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Abstract: Thermal ablation therapy is known as an advantageous alternative to surgery allowing
the treatment of multiple tumors located in hard-to-reach locations or treating patients with medical
conditions that are not compatible with surgery. Appropriate heat propagation and precise control
over the heat propagation is considered a weak point of thermal ablation therapy. In this work,
silver nanoparticles (AgNPs) are used to improve the heat propagation properties during the thermal
ablation procedure. Green-synthesized silver nanoparticles offer several attractive features, such as
excellent thermal conductivity, biocompatibility, and antimicrobial activity. A distributed multiplexed
fiber optic sensing system is used to monitor precisely the temperature change during nanoparticle-
assisted radiofrequency ablation. An array of six MgO-based nanoparticles doped optical fibers
spliced to single-mode fibers allowed us to obtain the two-dimensional thermal maps in a real time
employing optical backscattering reflectometry at 2 mm resolution and 120 sensing points. The silver
nanoparticles at 5, 10, and 20 mg/mL were employed to investigate their heating effects at several
positions on the tissue regarding the active electrode. In addition, the pristine tissue and tissue treated
with agarose solution were also tested for reference purposes. The results demonstrated that silver
nanoparticles could increase the temperature during thermal therapies by propagating the heat. The
highest temperature increase was obtained for 5 mg/mL silver nanoparticles introduced to the area
close to the electrode with a 102% increase of the ablated area compared to the pristine tissue.

Keywords: radiofrequency ablation; silver nanoparticles; distributed temperature sensing; optical
fiber; green synthesis; hyperthermia; minimally invasive cancer care

1. Introduction

Thermal ablation is a minimally invasive cancer treatment technique aiming to de-
stroy the tumor by applying extremely high or low temperatures [1,2]. In comparison to
conventional cancer treatment techniques, thermal ablation is used in cases when there
are several small tumors, when a tumor is located in a poorly accessible region [3,4], when
a tumor is resistant to chemotherapy, or when surgery is impractical due to the medical
conditions of the patient. Furthermore, the thermal ablation procedure is characterized
by lower morbidity, lower cost, and a shorter recovery time [5] as it can be handled as
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outpatient care. Depending on the frequency of the electromagnetic waves employed in
the ablation process, thermal ablation is differentiated as radiofrequency ablation (RFA) [6],
microwave ablation (MWA) [7], laser ablation [8], and high intensity focused ultrasound
(HIFU) [9].

Hepatocellular carcinoma is known as one of the frequently diagnosed cancer diseases
that is typically exposed to radiofrequency ablation [10,11]. Due to the enormous blood
flow and filtering function, the liver is a popular location for metastatic cancers from several
organs [2,12,13]. The most commonly used type of thermal ablation for liver cancer is a
radiofrequency ablation, which utilizes high-frequency electrical currents. Radiofrequency
ablation causes thermal damage to the tissue by depositing electromagnetic energy [14].

The power is delivered to the tissue by the active electrode [15] or metal-
electrodes [16,17], while the passive electrode is in the form of a metallic plate attached
to the skin. The ionic agitation occurs in the targeted region around an active electrode
due to the higher electrical resistance of the tissue compared to the electrode causing
frictional heat in the targeted area. This heat is accumulated and intensified around the
active electrode because of the difference between the small area of the active electrode and
the large area of the passive electrode [18].

The vital point during thermal ablation is the ability to monitor the temperature
change precisely in real time to achieve safe and complete tumor treatment [19,20]. The
existing thermocouples used for temperature sensing can detect the temperature at a single
point and can affect the heat propagation due to their metallic nature. Another non-invasive
alternative to thermocouples is magnetic resonance imaging (MRI). However, the MRI
technique lacks in terms of precision and detection speed and commonly has artifacts on
the image due to the physiological motions. Moreover, MRI scanning is a costly procedure
and requires MRI-compatible surgical tools [21].

For several decades, fiber-optic-based sensors (FOS) have been widely used to measure
the temperature during thermal ablation along with thermocouples. The interest in fiber-
optic-based sensors arises from their advantageous properties, such as their minimal
invasiveness, small size, biocompatibility according to ISO 10993 standards [22], low heat
conductivity, and MRI compatibility [23].

The non-metallic composition of fiber-optic sensors prevents the sensors from electro-
magnetic interference and corrosion [21]. Recent achievements in the field of fiber-optic
sensors made it possible to implement multi-point temperature-sensing opportunities
in space by integrating the sensing elements into a single optical fiber [24–26]. Two ap-
proaches utilize multiplexed sensing with a high spatial resolution that is vital in biomedical
applications.

The first approach is Fiber Bragg Grating (FBG) arrays working on the principle of
wavelength division multiplexing where the sensors inscribed inside the optical fiber allow
monitoring the temperature change along with the fiber in multiple points by 3–10 mm spa-
tial resolution reduction. The second method is distributed sensing based on the Rayleigh
scattering, where several fibers serve as a sensor [27]. The optical frequency-domain
reflectometry (OFDR) principle is used in the distributed sensing applied to Rayleigh
scattering [28].

Another important factor in thermal therapy is an appropriate heat propagation during
the ablation procedure. In particular, one can consider the use of innovative materials
to improve the thermal distribution or controlled release of drugs in a confined area. To
date, nanomaterials are widely used to advance the heat propagation properties in the
tissue during the thermal ablation procedure. For example, biocompatible gold and iron
oxide magnetic nanoparticles have been broadly investigated in many studies, for instance
the thermal ablation procedure [29]. It was demonstrated that better heat propagation in
tissues could be achieved due to their unique physicochemical properties [29].

Moreover, metallic nanoparticles injected into the ablation area can change the optical
and electrical properties of the tissue. Conductive nanomaterials can decrease the electrical
impedance of the tissue, which can delay the roll-off effect to ablate a larger area. The
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roll-off phenomenon occurs when the dissipation power falls to zero due to the rapid
increase of the electrical impedance when tissue desiccates. This phenomenon limits the
size of the ablation zone [29]. Subsequently, the increase of the ablated diameter, even by
1–2 cm, leads to a sudden increase of the volume necrosis (considering the tumor necrosis
being spherical) [30].

Green-synthesized silver nanoparticles are gaining considerable interest in biomedical
applications. The biological green method enables the synthesis of effective biocompatible
nanoparticles. For example, green-synthesized AgNPs are typically biocompatible because
their surface is usually coated by natural molecules [31,32]. Green silver nanomaterials
synthesized from non-toxic and safe compounds are distinguished by their fascinating
properties, such as excellent conductivity, colloidal stability, antimicrobial activity, etc. [33].

Silver nanoparticles prepared by a green method are usually capped with organic
layers making them colloidally stable. The stability of metallic silver nanoparticles in
biological media has been proven by many previous studies [34,35]. Slow Ag+ ion leach-
ing is not harmful to normal cells—there are many studies available on this. On the
other hand, slow Ag+ ion leaching can be harmful to pathogens [36–38]; thus, AgNPs are
useful as tissue-impedance lowering agents and as potential antimicrobial agents after
radiofrequency ablation.

At the present moment, silver nanoparticles have been tested for drug delivery [39–41],
screening [42,43], and in cancer treatment due to their cytotoxic effects on various cancer
cells [44–48]. Literature analysis revealed that few reports exist on the use of AgNPs for
thermal ablation. For example, Zhang et al. investigated the effect of silver nanoparticles
in the ultrasound treatment of lung cancer [49]. Instantaneous heat increase with rapid
dissipation was observed by Thompson et al. during the photothermal therapy of cancer
using silver nanoparticles [50].

In this study, the heat propagation and temperature-enhancement ability of green-
synthesized Ag nanoparticles during the radiofrequency ablation of tissue was presented
for the first time. For this purpose, prepared silver nanoparticles were introduced to the
different areas on the tissue to validate the heat propagation in the presence of nano-
materials. Accurate temperature monitoring was conducted employing a distributed
multiplexed temperature-sensing network. The sensing setup consists of MgO-based
nanoparticle doped fibers interrogated through the Optical Backscattered Reflectometry
(OBR) method and working on the principle of Rayleigh scattering with a 2 mm resolution
on a 2-dimensional, surface-based measurement, which allows estimating the areas of
cytotoxicity and thermal damage.

2. Materials and Methods
2.1. Experimental Setup

The experimental setup for the radiofrequency ablation (RFA) of tissue was designed
to deliver the electromagnetic energy to the tissue through a single-tip applicator and
to simultaneously monitor the change of the temperature during the thermal ablation
procedure; this was achieved by employing the silver nanoparticles and distributed optical
fiber-based temperature-sensing system as presented in Figure 1 with the photographic
view in Figure 2.

The setup consisted of: (1) an Optical Backscattering Reflectometer (OBR4600, Luna
Technologies, Roanoke, VA, USA) utilized to interrogate the spectral change of the optical
fibers during the ablation process; (2) a computer to collect the data; (3) an RFA/MWA
Hybrid Generator (LEANFA S.r.l., Ruvo di Puglia, Italy) which was employed as a source
of RF ablation; (4) six MgO-based nanoparticle doped optical fibers (NPDF) positioned in
parallel to record the temperature change; and (5) porcine liver used as an object of ablation
treated with silver nanoparticles.
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sions of the active electrode were 16 cm in length and 3 cm in diameter. The AE was placed 

Figure 1. The schematic of the multiplexing setup consisting of: (1) the Optical Backscattering
Reflectometry Luna OBR 4600; (2) a computer; (3) the RF/MW Hybrid generator; (4) a sensing
network of 6-NPDF fibers (pink in color) spliced to single-mode fibers (SMF, yellow in color), and
distributed through a fiber splitter; and (5) a commercially available porcine liver, used as a phantom
for the RFA procedure.

Nanomaterials 2022, 12, x FOR PEER REVIEW 4 of 19 
 

 

fibers during the ablation process; (2) a computer to collect the data; (3) an RFA/MWA 

Hybrid Generator (LEANFA S.r.l., Ruvo di Puglia, Italy) which was employed as a source 

of RF ablation; (4) six MgO-based nanoparticle doped optical fibers (NPDF) positioned in 

parallel to record the temperature change; and (5) porcine liver used as an object of abla-

tion treated with silver nanoparticles. 

 

Figure 1. The schematic of the multiplexing setup consisting of: (1) the Optical Backscattering Re-

flectometry Luna OBR 4600; (2) a computer; (3) the RF/MW Hybrid generator; (4) a sensing network 

of 6-NPDF fibers (pink in color) spliced to single-mode fibers (SMF, yellow in color), and distributed 

through a fiber splitter; and (5) a commercially available porcine liver, used as a phantom for the 

RFA procedure. 

 

Figure 2. The photographic view of the experimental setup of RF ablation using silver nanoparticles 

and a distributed temperature-sensing system: The setup consists of: (1) the Optical Backscattering 

Reflectometry Luna OBR 4600; (2) a computer; (3) the RF/MW Hybrid generator; (4) a sensing net-

work of 6-NPDF fibers; and (5) a commercially purchased porcine liver. The lower part of the setup 

presents the position of optical fibers on the surface of the porcine liver located in the x–y plane at a 

4 mm distance from each other. 

An alternating electric field was introduced to the tissue using RFA Hybrid Genera-

tor through a connected active electrode (AE) with a 0.5 cm length conical tip. The dimen-

sions of the active electrode were 16 cm in length and 3 cm in diameter. The AE was placed 

Figure 2. The photographic view of the experimental setup of RF ablation using silver nanoparticles
and a distributed temperature-sensing system: The setup consists of: (1) the Optical Backscattering
Reflectometry Luna OBR 4600; (2) a computer; (3) the RF/MW Hybrid generator; (4) a sensing
network of 6-NPDF fibers; and (5) a commercially purchased porcine liver. The lower part of the
setup presents the position of optical fibers on the surface of the porcine liver located in the x–y plane
at a 4 mm distance from each other.

An alternating electric field was introduced to the tissue using RFA Hybrid Generator
through a connected active electrode (AE) with a 0.5 cm length conical tip. The dimensions
of the active electrode were 16 cm in length and 3 cm in diameter. The AE was placed ex
vivo into the commercially available porcine liver purchased from a local shop. The tissue
was placed on the surface of the passive electrode (PE) presented as a metallic plate.

The current was delivered at an operating frequency of 450 kHz and power of 60 W.
The generator was set at a ‘safe mode on’ condition that prevents exceeding the value of
tissue resistance above 800 Ω due to the mounted impedance-meter in the RF generator.
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The ablation procedure was conducted for 60 s with a cooling time of 60 s. Before use,
the liver phantom was stabilized until 22–25 ◦C for several hours to reach body temper-
ature conditions. The initial temperature was recorded using a contact thermocouple
IKA ETS–D5.

The temperature-sensing network consisted of six MgO-based nanoparticle doped
optical fibers (NPDF) fabricated using a modified chemical-vapor-deposition method
(MCVD) [51,52]. The multiplexing distributed temperature-sensing system with sub-
millimeter resolution was constructed by splicing the MgO-based nanoparticle-doped
optical fiber that was 125 µm in diameter with a core diameter of 10 µm into single-mode
fibers (SMF) at different lengths that varied by 1–2 cm from each other to avoid overlapping
of the spectra during the measurements.

The prepared optical fibers network was connected to Luna OBR using SMF pigtails
and an optical coupler at 1 × 8. The resolution of the optical fibers was 2.0 mm. The
thermal sensitivity of the fibers was 9.4 pm/◦C, which was verified by the previous work
of Beisenova et al. [53]. The multiplexing distributed sensing network was positioned
inside the tissue with a 4 cm distance between fibers in the y-direction as shown in Figure 2.
The active electrode was inserted between the third and fourth optical fibers to measure
the temperature increase during the ablation, while the passive electrode was placed
underneath the tissue. The positions of the optical fibers and AE were fixed for all the
experiments.

Silver nanoparticles of size 30–50 nm were dispersed in 0.2% agarose solution at a
concentration of 5 mg/mL and injected passively into the tissue using a syringe. We
introduced 100 µL of silver nanoparticles at three different positions regarding the position
of the active electrode to observe the heating properties as shown in Figure 3.
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Figure 3. Representation of the silver nanoparticles injection position into porcine liver tissue:
(1) around the electrode at a 1 cm distance; (2) center of the ablation area where the active electrode is
injected; and (3) left side from the electrode at a distance of 1x1 cm.

Moreover, pristine tissue and tissue treated with agarose solution only and with silver
nanoparticles at the concentrations of 10 and 20 mg/mL were also tested for broader analysis.

2.2. Data Acquisition and Processing

The data was collected with an optical backscatter reflectometer (Luna OBR 4600,
Luna Inc., Roanoke, VA, USA) allowing to monitor the distributed temperature change
during RFA. The OBR sends a signal through a fiber link and then measures the reflection
caused by Rayleigh scattering [54]. By registering the propagation time of backscattered
light, return losses experienced by different points along the fiber length are determined.
An example of the resulting spectrum is in Figure 4, which presents the measurement of
the fiber link in its default state before the start of the experiments. The elevated regions
represent the gains due to the six multiplexed fibers.
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Each local temperature value causes the reflection spectrum of each fiber section to
shift in wavelength. The OBR in the distributed sensing mode measures the shifts between
separate measurements and converts them into temperature changes. In order to compute
the shift associated with a particular spatial position, the portion of the spectrum around it
is processed in the frequency domain. The length of this region is the gauge length, which
is equal to 5 mm in our case. The step size between the positions, i.e., the spatial resolution,
is equal to 2 mm.

The measurements were recorded by points located at 3.5 cm along the tip of each
fiber’s spectrum (Figure 4). These points were arranged into a 2D matrix according to
the physical layout of the fibers during the experiment (Figure 1). By observing the
thermal changes registered by all of the positions during one ablation session, the overall
progression of temperature can be monitored. Vertically, each pair of fibers was separated
by 4 mm; overall, this sensing arrangement covers a surface of 38 mm × 20 mm (760 mm2)
with 20 × 6 sensing points (120 sensing points in total), whereas each sensing point covers
a surface of 6.33 mm2. For each point in time during one experiment, the vertical and
horizontal dimensions were interpolated using a step size of 0.4 mm in order to plot thermal
2D maps with increased precision.

2.3. Synthesis and Characterization of Silver Nanoparticles

Silver nanoparticles (AgNPs) were synthesized by reducing a silver nitrate solution
utilizing commercially available green tea as schematically presented in Figure 5. We boiled
0.3 g of green tea leaves in pre-heated 20 mL deionized (DI) water at 100 ◦C for 10 min. The
obtained tea extract was filtered through Whatman filter paper No.1 and using a vacuum
filter. The filtered solution was stored at 2 ◦C for further use. We dissolved 0.01 g of silver
nitrate powder in 50 mL of DI water at 40 ◦C on a hot plate under continuous magnetic
stirring. After 5 min, 500 µL of tea extract was added dropwise. The solution was stirred
for 30 min at 700 rpm. The color change from colorless solution to light brownish indicated
the complete reduction of silver nitrate solution to silver nanoparticles. The obtained silver
nanoparticles were cleaned with DI water and freeze-dried using a Lyotrap Freeze Dryer.
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Figure 5. Silver nanoparticle synthesis schematics.

Silver nanoparticles were characterized using Transmission Electron Microscope
(TEM), Scanning Electron Microscope (SEM), UV-Vis Spectrophotometer, Fourier-transform
infrared spectroscopy (FTIR), and X-ray Diffraction (XRD) measurements.

2.3.1. Transmission Electron Microscopy

The size and shape of synthesized silver nanoparticles were observed using Transmis-
sion electron Microscopy (JEM-1400 Plus, JEOL Ltd., Tokyo, Japan.). The nanoparticle solu-
tion was placed on a carbon-coated copper grid and dried at room temperature overnight.
The TEM micrograph confirmed the size of nanoparticles varying from 30 to 50 nm, and its
spherical shape as can be seen in Figure 6.
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Figure 6. TEM image of silver nanoparticles with size indication.

2.3.2. Scanning Electron Microscopy

The Scanning Electron Microscope (Auriga Crossbeam 540, Carl Zeiss NTS GmbH,
Oberkochen, Germany) analysis was conducted to see the morphological shape of synthe-
sized nanomaterials presenting the spherical shape of nanoparticles as shown in Figure 7.
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Figure 7. SEM micrographs of silver nanoparticles.

The EDC analysis was conducted using a Scanning Electron Microscope to observe
the composition of synthesizing nanoparticles. The obtained results validated that the
synthesized nanoparticles were composed of silver atoms for 96.7% as presented in Figure 8.
The presence of oxygen is an indication of limited silver oxidation.
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Figure 8. EDC composition of silver nanoparticles.

2.3.3. UV-VIS

Another approach to confirm that the obtained nanoparticles are silver nanoparticles
is to conduct UV-VIS spectral analysis (UV-VIS Evolution spectrophotometer 2000, Ther-
moFisher Scientific, Waltham, MA, USA) with a wavelength range from 300 to 700 nm. The
sample was placed in a quartz cuvette and spectra were recorded with a 1 nm resolution.
DI water was used as a blank reference. According to the literature review, a strong peak at
420 nm stands for the spherical green-synthesized silver nanoparticles as can be seen in
Figure 9 [55,56].
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Figure 9. UV-VIS spectra of green-synthesized silver nanoparticles.

2.3.4. Fourier-Transform Infrared Reflectometry (FTIR)

Fourier-transform infrared spectra measurements of synthesized silver nanoparticles
were conducted in the range of 4000 and 500 cm−1 to identify the functional groups using
the FTIR Nicolet is10 Thermoscientific instrument (ThermoFisher Scientific, Waltham, MA,
USA) that is shown in Figure 10. The FTIR measurements for green-synthesized silver
nanoparticles identified the visible peaks in Figure 10 at 3248.49, 2356.19, 1773.28, 1753.22,
1700.89, 1648.19, 1248.69, and 1043.44cm−1. The peak at 3248.49 cm−1 is assigned to O-H
and/or N-H stretching, a peak at 2356.19 corresponds to C-H stretching, bands at 1773.28,
1753.22, and 1700.89 cm−1 stand for C=O stretching, a peak at 1648.19 cm−1 is assigned for
N-H bending, a band at 1248.69 cm−1 stands for C-N stretching, and a peak at 1043.44 cm−1

corresponds to C-O stretching [33,49].
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Figure 10. The FTIR spectral analysis of existing functional groups in green-synthesized silver
nanoparticles.
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2.3.5. X-ray Diffraction (XRD)

The XRD analysis was performed using the SmartLab Rigaku instrument (Rigaku
Americas Corporation, The Woodlands, TX, USA ) and shown in Figure 11. The diffraction
peaks observed at 2θ degrees of 27.81◦, 32.16◦, 38.12◦, 44.3◦, 46.21◦, 54.83◦, 57.39◦, and
64.42◦ correspond to reflections of (210), (122), (111), (200), (231), (142), (241), and (220)
planes based on the face-centered cubic structure of synthesized silver nanoparticles that
matched the literature values [57].
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Figure 11. The XRD pattern of the synthesized silver nanoparticles.

3. Results
3.1. Thermal Maps

The experimental results collected by interpolation of the data from all six fibers using
an Optical Backscattering interferometer allowed to obtain 2D thermal maps recorded on
the x–y plane. To validate the heating effects of the silver nanoparticles, the nanomaterials
were introduced to the tissue in three positions regarding the AE: around, center, and side.
The heating outcomes were different for each case as can be seen in Figure 12A–D.

The temperature distribution is presented in the form of thermal maps distinguished
by colors, where the yellow color identifies the area heated up to 60 ◦C, and the blue color
corresponds to the temperature heated up to 42 ◦C. Figure 12 contains four examples of
thermal maps obtained in four experiments in different conditions, which are presented as
a benchmark. Overall, 32 experiments in total were performed to verify the repeatability
of the heating outcomes when nanoparticles were introduced in different locations and at
different concentrations.
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Figure 12. Example of thermal maps obtained for RFA in different conditions: (A) pristine tissue
without treatment with AgNPs; (B) tissue with the nanoparticles injected around the electrode at a
1 cm distance; (C) tissue with AgNPs injected at the center at the proximity to the active electrode;
(D) tissue with the nanoparticles injected at the side from the active electrode. The yellow zone
indicates the ablated area exposed to a temperature higher than 60 ◦C (i.e., instantaneous thermal
damage), while the blue area shows the regions exposed to >42 ◦C (i.e., cytotoxic regions).

3.2. Temporal Evaluation

The cinematic view of the temperature increase during RFA when 5 mg/mL of silver
nanoparticles are injected in the central area of tissue is presented in Figure 13. The
temperature change in 2D is visualized for 10, 20, 30, 40, and 50 s from the video recorded
during RFA (Video S1 provided in the Supplementary Materials).
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Figure 13. The cinematic view of the obtained 2D map during RFA at 10, 20, 30, 40, and 50 s using
5 mg/mL silver nanoparticles in the center proximity to AE.

3.3. Heating Pattern

In order to investigate the heating patterns of the silver nanoparticles over the thermal
therapy procedures, the tissue was ablated at several conditions. First, the pristine tissue
without any nanomaterial treatment was exposed to the RF, and we recorded the temper-
ature change. The heating effects of injecting only agarose solution into the tissue were
also observed. Finally, silver nanoparticles at concentrations of 5, 10, and 20 mg/mL were
exposed to the tissue surface during RFA at three different positions (center, around the
AE, and the side from AE). The heating patterns for each heating scenario are presented in
Figure 14 demonstrating the maximum temperature of ablation reached over time.
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Figure 14. Heating patterns recorded during RFA: (a) Pristine tissue without nanomaterials;
(b) agarose solution injected to the tissue; (c) tissue treated with AgNPs at 5 mg/mL, center position;
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Figure 15 demonstrates the comparison of the heat obtained during RFA for pristine
tissue, tissue treated with agarose, and tissue with 5 mg/mL of silver nanoparticles in-
troduced at the central region near the active electrode. The figure highlights the main
temperature regions where the ablation occurs. It was validated by researchers that the
temperature range between 42 and 60 ◦C is the optimal range of ablation temperatures
leading to protein denaturation, while 95 ◦C is the temperature close to the vaporization of
the tissue.
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Figure 15. A heating comparison between pristine, agarose, and 5 mg/mL silver nanoparticles during
the RFA of porcine tissue.

3.4. Ablated Area

The statistical analysis of the ablated area hat underwent thermal exposure at 42 ◦C is
presented in Figure 16. There are several heating conditions differentiated by the colors in
the figure. The heating parameters varied by three concentrations of silver nanoparticles—5,
10, and 20 mg/mL—at the central region close to the active electrode, around the electrode,
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and at the side position from the electrode. The analysis of pristine tissue and tissue injected
with only agarose solution were also conducted for reference purposes.
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Figure 16. Statistical data of the area exposed to 42 ◦C: (a) For each experiment class, there is an area
over 42 ◦C. Bars = average; errorbars = plus/minus standard deviation values. (b) Average increase,
in %, of the 42 ◦C area for each experiment with respect to pristine tissue. Colors are the same on the
left, while pristine tissue is 0 by definition.

In addition, the area of ablation exposed to 60 ◦C was analyzed and presented in
Figure 17 similarly to the area at 42 ◦C.
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Figure 17. Statistical data of the area exposed to 60 ◦C: (a) For each experiment class, there is an area
over 60 ◦C. Bars = average; errorbars = plus/minus standard deviation values. (b) Average increase,
in %, of the 60 ◦C area for each experiment with respect to pristine tissue. Colors are the same on the
left, while pristine tissue is 0 by definition.

The statistical data of the ablated area for over 42 and 60 ◦C are presented in Table 1.
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Table 1. The ablated area values for over 42 and 60 ◦C during RFA of the porcine liver.

Condition

Area 42 ◦C (cm2)
% Increase

Over Pristine

Area 60 ◦C (cm2)
% Increase

Over PristineAverage Standard
Deviation Average Standard

Deviation

Pristine 1.283 0.460 0.0 0.699 0.406 0.0

Agarose 2.021 0.333 57.6 1.201 0.311 72.0

Ag NP, 5 mg/mL, center 2.150 0.341 67.6 1.411 0.301 102.0

Ag NP, 5 mg/mL, side 1.499 0.920 16.8 0.800 0.675 14.5

Ag NP, 5 mg/mL, around 1.621 0.605 26.3 1.049 0.606 50.2

Ag NP, 10 mg/mL 1.583 0.066 23.4 0.600 0.145 −14.1

Ag NP, 20 mg/mL 1.678 0.182 30.8 0.723 0.253 3.5

4. Discussion

Figure 12 reports four thermal maps obtained during RFA for different positions of
silver nanoparticles at 5 mg/mL concentration and pristine tissue. The two-dimensional
thermal maps recorded on the x–y plane show the temperature rise starting from 20 ◦C. The
obtained thermal maps show the significant heat difference for each scenario. As can be
seen from Figure 12, the most ablated area at the temperature range between 42 and 60 ◦C
was reached when the tissue was treated with 5 mg/mL silver nanoparticles at the central
area close to the active electrode, thus, confirming the contribution of silver nanoparticles
in the heat increase during RFA.

Moreover, the maximum temperature of 100 ◦C was attained during RFA conducted
employing 5 mg/mL silver nanoparticles positioned in the central region in the tissue.
However, non-uniform heat propagation occurred inside the tissue, which can be explained
by the heterogeneous nature of the tissue. Figure 13 demonstrates the cinematic view of
the heating process during RFA for 50 s.

The temperature increases recorded every 10 s over the thermal procedure demonstrate
the rapid heat increase over 60 ◦C for 40 s and the cooling process started as the machine
turns off by reaching the tissue resistance threshold. The machine turns off due to the
roll-off phenomenon preventing injury of the tissue during thermal therapy [58,59]. Since
the power dissipated during RFA is inversely proportional to the electrical impedance, as
shown in Equation (1):

P =
I2

Z
(1)

(where P—power, I—current, and Z—impedance), when the impedance is high in the
targeted region, the power is not dissipated anymore and the liquid–vapor transition
begins [60].

The study validated that silver nanoparticles dispersed in agarose solution performed
better than the heating pattern of agarose by itself, demonstrating the performance of
silver nanoparticles. However, the best heating case, observed for silver nanoparticles
at a concentration of 5 mg/mL, was an optimal heating parameter compared to 10 and
20 mg/mL of silver nanoparticles. The heating pattern features for different concentrations
depicted in Figures 14 and 15 show a uniform heat distribution when the tissue was injected
with 5 mg/mL of silver nanoparticles.

Silver nanoparticles, due to their conductivity, are intended to decrease the electrical
impedance of the tissue to increase the heat deposition at the ablation region. Figure 16
and Table 1 show that the highest area of 102% enhancement during RFA was achieved
for the tissue treated with 5 mg/mL silver nanoparticles injected at proximity to the active
electrode compared to pristine tissue and tissue treated with the agarose solution without
any nanoparticles.
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Figures 16 and 17 demonstrate that the largest area of ablation was achieved when
silver nanoparticles were injected at the central position near the AE. Theoretically, there
is a direct relationship between the increase in nanoparticle concentration and the elec-
trical conductivity of the tissue. Therefore, the application of nanomaterials of higher
concentration should lead to a higher ablation zone. However, this theory works for the
homogenous tissue.

In practice, the concentration of 5 mg/mL of nanoparticles was validated as the
optimal concentration compared to 10 and 20 mg/mL, which can be explained by the
heterogeneity of the ablated tissue [60,61]. Moreover, as can be seen from Figure 17, the
highest concentration of nanomaterials lowers the ablation temperature over 62 ◦C making
it possible to conclude that the high concentration of nanoparticles can be a limiting factor
during thermal ablation.

The proposed sensing setup constructed to monitor the temperature change in real
time employing the advanced temperature-sensing arrays during RFA complemented with
silver nanoparticles allowed sensing the temperature change with a sub-millimeter reso-
lution. This approach made it possible to measure the temperature with a sub-millimeter
resolution of high scattering fibers in comparison to the 0.1 mm limit of detection of the
OBR instrument. The temperature estimation over the ablation was processed by collecting
the spectral data from all six multiplexed fibers presenting the temperature evolution.

5. Conclusions

In this work, the experimental setup was arranged to monitor, in real time, the tem-
perature change during RFA inside the tissue at over 3.5 m in fiber length and a sensing
network constructed in parallel at a 4 mm distance from other fibers. Green-synthesized
silver nanoparticles were applied to the tissue to validate its heat propagation during
the radiofrequency ablation of porcine liver tissue. The results demonstrated that silver
nanoparticles could increase the temperature during RFA compared to the pristine tissue
by increasing the ablated area by 102% and reaching a higher maximum temperature.

According to the obtained outcome, silver nanoparticles themselves can propagate
the heat causing the temperature rise compared to the cases when only agarose solvent or
pristine tissue were used. However, the AgNPs at a concentration of 5 mg/mL performed
better than at the 10 and 20 mg/mL concentrations. In addition, the proposed sensing
system allowed for accurately monitoring the temperature change at a 2 mm resolution
over 120 sensing points.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nano12030426/s1, Video S1: The video of heat increase during
RFA of tissue injected with 5 mg/mL silver nanoparticles at the tip position of the electrode obtained
by interpolating the data of thermal maps recorded from six fibers.
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