to existing approaches for single-cell ATAC-seq processing.
The development of alevin-fry-atac brings single-cell ATAC-seq processing into a unified ecosystem
with single-cell RNA-seq processing (via alevin-fry) to work toward providing a truly open alternative
to many of the varied capabilities of CellRanger. Furthermore, our modified pseudoalignment approach
should be easily applicable and extendable to other genome-centric mapping-based tasks and modalities
such as standard DNA-seq, DNase-seq, Chip-seq and Hi-C.
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1 Introduction

ATAC-seq [7] is a widely-used assay that enables
the profiling of open-chomatin regions within the
genome. It has a wide variety of applications, such
as providing insight into gene regulation through the
identification of promoters and enhancers [38], study-
ing cell differentiation and development [30,21], char-
acterizing disease mechanisms including cancer [9,42],
and identification of transcription factors [34] to name
a few. As with RNA-seq, it is also now possible to pro-
file chromatin at the level of single cells [8,10], with
the number of such samples being generated growing
each year. However, the efficient mapping and pro-
cessing of single-cell ATAC-seq is a computationally-
challenging task.

There are currently three main pipelines/methods
used for this task. The first one involves aligning reads
to the genome using methods such as Bowtie2 [20],
BWA-MEM [23], or HISAT2 [19], followed by demultiplex-
ing into cells and then finally using existing general-
purpose programs like SAMtools [24] and Picard [40]
to sort and filter the alignments. The entire process
in the pipeline can be quite slow when working with
datasets that contain a large number of reads. The
mapping process can be sped up to some extent by
replacing certain parts of the pipeline (e.g. replac-
ing one of the previously-mentioned alignment tools
with minimap2 [22] as is used in workflows such as
MAESTRO[41]).

The second major approach is Cell Ranger ATAC,
which is developed by 10x genomics and performs
end-to-end analysis; from read mapping through
downstream tasks such as clustering of cells using
the called peaks and counts. While this can be sub-
stantially faster than the types of pipelines men-
tioned above, as the components are optimized to
work together, and to avoid redundant computa-
tion and unnecessary file input and output, there is
still much potential for further improvement. Further,
Cell Ranger ATAC is released under a non-free li-
cense, that permits any use or modification with only
10x genomics’ own proprietary and patented tech-
nologies.

The third, and currently the fastest method is
Chromap [44]. Chromap uses a minimizer-based [31]
index and maps the reads by creating candidate an-
chors based on minimizer hits, subsequently aligning
candidate positions against the reference. To further
speed up the process, it creates a cache that exploits
the property that the reads belonging to peak re-
gions occur frequently, often resulting in the obser-
vation of exactly repeated minimizer chains. In ad-
dition, Chromap also supports other data modalities
such as Chip-seq and Hi-C.

However, while certain approaches, like scATAK
and snATAK [4], apply lightweight mapping methods
like pseudoalignment to single-cell and single-nucleus
ATAC-seq data, they still first rely on traditional
read alignment tools upstream to align reads to the
genome to produce the accurate genomic mappings
necessary to extract peaks, whose sequences are then
treated as experiment-specific targets and remapped
using pseudoalignment [5]. While lightweight map-
ping approaches have proven very successful in pro-
viding fast read mapping in transcriptomics [5,28]
and metagenomics [33,36,25,1,14] without much
loss in accuracy compared to alignment-based ap-
proaches, no method has yet employed lightweight
mapping directly to the genome in the context of
single-cell ATAC-seq.

One may expect that such approaches might also
help in improving the read mapping efficiency for ge-
nomic mapping as well. However, the large reference
sequences frequently consisting of repetitive regions
make applying pseudoalignment directly to large ref-
erence genomes difficult. A k-mer can map to many
locations within the same reference which may lead to
an incorrect determination of the mapping position,
even when the specific reference (e.g. chromosome of
origin) is determined correctly. These issues can lead
both to reporting spurious mapping positions, as well
as missing the most likely approximate mapping lo-
cation of a read and can also lead to exacerbated
multimapping effects.

Recently, the KMCP [35] described an approach
that uses the a modified COBs [3] index to tackle
the metagenomic profiling problem. The COBs data
structure is an (approximate) presence/absence index
based on the matching of some threshold fraction of
k-mers between a query and the reference. To reduce
the potential for spurious matching based off of ge-
nomically distant k-mers, and to ensure that the ev-
idence supporting the existence and abundance of a
taxon isn’t due to many reads assigned to only one
narrow range of the underlying genome (akin to the
strategy employed in KrakenUniq [6]), KMC divides
the metagenomic references into a fixed number of
chunks, which themselves (rather than the genomes)
become the set of distinct targets represented in the
COBs index. Taking the success of such an approach
as motivation, we propose a modified pseudoalign-
ment approach for mapping reads to the genome,
which partitions the references into “virtual colors” of
fixed maximum extent. To determine the set of refer-
ences (and their approximate positions) from which
a read originates, the intersection across the virtual
colors to which the k-mers of a read map is performed
instead of taking the intersection over the original col-
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ors (i.e. references/chromosomes). This also necessi-
tates careful handling of the boundaries between vir-
tual colors (to ensure reads spanning virtual colors
are not lost) as well as ensuring that duplicate map-
pings induced by virtual color overlap are properly
identified with only a single position in the original
reference space.

Based on this approach, we also introduce our
new tool alevin-fry-atac, for processing single-
cell ATAC-seq data that integrates the memory fru-
gal piscem [13]| index along with the modified pseu-
doalignment algorithm for mapping reads. This en-
ables alevin-fry-atac to map reads efficiently while
keeping a low memory footprint. Alevin-fry-atac
after mapping allows for cell-barcode correction and
deduplication to produce a BED file that contains
the reference name, the start and end positions of the
mapped fragment along with their cell barcode and
the number of duplicates. This BED file can then be
used with peak callers such as MACS2 2 [45,15] and
used by other downstream tools to analyze single-cell
ATAC-seq data.

We evaluated alevin-fry-atac on both simu-
lated and experimental datasets and it achieved
an accuracy and mapping rate comparable to
the other alignment-based methods. We also ob-
served a high concordance between the peaks and
clusters generated on the mapped fragment file
produced by the other methods to those gener-
ated on the mapped fragment file produced by
alevin-fry-atac. Alevin-fry-atac uses 300% less
memory compared to Chromap while taking 178% less
time when mapping the reads. We have previously
developed alevin-fry to enable efficient preprocess-
ing of single-cell RNA-seq. With the development of
alevin-fry-atac, we provide a unified open-source
framework that can help to ease and facilitate multi-
modal analysis.

2 Methods

2.1 Preliminaries

The piscem [13] index is a modular index which en-
ables efficient retrieval of a set of references (colors),
as well as all of the associated positions and orienta-
tions for a given k-mer x. Like the pufferfish [2] in-
dex that preceded it, the piscem index is constructed
over the compacted colored reference de Bruijn graph,
permitting the same set of operations. However, the
piscem index is substantially smaller than that of
pufferfish. For a given set of reference sequences,
piscem uses cuttlefish [18] to efficiently construct
the compacted colored reference de Bruijn graph and
the associated tiling of the reference by unitigs. It
then uses SSHash [29] to create a k-mer to unitig
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mapping K — U, which maps each k-mer to a unitig,
relative offset, orientation triplet (uy, pk,ox). piscem
builds a dense inverted index to represent the unitig-
to-reference tiling &/ — R, which allows recalling, for
each unitig the reference sequences, and relative po-
sitions and orientations of the unitig’s occurrences in
the original reference. The k-mer to unitig X — U
and unitig-to-reference 4 — R can be combined to
correctly and efficiently determine the mapping po-
sition (and orientation) of a k-mer in the reference,
which might be essential for genome-centric mapping
tasks. The piscem index can be constructed on dif-
ferent types of reference sequences(genome, transcrip-
tome, metagenome, etc.) and the associated software
can currently support the processing and mapping
of single-cell RNA-seq and bulk RNA-seq. With the
introduction of alevin-fry-atac, single-cell ATAC-
seq is now also supported. A complete manuscript
describing the piscem index, the key details of the
software implementation, and its applications to var-
ious indexing tasks is currently under preparation.

Pseudoalignment is a lightweight mapping procedure,
which aims to assess the “compatibility” between a
read and a collection or references without specifi-
cally finding the coordinates of each base of the read
in the reference. The term was originally coined in
the context of RNA-seq quantification [5] where the
transcripts to which a read maps were found by doing
an intersection across the colors (transcripts) mapped
by a set of selected k-mers of a read. Certain charac-
teristics of this mapping process, however, predate
the coining ([43], [46]). Several approaches and algo-
rithms for pseudoalignment have been proposed, that
vary from how and which set of k-mers of a read is
selected for mapping, to how the colors correspond-
ing to the selected k-mers are aggregated to get the
final color set denoting the references to which a read
maps [1,14].

The pseudoalignment strategy that has been em-
ployed in the current manuscript is the “hybrid”
method described in Themisto [1] or the “threshold-
union” method described in Fulgor [14]. Let R =
{R1, Ra, ..., Rn} denote the set of reference sequences
we want to map a query sequence Q. Let K (Q) de-
note the set of k-mers for which a mapping  — U
exists in the index. Given the threshold parameter
7 € (0, 1], the output of pseudoalignment for a read
is a subset Rc C R and the relative read mapping
position within a reference, such that each reference
in the output R appears as a mapped hit (i.e. k-mer
match) across at least 7 K (Q) k-mers. The mapping
position of the leftmost k-mer hit of @ to the refer-
ence is assigned as the mapping position of the read
to reference.
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A) Pseudoalignment using chromosomes as colors

Chrl Chr2
pll pl2 p21 pl3 pl4 p22
Kmer1(Color,Pos) = {(Chr1, p11), (Chrl, p12), (Chrl, p13), (Chr2, p14)} Read
Kmer2(Color,Pos) = {(Chr1, p21), (Chr2, p22)}
PSA(Read) = {(Chr1, p11), (Chr2, p14)} X
k-mer 1 _k-mer 2
B) Pseudoalignment using virtual colors without overlapping boundaries
Chrl Chr2
bl |b2 b3 |b4 Ib5 | b6 Ib7 |b8 Ib9 | b10 |
pll pl2 p21 p13 pld p22
Kmer1(Color,Pos) = {(b1, p11), (b2, p12), (b4, p13), (b6, p14)}
Kmer2(Color,Pos) = {(b3, p21), (b8, p22)}
PSA(Read) = {} X
C) Pseudoalignment using virtual colors with overlapping boundaries
Chrl Chr2
bl |b2 ] ﬁ b4 r ,bS |b6 |b7 ] ]bS lb9 b10

pll pl2 p21 pl3 pla p22

Kmer1(Color,Pos) = {(b1, p11), (b2, p12), (b3, p12), (b4, p13), (b5, p13), (b6, p14)}

Kmer2(Color,Pos) = {(b3, p21), (b8, p22)}

PSA(Read) = {(b3,12)} v
Fig. 1. Toy example demonstrating how traditional pseudoalignment on genomic references could lead to spurious
mapping or completely missing the correct mapping. In the example, we have two k-mers, which map to multiple
references, with k-mer 1 mapping to multiple locations within chromosome 1. The individual mapped positions within
a reference are denoted by pij, with ¢ denoting the k-mer id and j denoting the order of the positions globally for that
k-mer. PSA(Read) denotes the reference ids and the relative positions on the reference along which Read maps using
pseudoalignment. The true mapping for the read in the example is (Chrl, p12). A) Using traditional pseudoalignment
both Chrl and Chr2 are selected as references from which the read originates. The position to which a read maps
in pseudoalignment is governed by where the left-most k-mer of a read maps. Thus, pl14 is picked as a position for
the hit, representing mapping to Chr2. If a k-mer maps to multiple positions within a reference, then by design the
position with the smallest coordinate is picked, which for Chrl is pl1l. We thus have two false positive mappings
(Chrl, p11), (Chr2, pl4) and a false negative since (Chrl, p11) is not reported. B) When the references are projected
onto a set of virtual colors whose boundary spaces do not overlap, we miss the mapping if the read spans across the
boundaries (b2, b3), creating an & set when taking the intersection across the colors. C) When the boundaries of
virtual colors overlap, each k-mer is assigned two colors if it falls within the overlapping region. This ensures that the
read gets mapped after pseudoalignment.

2.2 Pseudoalignment using virtual colors Construction of the wvirtual colors — We propose
modifying the pseudoalignment approach by project-

The accuracy of compatibility information gen- ing the original reference sequences (i.e. the original

erated by pseudoalignment may be similar to
alignment-based approaches when the reference se-
quences are comparably short, which is the case for
transcriptomics and metagenomics (and when the
sequenced sample is devoid of non-indexed refer-
ences that are sequence-similar to the indexed ref-
erences [37]). However, when directly applying pseu-
doalignment for mapping to a genome, where the
reference sequences are large, comprising of chromo-
somes that often contain repetitive sequences, we ob-
serve a marked drop-off in mapping accuracy using
various traditional pseudoalignment approaches. This
can happen due to multiple matching locations for a
k-mer within a single reference that can lead to false
positive and false negative mapping positions during
read mapping, as demonstrated in Figure 1 A.

colors) onto a set of “virtual colors”, that themselves
do not exist as individual elements in the index, but
which will represent the targets to which queries can
map. The virtual colors, conceptually, consist of a set
of overlapping bins, each of fixed maximal extent, on
the reference sequences. This overlap is needed since
the matching k-mers of a read can span the bound-
ary of multiple disjoint virtual colors (and therefore
become lost) (Figure 1 B, C). The virtual colors are
designed not to extend over the individual reference
sequences. Thus a virtual color b; belonging to refer-
ence R; will not overlap with any virtual color b; be-
longing to reference j, Vi # j. The construction of the
virtual colors is controlled by two parameters namely
lycol and ov_length. The parameter ov length con-
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trols how many bases a virtual color will overlap with
the virtual color on its left. It should be at least
equal to the read length to ensure that the entire
read can fit within it. The parameter f,., controls
the total number of bases that will be spanned by
a virtual color with most virtual colors on a refer-
ence spanning length of (ov_ length+£y.o1) bases. The
leftmost virtual color on a reference will cover a to-
tal of £ bases. The rightmost virtual color on the
reference will cover ov_length 4+ rl bases such that
(B[R;]—1)-lycor+7l = L[R;], where B[R;] denotes the
total number of virtual colors contained within the
reference sequence R; and L[R;] denotes the length
of the reference sequence. B[R;] can be computed as

ceil (LR‘]]

lyco

). The virtual colors are created dynami-
cally independent of the index.

Assigning virtual color to a k-mer— Before starting
the mapping process, we create an array C'B of length
|R|, such that:

0, if R; =0

CB[R; — 1]+ B[R; — 1] otherwise

CB[R;] = {

where C'B[R;] stores the cumulative number of vir-
tual colors up to reference R;. To assign a virtual color
to a k-mer x for which there exists a mapping in the
index, we extract the reference id, R;, and pj; — the
relative position of the j-th occurrence of the k-mer x
within reference i in the index. Corresponding to each
occurrence of k-mer x on reference R;. The color id for
the k-mer z is computed as V(z) = CB[R; — 1]+ %
Further, we check if the k-mer x lies in the overlap-
ping region between the bins. If that is the case, then
it is assigned an additional color id V(z) + 1. This
ensures a read gets mapped if it entirely (or partly)
lies within the overlapping regions.

Obtaining the final color set — Since a k-mer
can be assigned two virtual colors corresponding
to the same matching position, it might happen
that a read after pseudoalignment also gets as-
signed two virtual colors for that same reference po-
sition. This is not a problem for mapping single-end
reads, as removing mappings with duplicate color
ids and positions is straightforward. However, indi-
vidual mate mappings must be merged for paired-
end reads to get the final set of mapped references
and the corresponding starting positions. To do this,
we first remove duplicate mappings for the indi-
vidual mates. Two mappings a,b are deemed du-
plicate «»: (ori(a) = ori (b)), (ref (a) =ref (b)), and
(pos (p) = pos (b)), where ori(-),ref (-), and pos(-)
denote the orientation, reference id (original color)
and position for a mapped hit, respectively.
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By design, a mapped hit will always have at most
one other duplicate under the above criteria. These
hits are deduplicated by keeping the hit with the
smaller virtual color id. After removing the duplicate
mapping hits for each mate, hits a and b are merged,
with a being the mapping for mate 1 and b being
the mapping for mate 2, if they meet the following
criteria :

ref (a) = ref (b)
[vid (a) —vid (b) | <1
ori (a) # ori (b)
—dovetailyax < pos(a) — pos (b) < inspax, if ori (a) =
—dovetailyax < pos (b) — pos (a) < inSpax, if ori (a) =

Here vid (-) represents the virtual color id and orien-
tation f, r represents the forward and reverse orienta-
tion respectively. We use the values dovetail . = 20
and insyax = 1000 in this work.

The mapped hits supported by different numbers
of k-mers can arise when the threshold 7 < 1. In such
cases, we want to pick the hits for which we have the
highest confidence, provided by the number of k-mer
hits. Thus, we keep track of all valid mappings for
the read pair, and let 7/ denote the largest fraction
of k-mer hits supporting any reported mapping. We
subsequently filter out all merged mappings having
< 7' fraction of valid mapped k-mers.

Merging paired-end reads before mapping — Before
mapping the individual ends of a paired-end read, we
try to see if we can merge the reads to create a single
fragment before mapping. This idea has been sug-
gested and adopted in several existing read-mapping
tools (e.g. STAR [12] attempts to merge overlapping
paired-end reads before mapping, and Chromap uses
this approach for adaptor trimming [44]). We first try
to merge the reads in dovetail orientation and, if that
is not possible, then attempt to find an overlap merge.
For a dovetail merge, the prefix of one mate should
match with the suffix of the reverse complement of
the other mate. For an overlap merge, the suffix of
one mate should intersect with the prefix of the re-
verse complement of the other mate. For the merge
to be successful, there should be at least an overlap
of a certain number of bases between the mates (we
use a default of 30). If the mates can be merged, then
the merged fragment, and not the individual mates
are mapped to the reference.

2.3 Alevin-fry-atac pipeline
We now describe the alevin-fry-atac pipeline
for preprocessing single-cell ATAC-seq data. The first
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step is to map all the reads using the modified pseu-
doalignment algorithm described above. The default
output of this phase is a RAD (reduced alignment
data) format file. The RAD format is a chunk-based,
binary file optimized for machine parsing that en-
codes the relevant information necessary for subse-
quent data processing. Further details of this format
are described in [16], though it worth noting that
the single-cell ATAC-seq variant of such files carries
some distinct information from the single-cell RNA-
seq variant (e.g. it includes positions for each map-
ping, but doesn’t include UMI information).

Cell barcode correction — After mapping, the next
step is cell barcode correction. While various ap-
proaches to barcode detection and correction are
possible (alevin-fry implements several distinct
modes), for alevin-fry-atac we currently only sup-
port correcting to an unfiltered permit list. The per-
mit list file contains a list of experiment-independent
barcodes that are a superset of the barcodes that
should be observed in any given sample. We first scan
through the RAD file and count the number of times a
barcode corresponding to the mapped record appears
(exactly). If a cell or barcode has at least min-reads
records (default 10) mapping to it, and is also in the
whitelist, it is marked as present. For all the other
mapped records corresponding to cells not currently
marked as present, a nearest neighbor search is per-
formed on the barcode against the list of present cells.
If a barcode has a unique (i.e. only one) present neigh-
bor at edit distance 1, that barcode is corrected to
that of the neighbor. All other records are ignored.

Sorting and Deduplication — In this step, a
coordinate-sorted BED file is produced. First, a col-
lection of temporary files are created, each corre-
sponding to contiguous ranges of the underlying
genome. The input RAD file is parsed and all records
are routed to their appropriate temporary file based
on their starting mapping location. The temporary
files are then individually sorted (in parallel) and the
sorted files are merged (in genomic coordinate order)
to produce a BED file. During the sorting process,
the duplicate entries for a record (i.e., entries with
the same reference, start position, end position, and
barcode) are collapsed, and the corresponding num-
ber of duplicate entries is stored. For each mapped
fragment, the BED file contains the reference name,
start position, end position, cell barcode and the total
number of duplicates (including the fragment itself).
The BED file can then be passed to a peak caller
such as MACS2 2 [15], the output of which, along with
the original BED file containing the counts, forms the
input for downstream analysis.

3 Experimental Setup
3.1 Datasets

We evaluated and compared the performance of
the different methods on three simulated and three
experimental datasets. Mason [17] was used to gen-
erate the simulations for read lengths 50,100,150
bases. One million paired-end fragments for each read
length were created with a probability mismatch 0.25,
according to the Illumina model in the simulator.
The experimental single-cell ATAC-seq datasets were
downloaded from the 10x website with the URLs pro-
vided in Table S1. The experimental datasets include
the Human 10K PBMC, Mouse 8K Cortex and Human
3K Brain respectively. Human 3K Brain dataset un-
like the other two, is a multi-omic dataset, for which
both single-cell RNA-seq and single-cell ATAC-seq
data are available, and, in this manuscript, we have
worked with the single-cell ATAC-seq data.

3.2 Analysis pipeline

The analysis pipelines used to carry out the ex-
periments in this manuscript were created using
Snakemake [26]. Below, we describe how the individ-
ual experiments were carried out and evaluated.

Simulated data — Chromap was run without any
--preset arguments. For Bowtie2, reads were
aligned by setting the maximum fragment length (X)
to 2000. These settings were taken from Chromap’s
experiment repository on GitHub. Alevin-fry-atac
always maps all the records irrespective of the
whitelist file. The accuracy of the mappings was eval-
uated using a Python script that was originally used
for evaluation of mapping accuracy in the stobe-
mers [32] paper.

Experimental datasets — Chromap was run with
--preset atac argument using a whitelist file
on all the datasets. We could run Cell Ranger
ATAC only on the Human 10K PBMC and Mouse 8K
Cortex datasets, since Human 3K Brain is a mul-
tiomic dataset and required running Cell Ranger
Arc, which we did not run (and could not easily
compare). The downstream pipelines for analyzing
ATAC-seq data such as Signac [39] require as in-
put a tabix-indexed fragment file as produced in
the Cell Ranger ATAC pipeline. Thus, a tabix in-
dex was created for the fragment files produced by
both alevin-fry-atac and Chromap. We then use
MACS2 2 [15] as a peak caller on the fragment files
produced by all the methods. The peaks and the frag-
ment files are then passed to Signac for quality con-
trol and downstream analysis, such as clustering into
cell types.
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Benchmarking — We benchmark the read map-
ping and the process of generating deduplicated,
barcode-corrected fragment files separately using
the /usr/bin/time command. Chromap was bench-
marked with and without using the --preset atac
arguments for the read mapping process. We ran both
Chromap and alevin-fry-atac for a different num-
ber of threads, with each method being run three
times for a given thread count. The average across
the three runs was computed to obtain the time and
memory usage for that thread. To benchmark map-
ping for Chromap run using --preset atac, we sub-
tracted the time taken for sorting, deduplication and
writing, which was output to stdout from the total
time taken to run the method. We ran Cell Ranger
ATAC only once with 32 cores and 100 Gb of allowed
RAM, since it was not possible to benchmark the
individual steps. Cell Ranger ATAC has previously
been shown to be substantially slower than Chromap.

Software wversions — The following software ver-
sions were used for the analyses in this manuscript:
Cell Ranger ATAC version 2.1.0, Chromap version
0.2.7 — 7493, Bowtie2 version 2.5.4, mason version
2.0.9, MACS2 version 2.2.9.1, R version 4.3.2, Signac
version 1.13.0, tabix version 1.16, and Snakemake
version 8.18.0. Mapping for alevin-fry-atac was
done using piscem version 0.11.0 and subsequent pro-
cessing was done using the alevin-fry-atac branch
of the alevin-fry repository.

4 Results

4.1 Performance on simulated data
FEvaluating the effect of different parameters for
alevin-fry-atac— We first varied the parameter
lycor (which controls the number of bases a virtual
color will span, with most virtual colors spanning
Lycol + 0v_length bases), for a given k-mer size k and
pseudoalignment threshold 7 and observed its impact
on mapping accuracy on the simulated data for the
different read lengths (Figures S1 to S4). We find that
accuracy decreases continuously as fyo) increases, ir-
respective of the values of the other parameters. Im-
portantly, the sharpest decrease is observed when the
chromosomes themselves are used as the colors for
pseudoalignment (removing the effect of virtual col-
ors on the procedure entirely). The accuracy drops
to 84 — 86% from being 92 — 96% (depending on the
read length) when using virtual colors. In general, we
observe a drop in accuracy of ~ 10% or more when
disabling virtual colors. Longer reads generally yield
higher accuracy across most settings, except in the
specific parameter configuration where 7 = 1 and vir-
tual colors are disabled, where reads with length 100
have the highest accuracy.

Genomic pseudoalignment using virtual colors 7

We next varied the threshold 7 while keeping fyco1
and k fixed (Figures S5 to S8). The accuracy de-
creases as the threshold decreases from 0.6 to 1. The
decline seems to be sharpest from 0.8 to 1, with the
magnitude of decrease in accuracy in general being
much higher for larger read lengths. For 7 = 1, at all
the £yco1 values, the accuracy of reads with length 150
is smaller than reads with length 100. However, when
the chromosomes are used as colors, the accuracy for
reads with length 150 increases when 7 increases from
0.6 — 0.8 and falls again at 1.

Finally, we varied k, while keeping {,co, 7 fixed
(Figures S9 to S12). We observe that for reads of
length 50, accuracy increases from k = 23 to kK = 25
and starts decreasing across most virtual color ex-
tends and thresholds. However, when chromosomes
are used as colors, accuracy increases with an increase
in k. For the reads with larger lengths, a larger k is
preferred as the accuracy increases uniformly across
the parameters.

The above results can be summarized in Figure 2.
Alevin-fry-atac has higher accuracy for larger read
lengths. It is clear from the simulations that vir-
tual colors, irrespective of the fy.o value, substan-
tially improve the mapping accuracy compared to
using chromosomes as colors for pseudoalignment.
For reads of length 50, /., seems to be the most
important parameter, with accuracy dropping from
93.7% to 92.7% when f,.o is increased from 1,000
to 1,000, 000. For reads of length 100 and 150, while
increasing {,.o reduces the accuracy, the threshold
7 is also important, with accuracy decreasing from
96.73% to 94.45% when the threshold is increased
from 0.6 to 1.

Comparing performance with the other methods
— We next compare the mapping accuracy of
alevin-fry-atac with Bowtie2 [20] (which does
full read alignment) and Chromap on the sim-
ulated dataset in Table 1. As seen above for
alevin-fry-atac, other methods also have higher
accuracy for longer read lengths. Bowtie2 has the
highest accuracy followed closely by Chromap while
alevin-fry has marginally lower accuracy across the
evaluated read lengths. For the reads of length 50,
the mapping accuracy of alevin-fry is ~ 2% lower
than Bowtie2 and around ~ 1% lower for the reads
of length 150.

4.2 Experimental datasets

Mapping Rate — We also looked at the im-
pact of varying the different parameters of
alevin-fry-atac on the overall mapping rate
for the experimental datasets, since mapping ac-
curacy itself can’t be measured due to a lack
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Fig. 2. Evaluating accuracy across different read lengths for alevin-fry-atac by varying A) fyco1 for k = 25,7 = 0.7,
B) 7 for k = 25, yco1 = 1000, C) k for 7 = 0.7, £yco1 = 1000. The x-axis label chr in panel A implies mapping is done
using chromosome sequence as colors (removing the impact of virtual colors on mapping procedure).

Table 1. Mapping accuracy on the simulated data for the
different methods

Method ‘ Read Length
50 100 150

alevin-fry-atac 93.72|96.05|96.68

(k=25,7=0.7,lycor = 1,000)|""" ) )

Chromap

(W=7, k=17) 95.48|97.11(97.61

Bowtie2 95.71|97.16(97.65

of known ground truth. We varied the parame-
ters £yeo1(1,000, 10,000, 100, 000, 1, 000, 000, chr),
7(0.7,1) and k(23,25,31) for the Human 10K PBMC,
Mouse 8K Cortex and Human 3K Brain datasets
respectively (Figure S13). As with the simulated
dataset, we also find a decrease in mapping rate as
lyco1 increases for different & and 7 values, with the
fall being the sharpest when chromosomes are used
as colors (i.e. when virtual colors are disabled). The
highest mapping rate is observed for k = 25, followed
closely by & = 23 for the human datasets, while
for the mouse dataset the highest mapping rate is
achieved at k = 23 followed by k = 25, with the
lowest values observed at k = 31 across all datasets.
A slightly lower mapping rate is also observed
when tau is increased from 0.7 to 1. However, the

above results change when chromosomes are used
as colors, with £k = 31 and 7 = 1 having a higher
mapping rate compared to other k and 7 values.
The overall mapping rate for alevin-fry-atac for
k=257=0.7,{y0 = 1,000 is (98.27%,97.73% and
96.99) for the Human 10K PBMC, Mouse 8K Cortex
and Human 3K Brain datasets respectively while for
Chromap is (95.31%,95.56% and 94.50%), without
using the --preset atac argument.

Comparing peaks — We next compare the peaks
obtained for the different methods across the dif-
ferent datasets. We find that the peaks produced
by the Cell Ranger ATAC output cover the largest
number of bases across the datasets (Table S2). The
peaks produced by the Cell Ranger ATAC custom
peak caller cover more bases than those produced
by MACS2. On the human datasets, peaks produced
by alevin-fry-atac cover more bases compared
to Chromap, while for the mouse datasets, Chromap
covers more bases. The peak overlap between the
methods is greater than 90% across the datasets
and in most cases more than 95% (Table 2). The
overlap between Chromap and Cell Ranger ATAC is
slightly larger than between alevin-fry-atac and
Cell Ranger ATAC— though this difference disap-
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pears almost entirely when using the peak range of
Cell Ranger ATAC as the denominator.

Comparing the clusters — We next do a pairwise
comparison of the clusters obtained for the differ-
ent methods, both qualitatively and quantitatively.
Overall, a large overlap is observed between the clus-
ters on the different datasets (Figures 3 and S14).
There is less crossover (i.e. more concordance) be-
tween the clusters obtained for Cell Ranger ATAC
and alevin-fry-atac compared to other pairwise
comparisons on the Human 10K PBMC dataset. Sim-
ilarly, the UMAP plots (Figures S15 to S17) show
very similar cluster projections. Quantitatively, we
use Adjusted Rand Index (ARI) and Normalized
Mutual Information (NMI) to evaluate the clus-
ters (Table 3). A high concordance is observed
between the clusters across the datasets. For the
Human 10K PBMC dataset, both ARI and NMI be-
tween alevin-fry-atac and Cell Ranger ATAC are
higher than the other pairwise comparisons. On the
Mouse 8K Cortex dataset, ARI and NMI for pairwise
comparison between alevin-fry-atac and Chromap
is highest. Similarly, NMI > 0.9 is observed be-
tween alevin-fry-atac and Chromap for the Human
3K Brain dataset. Though the methods are all con-
cordant and the values are all close, we always observe
that the clusters produced with alevin-fry-atac
peaks have equal or higher concordance with those
produced with Cell Ranger ATAC than those pro-
duced with Chromap do with those produced with
Cell Ranger ATAC.

4.3 Memory and Running Time

We finally benchmarked the memory and running
time of alevin-fry-atac and Chromap for map-
ping single-cell ATAC-seq reads on the Human 10K
PBMC and Mouse 8K Cortex datasets respectively. We
first compared how these metrics change when the
number of threads is increased (Figure 4 A, Fig-
ure S18 A). For Chromap, we evaluated two differ-
ent modes, one designed only for mapping (which
we call “Map Only”) (i.e. not using the preset ar-
gument) and one designed for including the prepro-
cessing along with the mapping of single-cell ATAC-
seq data (which we call “Whitelist”) (i.e. using the
preset atac argument). For Chromap (Whitelist) we
subtract the time taken to sort and duplicate from
the total time taken to run. This was done to evalu-
ate the effect of entirely skipping reads whose bar-
codes reside outside the set of those in the per-
mitlist, as Chromap (Whitelist) simply does not map
or process these reads. We find that across both
the datasets, using 4 and 8 threads, Chromap is
faster than alevin-fry-atac. However, starting at
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16 threads, the performance across the methods be-
comes comparable. At higher thread counts, the run-
ning time for alevin-fry-atac becomes substan-
tially lower than that of Chromap. Specifically, we
observe that while it is quite fast, Chromap does
not seem to scale well beyond 8 threads, with lit-
tle corresponding decrease in run time, though sub-
stantially faster mapping is possible (as evidenced
by alevin-fry-atac’s performance). The maximum
resident memory consumed by alevin-fry-atac is
substantially smaller that that of Chromap, using ap-
proximately 6.3 and 5.5 Gbs for the Human 10K PBMC
and Mouse 8K Cortex datasets respectively (Fig-
ure 4 B, Figure S18 B). Chromap (Whitelist) used
20.6, 19.7 Gbs and Chromap (Map Only) used 41.2,
36.3 Gbs for the above datasets respectively. There is
a slight increase in memory usage across the meth-
ods when the number of threads is increased. We
also summarize the above metrics in Table 4, where
the results for alevin-fry-atac and Chromap are
reported on 32 threads. Though both Chromap and
alevin-fry-atac use similar but somewhat differ-
ent methods for correcting for barcodes and dedu-
plication, in both of these tools the correction and
duplication steps are fast, and are not the main bot-
tleneck in the pipeline. We also report the results for
Cell Ranger ATAC for the entire analysis (including
mapping, peak calling and clustering), since it is not
possible to run and benchmark each step individually.

5 Discussion

We have introduced alevin-fry-atac, which pro-
vides a computationally efficient, memory-frugal,
scalable and accurate framework for processing and
mapping single-cell ATAC-seq data. It uses only 1/3 of
the memory of Chromap and less than 1/2 of the mem-
ory of Cell Ranger ATAC when processing single-
cell ATAC-seq (and alevin-fry-atac utilizes only
% of the memory of Chromap when the latter is
not provided with a permit list during mapping).
Since Chromap only maps the reads corresponding
to the barcodes present in the permit list file, this
could be one reason why we observe an increased
time usage in the mapping only mode. Internally,
alevin-fry-atac uses the piscem index, which is
small and versatile and enables mapping reads from
other technologies such as bulk RNA-seq, single-cell
RNA-seq and now single-cell ATAC-seq.

Alevin-fry-atac is also computationally fast and
scalable. When using 16 threads, the runtime of

2 For Cell Ranger ATAC it is not possible to run and
thus benchmark each step individually, thus the time
and memory consumption also include other tasks such
as peak calling and clustering.
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Table 2. Percentage overlap between the peaks pairwise for the different methods across the datasets. Depending
on which method is used as a denominator, percentage overlap can change. The values in the parenthesis denote the
overlap when the second method was used as the denominator. N/A entries denote that Cell Ranger ATAC was not
run on that dataset.

Method / Dataset|alevin-fry-atac vs Chromap|alevin-fry-atac vs Cell Ranger ATAC|Chromap vs Cell Ranger ATAC
Human 10K PBMC 96.59 (97.97) 96.84 (97.02) 99.14 (97.92)

Mouse 8K Cortex 97.99 (98.31) 97.56 (94.35) 98.37 (94.82)

Human 3K Brain 92.23 (97.80) N/A N/A

Table 3. Evaluating the concordance between the clusters obtained for the different methods pairwise across the
datasets. The two entries per cell separated by comma denote Adjusted Rand Index (ARI) and Normalized Mutual
Information (NMI). N/A entries denote that Cell Ranger ATAC was not run on that dataset.

Method / Dataset|alevin-fry-atac vs Chromap|alevin-fry-atac vs Cell Ranger ATAC|Chromap vs Cell Ranger ATAC
Human 10K PBMC 0.87, 0.91 0.93, 0.94 0.87, 0.91

Mouse 8K Cortex 0.95, 0.96 0.94, 0.94 0.93, 0.94

Human 3K Brain 0.89, 0.91 N/A N/A

A B Cc

Chromap alevin-fry-atac Cell Ranger ATAC Chromap Cell Ranger ATAC alevin-fry-atac

Fig. 3. Pairwise Sankey plot on the clusters obtained across the different methods for Human 10K PBMC dataset.

A) Time taken across different threads for B) Maximum resident memory consumed across
Human 10K PBMC dataset different threads for Human 10K PBMC dataset
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Fig. 4. Comparing the time taken and maximum resident memory consumed by alevin-fry-atac and Chromap for
the Human 10K PBMC dataset across the different threads. For Chromap (Whitelist), Chromap is run with preset atac
arguments along with the whitelist file. For Chromap (Map Only), Chromap is run only without the preset arguments.
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Table 4. Time and maximum resident memory consumed
by the different methods for mapping scATAC-seq reads.
For both Chromap and alevin-fry-atac results are re-
ported using 32 threads?.

Method ‘Memory (Gb) Time (minutes)

Human 10K PBMC

Cell Ranger ATAC * 14.9 222

alevin-fry-atac 6.3 14.6

Chromap (Whitelist) 20.6 26.1
Mouse 8K Cortex

Cell Ranger ATAC * 8.6 190

alevin-fry-atac 5.5 11.9

Chromap (Whitelist) 19.7 19.1

alevin-fry-atac is comparable to Chromap, but
at higher thread counts it is faster. At 32 threads,
alevin-fry-atac takes 178% less time for mapping
than Chromap. At the same time, by introducing the
concept of virtual colors, and modifying the pseu-
doalignment procedure accordingly, we can map reads
at a similar accuracy to alignment-based methods.
Such accuracy would not have been attainable with-
out the use of virtual colors. We also observe a very
high concordance between the peaks and clusters ob-
tained for alevin-fry-atac with the other methods
tested across experimental datasets. The alevin-fry
ecosystem already supports the processing of single-
cell RNA-seq. The additional support for single-cell
ATAC-seq makes it the only fully open-source soft-
ware directly supporting both modalities. This should
ease and facilitate multi-modal analysis. We thus be-
lieve that alevin-fry-atac is a viable and strong
alternative to the other methods.

While in this manuscript, the main focus has been
on mapping single-cell ATAC-seq data, it should
be trivial to extend and apply pseudoalignment us-
ing virtual colors to other genomic-centred mapping-
based tasks and modalities, such as DNase-seq, Chip-
seq and Hi-C. The accuracy obtained on the simu-
lated datasets provides further confidence in this hy-
pothesis.

While our mapping speed is already very high, it
can be improved further by exploiting the property
that a large fraction of ATAC-seq reads arise and map
to certain fixed regions within the genome. A cache
can be built for such reads that would reduce the calls
to the main index when mapping. This feature was
introduced in Chromap, where they report substan-
tial speed improvements due to frequent use of these
caches.

Finally, for our pseudoalignment strategy, we
have queried all k-mers and utilized the “threshold-
union” approach. However, other lightweight map-
ping strategies such as selective alignment [37] and
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pseudoalignment with structural constraints[16] can
also be explored to see how they impact speed and
mapping accuracy. Finally, all pipelines, including
alevin-fry-atac, currently discard reads that map
to more than one location. Such reads constitute
4 —10% of the total reads in the datasets analyzed in
this manuscript, and might have a non-trivial impact
on downstream analysis [27]. One interesting future
direction would be to develop methods to resolve the
origin of such reads probabilistically using methods
such as expectation-maximization [11].

6 Code availability

The alevin-fry-atac software is written in
Rust and C++ and is freely available un-
der BSD 3-Clause license, as a free and open-
source tool at https://github.com/COMBINE-1lab/
alevin-fry-atac. The scripts to produce the results
in this manuscript are available at https://github.
com/NPSDC/alevin-fry-atac-paper-scripts.
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