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ABSTRACT Arcobacter skirrowii is a species of veterinary importance, originally re-
covered from the feces, aborted fetuses, and preputial fluids of livestock. We present
here the whole-genome sequence of the A. skirrowii type strain LMG 6621 (= 449/
80T = CCUG 103747), isolated in the United Kingdom from a lamb diarrheal fecal
sample.

rcobacter skirrowii is a member of a related group of taxa, including Arcobacter
trophiarum, Arcobacter cibarius, Arcobacter cryaerophilus, and Arcobacter thereius
(1), that are recovered from pigs, cattle, and poultry (2). A. skirrowii was isolated
originally from veterinary samples, e.g., bovine preputial fluid and aborted bovine and
porcine fetuses (3). Subsequently, A. skirrowii has also been recovered from pork and
beef (4, 5), poultry (6), fish (7), and milk and cheese (8). Additionally, two reports of A.
skirrowii isolated from human stool samples have been published (9, 10). In this study,
we report the first closed genome sequence of the A. skirrowii type strain LMG 6621
(= 449/80" = CCUG 10374T) (3), which was isolated in the United Kingdom from lamb
feces.
A. skirrowii strain LMG 66217 was grown aerobically at 30°C for 48 h on anaerobe
basal agar (Oxoid) plus 5% horse blood. An approximately 5-ul loop of cells was taken
from a plate, and genomic DNA was prepared using the Wizard genomic DNA kit
(Promega, Madison, WI). Shotgun and paired-end Roche 454 libraries were constructed
as described previously (11) and sequenced on a GS-FLX+ instrument, using the
Titanium chemistry and standard protocols. The reads from both 454 libraries were
assembled together, using Newbler version 2.6 (Roche) and default settings, into 52
contigs and a single chromosomal scaffold of 16 unique contigs. Low-quality contigs
were deleted, and placement of the remaining 20 contigs at one or more positions
within the scaffold was accomplished with the custom Perl script contig_extender3
(11). PacBio libraries were prepared as described previously (11) and sequenced on an
RS Il instrument using standard methodology. Read assembly was performed using
RS_HGAP_Assembly version 3 (Pacific Biosciences) with default settings. A single
chromosomal contig was obtained, which was quality trimmed to a Q score of 40 and Received 21 September 2018 Accepted 11
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TABLE 1 Sequencing metrics and genomic data for A. skirrowii strain LMG 66217

Feature Data“
Sequencing metrics by platform
454 (shotgun)
No. of reads 77,166
No. of bases 31,779,672
Average length (bases) 411.8
Coverage (X) 16.1
454 (paired-end)
No. of reads 135,775
No. of bases 46,030,534
Average length (bases) 339.0
Coverage (X) 234
Illumina HiSeq 2000
No. of reads 18,024,500
No. of bases 1,820,474,500
Average length (bases) 101
Coverage (X) 924.2
PacBio
No. of reads 252,507
No. of bases 1,689,600,967
Average length (bases) 6,691.3
Coverage (X) 857.7
Genomic data
Chromosome
Size (bp) 1,969,846
G+C content (%) 27.75
No. of CDS® 1,957
Assigned function (%) 868 (44.4)
General function annotation (%) 634 (32.4)
Domain/family annotation only (%) 134 (6.8)
Hypothetical (%) 321 (16.4)
No. of pseudogenes 20
Genomic islands/CRISPR
No. of genetic islands 3
No. of CDS in genetic islands 146, [5]
CRISPR-Cas loci Type lll
Gene content/pathways
Signal transduction
Che proteins cheABDRVW/(Y),
No. of methyl-accepting chemotaxis proteins 17
No. of response regulators 20, [1]
No. of histidine kinases 21, [1]
No. of response regulator/histidine kinase fusions 1
No. of diguanylate cyclases 9
No. of diguanylate phosphodiesterases (HD-GYP, EAL) 2,1
No. of diguanylate cyclase/phosphodiesterases 6
No. of other 8
Motility
Flagellin genes flaAB
Restriction/modification
No. of type | systems (hsd) 0
No. of type Il systems 6
No. of type lIl systems 0
Transcription/translation
No. of transcriptional regulatory proteins 35
Non-ECF< o factors a’°
No. of ECF ¢ factors 0
No. of tRNAs 48
No. of ribosomal loci 4
Nitrogen fixation (nif) No

Osmoprotection

Pyruvate — acetyl coenzyme A
Pyruvate dehydrogenase (E1/E2/E3)
Pyruvate:ferredoxin oxidoreductase

Urease

Vitamin B,, biosynthesis

BCCT, ectABCD

Yes
No
No
No

aNumbers in square brackets indicate pseudogenes or fragments.
®Numbers do not include pseudogenes. CDS, coding sequences.

ECF, extracytoplasmic function.
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(14-16). These features and the genome sequence were used to create a prelimi-
nary GenBank-formatted file, which was entered into Artemis version 16 (17) to
manually curate the start codon of each putative coding sequence and identify
putative pseudogenes. Annotation was accomplished through a BLASTP compari-
son of the strain LMG 66217 proteome against proteins in the following two
databases: the NCBI nonredundant (nr) database and a custom database that
includes proteomes from all completed Arcobacter and Campylobacter genomes.
Annotation calls were also verified through an analysis of Pfam motifs (18). Three
genomic islands encoding type IIP restriction/modification systems were identified
in the LMG 66217 chromosome. Two islands (~97.9 kb and ~42.8 kb) are predicted
to also encode a type VI secretion system and a P-type type IV conjugative transfer
system, respectively. The third island (~23 kb) also contains four transposition-
related genes, suggesting that this island may be a mobile element. The LMG 66217
genome is predicted to encode a type lll CRISPR-Cas system. No plasmids were
identified in the LMG 66217 genome.
Data availability. The complete genome sequence of A. skirrowii strain LMG 66217
has been deposited in GenBank under the accession number CP032099. The 454, HiSeq,
and PacBio sequencing reads have been deposited in the NCBI Sequence Read Archive
(SRA) under the accession number SRP155172.
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