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Abstract: Post-ischemic brain damage is associated with the deposition of folding proteins such as
the amyloid and tau protein in the intra- and extracellular spaces of brain tissue. In this review,
we summarize the protein changes associated with Alzheimer’s disease and their gene expression
(amyloid protein precursor and tau protein) after ischemia-reperfusion brain injury and their role
in the post-ischemic injury. Recent advances in understanding the post-ischemic neuropathology
have revealed dysregulation of amyloid protein precursor, α-secretase, β-secretase, presenilin 1 and 2,
and tau protein genes after ischemic brain injury. However, reduced expression of the α-secretase
in post-ischemic brain causes neurons to be less resistant to injury. In this review, we present the
latest evidence that proteins associated with Alzheimer’s disease and their genes play a key role in
progressive brain damage due to ischemia and reperfusion, and that an ischemic episode is an essential
and leading supplier of proteins and genes associated with Alzheimer’s disease in post-ischemic
brain. Understanding the underlying processes of linking Alzheimer’s disease-related proteins and
their genes in post-ischemic brain injury with the risk of developing Alzheimer’s disease will provide
the most significant goals for therapeutic development to date.

Keywords: brain ischemia; Alzheimer’s disease; stroke; cardiac arrest; amyloid; tau protein; amyloid
protein precursor; α-secretase; β-secretase; presenilins; gene expression; dementia

1. Introduction

Most studies on the consequences of cerebral ischemia have been conducted in rodents. Preferring
rodent ischemia and reperfusion brain research is supported by high homogeneity due to inbred,
low cost, availability, and similarity of the brain vascular system in rodents and humans. For several
reasons, the hippocampus is the preferred brain sector for studying post-ischemic repercussions. First,
the CA1 area of the hippocampus is a brain region very sensitive to ischemic episodes. Secondly,
all regions of the hippocampus are involved in memory and spatial learning. Third, the hippocampus
is a structure that shows identical changes in the brain after ischemia and Alzheimer’s disease.

Transient cerebral ischemia-reperfusion causes mass death of pyramidal neurons in the
hippocampal CA1 region and in the third, fifth, and sixth layers of the cerebral cortex. In the
above structures, necrotic and apoptotic neurons were mixed with damaged neurons within seven
days after ischemic brain injury [1–4]. Within 6 months of recirculation, the number of damaged
neurons decreased and the number of dead neurons increased. During survival longer than six
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months after cerebral ischemia, acute and chronic neuronal changes in ischemic resistant areas were
observed in addition to acute neuronal death in ischemic sensitive areas. Changes occurred in areas
of the brain that were not affected by primary ischemic changes, such as the CA2, CA3, and CA4
regions of the hippocampus [1,2,4]. Neuronal death along with a decrease in the level of acetylcholine
in the hippocampus was noted after ischemia, suggesting that neuronal death was caused by a
deficiency of neuronal excitation [5–7]. In addition, ultrastructural changes after ischemia were
observed in hippocampus synapses [7–9]. Other studies have shown that an episode of cerebral
ischemia leads to the induction of synaptic autophagy, which may be associated with loss of neurons
in the hippocampus after transient cerebral ischemia [5–8,10–12]. Intracellular calcium increase
post-ischemia [5] stimulates the activity of calpain in neurons whose target proteins are found in
GABAergic and glutaminergic synapses [7]. Following brain ischemia, calpain cleaves pre- and
postsynaptic proteins, and calpain-cleaved proteins ultimately contribute to the death of ischemic
neuronal cells [13].

Changes in white matter and activation of neuroglial cells in the brain were observed in both
humans and animals after ischemia [1,2,14–23]. In experimental models of transient brain ischemia,
ischemia causes serious alterations in both the corpus callosum and subcortical white matter [2,17,18,24].
These alterations are consistent with the activation of neuroglial cells in the corpus callosum in
the post-ischemic brain [25]. Late atrophy of the white matter of the brain manifested itself as
advanced spongiosis. Ischemic changes in the brain showed signs of progressive neurodegeneration
that developed slowly over a long period of time within recirculation after an episode of cerebral
ischemia [2]. Brain autopsy carried out within 1–2 years after ischemia showed the features of
hydrocephalus [1,2,26] with the widening of the ventricles and the subarachnoid space around the
cerebral hemispheres [1]. During this time, general atrophy of the hippocampus with very narrow
cerebral cortex was observed [1,2,4,26,27]. The final consequence of these changes is the development
of dementia in experimental and clinical studies after cerebral ischemia [19,28–32].

In addition, it was noted that post-ischemic neurodegeneration processes occur not only in the
acute phase of ischemia but last throughout the recirculation period [2]. The brain neurodegeneration
profile that is observed after ischemia has common features with neurodegeneration in Alzheimer’s
disease [4,33–40]. This confirms an increase in the blood-brain barrier permeability after ischemia for
inflammatory cells and leaks of amyloid and tau protein from the blood to the brain tissue, which
in turn probably leads to irreversible and progressive damage to the entire brain [17,18,20,32,41–56].
Understanding the deterioration of the mental state associated with brain neurodegeneration after
ischemia sparked serious scientific debate. Therefore, the role of amyloid and tau protein as additional
causative agents in the development of dementia after ischemia has recently been noticed [32,56,57].
Brain neurodegeneration due to ischemia-reperfusion has been found to be associated with the
production and accumulation of folding proteins such as amyloid and tau protein [3,36,38,39,58–61].
We present here changes in proteins associated with Alzheimer’s disease and the expression of
their genes (amyloid protein precursor, and tau protein) after ischemic-reperfusion injury of the brain
and their role in post-ischemic neurodegeneration. New advances in understanding the possible
development of post-ischemic neurodegeneration have revealed dysregulation of the amyloid protein
precursor, α-secretase, β-secretase, γ-secretase and tau protein genes. In this review, we also present the
latest evidence that Alzheimer’s disease-associated proteins and their genes play an important role in
the progression of brain neurodegeneration after cerebral ischemia.

2. Amyloid in Post-Ischemic Brain

2.1. Dysregulation of Amyloid Associated Genes

In the CA1 area of the hippocampus, the expression of the amyloid protein precursor gene was below
the control value 2 days post-ischemia (Table 1) [62]. Seven and thirty days following the episode of
ischemia and reperfusion, the expression of the amyloid protein precursor gene was above the control
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value (Table 1) [62]. The expression of the β-secretase gene increased above the control value 2–7 days
after ischemia in the CA1 area (Table 1) [62]. Thirty days post-ischemia, β-secretase gene expression was
below control value (Table 1) [62]. In the CA1 area, the expression of presenilin 1 and 2 genes increased
during 2–7 days after ischemia (Table 1) [62]. In contrast, thirty days post-ischemia, the expression of
presenilin 1 and 2 genes was below the control value (Table 1) [62].

Table 1. Changes in the expression of Alzheimer’s disease-associated genes in the CA1 area of
hippocampus at different times after experimental brain ischemia [62].

Genes
Survival 2 Days 7 Days 30 Days

APP ↓ ↑ ↑

BACE1 ↑ ↑ ↓

PSEN1 ↑ ↑ ↓

PSEN2 ↑ ↑ ↓

MAPT ↑ ↓ ↓

Expression: ↑ increase; ↓ decrease. Genes: APP-amyloid protein precursor, BACE1-β-secretase, PSEN1-presenilin 1,
PSEN2-presenilin 2, MAPT-Tau protein.

The statistical significance of changes in gene expression of the amyloid protein precursor, β-secretase,
and presenilin 2 was between 2 and 30, 2 and 7 and between 7 and 30 days after ischemia [62].
The statistical significance of changes in presenilin 1 gene expression was between 2 and 30 and between
7 and 30 days after ischemia [62].

In the CA3 region 2, 7, and 30 days post-ischemia, the expression of the amyloid protein precursor
gene was above control values (Table 2) [63]. In this area of the hippocampus, α-secretase gene
expression was below control within 2, 7, and 30 days post-ischemia (Table 2) [63]. The expression
of the β-secretase gene was below the control value post-ischemia in the hippocampal CA3 region for
2–7 days (Table 2). In contrast, 30 days post-ischemia, β-secretase gene expression was above control
(Table 2) [63]. In the CA3 region, expression of the presenilin 1 gene increased for 2–7 days post-ischemia
(Table 2). Thirty days after cerebral ischemia, the expression of the presenilin 1 gene was below the
control value (Table 2) [63]. In this area, the expression of the presenilin 2 gene was reduced for 2–7 days
post-ischemia (Table 2). But thirty days after ischemia, the expression of the presenilin 2 gene was above
the control value (Table 2) [63].

Table 2. Changes in the expression of Alzheimer’s disease-associated genes in the CA3 area of
hippocampus at different times after experimental brain ischemia [63].

Genes
Survival 2 Days 7 Days 30 Days

APP ↑ ↑ ↑

ADAM10 ↓ ↓ ↓

BACE1 ↓ ↓ ↑

PSEN1 ↑ ↑ ↓

PSEN2 ↓ ↓ ↑

MAPT ↓ ↑ ↑

Expression: ↑ increase; ↓ decrease. Genes: APP-amyloid protein precursor, ADAM10–α-secretase, BACE 1-β-secretase,
PSEN1-presenilin 1, PSEN2-presenilin 2, MAPT-Tau protein.

The statistical significance of changes in expression of the amyloid protein precursor gene was
between 2 and 7 and between 7 and 30 days post-ischemia [63]. No statistical significance was found
during the entire period after ischemia in the α-secretase gene [63]. Statistically significant differences
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in the expression level of the β-secretase gene occurred between 2 and 30 days after ischemia [63].
The statistical significance of changes in gene expression of the presenilin 1 and presenilin 2 was between 2
to 30 and between 7 to 30 days after ischemia [63].

In the medial temporal cortex, the expression of the amyloid protein precursor gene was below the
control value 2 days after ischemia (Table 3) [64]. In the above area, 7–30 days after ischemic injury, the
expression of the amyloid protein precursor gene was above control values (Table 3) [64]. The β-secretase
gene expression was above the control value within 2 days after ischemia (Table 3) [64]. Expression of
the β-secretase gene was reduced in the medial temporal cortex 7–30 days post-ischemia (Table 3) [64].
The expression of the presenilin 1 gene was lowered below the control value, while the presenilin 2
gene was above the control value 2 days post-ischemia (Table 3) [65]. Seven days post-ischemia, the
expression of the presenilin 1 gene was reduced and the presenilin 2 gene was increased (Table 3) [65].
Thirty days post-ischemia, the expression of the presenilin 1 gene was above the control value and that
of presenilin 2 gene below the control value (Table 3) [65].

Table 3. Changes in the expression of Alzheimer’s disease-associated genes in the medial temporal
cortex at different times after experimental brain ischemia [64,65].

Genes
Survival 2 Days 7 Days 30 Days

APP ↓ ↑ ↑

BACE1 ↑ ↓ ↓

PSEN1 ↓ ↓ ↑

PSEN2 ↑ ↑ ↓

Expression: ↑ increase; ↓ decrease. Genes: APP-amyloid protein precursor, BACE1-β-secretase, PSEN1-presenilin 1,
PSEN2-presenilin 2.

The statistical significance of changes in gene expression of the amyloid protein precursor, β-secretase
and presenilin 2 was between 2 and 7, and between 2 and 30 days after ischemia [64,65]. There was no
statistically significant difference in expression levels of the presenilin 1 gene throughout the whole
observation time post-ischemia [65].

The results show that ischemic brain damage causes neuronal death in the hippocampus and
medial temporal cortex in an amyloid-dependent mechanism, defining a new and very important
process that ultimately regulates neuronal survival and/or death after ischemia (Tables 1–3) [62–65].

2.2. Dysregulation of Amyloid Associated mRNAs

Within 7 days after transient focal brain ischemia, the amyloid protein precursor mRNA increased
by 150–200% [66,67]. In another study, only amyloid protein precursor mRNA containing the
Kunitz-type protease inhibitor domain was observed in the post-ischemic period [68]. As a result of
irreversible local brain ischemia, the mRNA of the amyloid protein precursor containing the Kunitz type
protease inhibitor domain increased in cortex on day 21, but the total mRNA level did not change [69].
In addition, after reversible focal post-ischemic brain injury, the 751 and 770 amyloid protein precursor
mRNA increased within 7 days [70]. Ovariectomized rats after local brain ischemia an hour after
ischemia showed an increase in mRNA of the amyloid protein precursor [66]. The estrogen treatment
used reduced the mRNA of the amyloid protein precursor in areas of ischemia [66].

In the non-amyloidogenic pathway, the amyloid protein precursor is metabolized by α-secretase.
After experimental brain ischemia, mRNA α-secretase level and gene expression are reduced [63,71,72].
In the amyloidogenic metabolism, the amyloid protein precursor is cleaved by β- and γ-secretase to
form β-amyloid peptide [34]. There is evidence that ischemia activates the expression, production,
and activity of β-secretase [62,63,73–76]. Another study showed post-ischemic changes in the cortex
and hippocampus at the mRNA level of three enzymes that metabolize the amyloid protein precursor:
β-secretase, glutaminyl cyclase, and cathepsin B, whose levels increased rapidly [77]. Presenilin mRNA,
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which is induced by brain ischemia [78,79], is involved in the generation of β-amyloid peptide by the
γ-secretase complex. An increase in presenilin 1 mRNA was observed in the hippocampal CA3 region
and dentate gyrus in animal studies of post-ischemic brain injury [78]. Presenilin 1 mRNA had the
highest level of expression on day 3 post-ischemia [78]. In another study, elevated presenilins mRNA
levels after ischemia were found in the hippocampus, brain cortex, and striatum [79]. The maximum
increase in presenilins mRNA was noted in the hippocampus and cortex. An increase in presenilin 1
and 2 mRNA was observed in the cortex within 1–8 days after ischemia [79]. In the hippocampus,
presenilin 1 and 2 mRNA was upregulated in 4–8 days post-ischemia [79]. The above observations help
to understand the progressive neuronal death after an episode of cerebral ischemia with reperfusion,
massive accumulation of β-amyloid peptide, as well as the slow development of dementia with the
phenotype of Alzheimer’s disease [2,28–31,52].

2.3. Changes in Amyloid Staining in Animal and Human Brain

In animals after brain damage due to ischemia-reperfusion, with survival up to 1 year, staining of
β-amyloid peptide was revealed in the intra- and extracellular space of brain tissue [1,2,26,43,59,80–94].
Amyloid staining was observed after ischemia in neurons and neuroglial cells [1,85,89,95–99].
Observed astrocytes with massive amyloid accumulation in the cytoplasm may be involved in
the development of glial scars [1,89,97–99]. In addition, reactive astrocytes with accumulated amyloid
in the cytoplasm are probably involved in the pathological repair of post-ischemic brain tissue,
accompanied by death of astrocytes [1,43,89,100,101]. After ischemia, amyloid staining was found
in the periventricular and subcortical white matter [2,17,18]. It was found that the more intense the
damage to white matter after ischemia, the more intense staining of amyloid in this area was [14,102].
The abovementioned changes were associated with the appearance of leukoaraiosis after ischemia
in the brain [18]. Usually extracellular amyloid deposits occurred as very small dots or as diffuse
amyloid plaques [1,2,43,47,48,51,52,87,89,103–105]. Deposition of β-amyloid peptide in the form of
diffuse plaques in response to experimental ischemic brain injury is not a transient phenomenon,
since it has been observed that diffuse amyloid plaques transform into senile plaques about 1-year
post-ischemia [106]. Multifocal amyloid plaques have been reported in ischemic cortex, hippocampus,
entorhinal cortex, corpus callosum and thalamus, and around the lateral ventricles. The accumulation
of β-amyloid peptide in ischemic neurons and astrocytes indicates the pathological role of amyloid
in post-ischemic neurodegenerative processes of the brain [43,83,98,99,103,104]. These data indicate
that the increased accumulation of β-amyloid peptide in the brain after ischemia may be responsible
for secondary neurodegenerative processes that worsen post-ischemic outcome through progressive
neuronal loss [2,26,29,45,57,87,93,94,107–109]. It is noted that after ischemia, amyloid is formed as a
result of damage and death of neurons [82] and its neurotoxic activity promotes the slow development
of brain atrophy and dementia of the Alzheimer’s disease phenotype [110]. Amyloid is a neurotoxic
molecule and post-ischemia initiates pathological processes in neurons, astrocytes, microglia and
oligodendrocytes that affect neurons and neuroglial cells, causing them to die [94,111].

Accumulation of amyloid in various brain structures was noted during autopsy of human ischemic
brains [112–115]. After ischemia, diffuse and senile amyloid plaques have been shown in the arterial
border zones and areas sensitive to ischemia [112,114]. In addition, it was noted that amyloid was
most often present in the middle layers of the brain cortex, which are very susceptible to ischemia.
Another study found mass accumulation of amyloid in neurons and perivascular areas in the brain
post-ischemia due to cardiac arrest with survival of 1 month [113]. In this study, senile amyloid
plaques were described in two cases. The hippocampal and cortical neurons, as well as epithelial
and ependymal cells, were intensely stained for amyloid. Gray and white matter cerebral vessels
were surrounded by amyloid deposits that were mainly cuff-shaped [113]. In some brains, the walls
of cortical and meningeal vessels were intensely stained with amyloid. According to another study,
β-amyloid peptide 1–40 and 1–42 was found in the human hippocampus post-ischemia [115]. Intensive
amyloid staining suggests its involvement in the progression of neurodegeneration after ischemia
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and the development of dementia with the phenotype of Alzheimer’s disease. The results show that
ischemic brain damage causes amyloid-dependent hippocampal neuronal death, thus defining a new,
very important mechanism that ultimately determines survival and/or death of neurons after ischemia
(Figure 1).Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 9 of 19 
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2.4. Blood-Brain Barrier and Amyloid in the Blood

In patients during 4 days after brain ischemia due to cardiac arrest, the increase in blood β-amyloid
peptide 1–42 was approximately 70-fold compared with control [54]. The value of growth correlated
negatively with the clinical outcome post-ischemia [50,54,56]. These studies provide direct evidence
that human brain ischemia causes an increase in the blood level of β-amyloid 1–42 peptide. The data
indicate that acute cerebral ischemia may trigger an amyloidogenic process in Alzheimer’s disease.
The level of serum amyloid growth probably reflects the degree of brain damage following an ischemic
episode [50,54,56]. In addition, the relationship between elevated blood amyloid level and clinical
outcomes suggests a direct relationship between an ischemic episode and a level of β-amyloid peptide
1–42, which is not secondary in the patients studied [54].

In addition, a receptor for advanced glycation end products was found in the brains of patients after
ischemia due to cardiac arrest in the epithelial cells of the choroid plexus and in the lining ependymal
cells adjacent to the brain ventricles [116]. The above cells form the blood-cerebrospinal fluid barrier
and the cerebrospinal-brain barrier. Staining for amyloid was observed in the walls of the choroid
plexus blood vessels and in the basal membrane of the choroid plexus epithelium [116]. Amyloid has
been reported in cytoplasmic vacuoles of many epithelial and ependymal cells of the choroid plexus.
Data has shown that choroid plexus epithelium and ependymal cells equipped with a receptor for
advanced glycation end products can play a significant role in the transport and accumulation of
amyloid in brain tissue. In addition, amyloid accumulation around the blood-brain barrier vessels
suggests that β-amyloid peptide is derived from blood. Evidence supporting this hypothesis comes
from clinical studies that showed an increase in blood amyloid level in patients following ischemic
brain injury [50,54,56]. In addition, experimental studies point to the passage of human amyloid from
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the blood through the ischemic blood-brain barrier [45–47,86]. The receptor for advanced glycation
end products may be the main therapeutic target in post-ischemic brain amyloidosis.

3. Tau Protein in Post-Ischemic Brain

3.1. Dysregulation of the Tau Protein Gene

A relationship has been demonstrated between hippocampal CA1 neuronal damage and tau protein
gene expression after 10 min of global cerebral ischemia in rats, with survival 2, 7, and 30 days
post-ischemia [117]. In CA1 neurons, tau protein gene expression increased above the control value on
the second day after cerebral ischemia (Table 1) [117]. On the seventh and thirtieth day of recirculation
after an ischemic episode, gene expression was below the control values (Table 1) [117]. The statistical
significance of changes in tau protein gene expression in rats was between 2 and 7 and 2 and 30 days
after ischemia [117].

In the CA3 region of the hippocampus, the expression of the tau protein gene after ischemia with a
survival time of 2 days was below control values (Table 2) [63]. But 7–30 days after ischemia, tau protein
gene expression was higher than control values (Table 2) [63]. The changes were statistically significant
between days 2 and 7 and between days 2 and 30 after ischemia [63].

The results show that ischemic brain damage causes neuronal death in the hippocampus in a tau
protein-dependent mechanism, defining a new and very important process that ultimately regulates
neuronal survival and/or death after ischemia (Figure 2) [63].
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3.2. Changes in Tau Protein Staining in Animal and Human Brain

A common appearance of immunoreactive tau protein neurons and neuroglial cells was found
in human and experimental post-ischemic hippocampus, thalamus, and cortex [58,90,118–125].
Some neurons were also labeled with tau protein antibodies after cerebral ischemia in humans
due to cardiac arrest with 1 month survival [113]. After focal cerebral ischemia, tau protein staining
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was also noted in microglia [125]. The evidence presented indicates that some neuronal cells show
changes in tau protein during post-ischemic brain injury [121] that may be associated with the degree
of development of ischemic neuron death (Figure 2) [124].

3.3. Blood-Brain Barrier and Tau Protein in the Blood and Cerebrospinal Fluid

Increased level of amyloid and tau protein after brain ischemia in serum [50,53–56,126–131]
and cerebrospinal fluid [131,132] combine the pathology of amyloid and tau protein with ischemic
blood-brain barrier failure [133]. In addition, oxidative stress [134] and neuroinflammation [20,22,23]
induced by increased permeability of the blood-brain barrier can initiate phosphorylation of tau
protein and development of neurofibrillary tangles after ischemia [3,75,135–139]. Increased plasma
tau protein [53,55] may cross the ischemic blood-brain barrier, and blood-derived tau protein may
increase brain pathology after ischemia [140]. Ischemic brain injury with insufficient blood-brain
barrier [17,18,42,43,45,48,51] initiates tau protein phosphorylation [75,139,141–143] and phosphorylated
tau protein can cause damage to blood-brain barrier, leading to harmful feedback [133]. The above
suggests that brain damage as a result of an ischemic episode with reperfusion may play an important
role in increasing plasma tau protein level [53,55,140].

Increased level of tau protein in human blood was noted after ischemia due to cardiac arrest with
two peaks on days 2 and 4, indicating the progression of neuronal changes [53,55]. The observed
two-stage kinetics of the increase in the level of soluble tau protein in plasma is consistent with two
types of neuronal death—firstly by necrosis and secondly by apoptosis [55]. It seems very likely that
the profiles reflect the time course of acute and delayed ischemic damage or death of neurons [55].
The above studies suggest that the level of tau protein in human blood can be used as a prognostic
element of the neurological outcome after ischemia [53,55].

3.4. Tau Protein Hyperphosphorylation

After transient local and complete cerebral ischemia, tau protein dephosphorylation was
noted [120,121,144,145]. But in another study after transient global cerebral ischemia due to cardiac arrest,
the tau protein was gradually re-phosphorylated [145]. In addition, a site-specific hyperphosphorylation
of tau protein was observed in animals after transient focal cerebral ischemia [75]. At the time of
neuronal death in the hippocampal CA1 region after forebrain ischemia in gerbils, serine 199/202
hyperphosphorylation of tau protein was synchronized with GSK3, CDK5, and MAP kinases [146].
New data indicate that in the brain after ischemia with reperfusion, modifications of tau protein by
hyperphosphorylation are comparable to those found in Alzheimer’s disease and are accompanied by
apoptosis [137,138,141,147]. The above observations indicate that in ischemic brain injury, apoptosis
is directly related to tau protein hyperphosphorylation. Another study showed the production
of paired helical filaments of tau protein after ischemia in animals [148]. Additional studies
provided data that the ischemia-reperfusion event of the brain was involved in the development
of neurofibrillary tangle-like [136–138]. Neurofibrillary tangles were found after human cerebral
infarction [135]. In addition, the combination of cerebral ischemia with hyperhomocysteinemia
in animals resulted in neuronal changes of the cerebral cortex and hippocampus caused by tau
protein hyperphosphorylation [143]. This study revealed an approximately 700-fold increase in the
number of neurons with hyperphosphorylated tau protein in the brain after ischemia compared to
control [143]. Dysfunctional tau protein increases post-ischemic brain damage through iron export [149]
and self-excitotoxicity (Figure 2) [5,150].

4. Discussion

This review features the response of amyloid and tau protein genes and their products to
post-ischemic brain injury (Figures 1–3). Data showed that after ischemia, overexpression of the amyloid
protein precursor gene began and correlated with the massive increase of soluble amyloid in blood
(Figures 1 and 3) [50,54,56] and intra- and extracellular space [2,43] as well as with development of
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diffuse and senile plaques [113]. The data also revealed that after ischemia, overexpression of the
tau protein gene in the brain began and correlated with the massive increase of soluble tau protein in
blood (Figures 2 and 3) [53,55] and extracellular space [151], as well as with the hyperphosphorylation
of tau protein [3,61]. Increased expression of the amyloid and tau protein genes was parallel to the
onset of delayed neuronal death after ischemic brain injury (Figure 3) [1,2,26]. The increase in brain
and serum amyloid levels [2,43,50,54,56] was associated with a similar increase in brain and blood
levels of tau protein after ischemia [3,53,55,63], and these changes predict a worse clinical outcome.
Ischemia-induced increase in tau protein gene expression was parallel to overexpression of caspase 3
gene and caspase plays an important role in neuronal death (Figure 3) [11,12,152]. The data showed that
activated caspase positively correlates with the development of neurofibrillary tangles [3]. In addition,
cognitive deficits are negatively correlated with levels of amyloid and tau protein [3,39]. Data suggest
that when tau protein is ischemically translated, its hyperphosphorylation increases, which means that
hyperphosphorylation of tau protein is driven by the substrate, and transcription levels are identical to
protein levels (Figure 3) [137,138]. Another study showed elevated Cdk5 levels in animals exposed to
local reversible cerebral ischemia, confirming the above observations [137]. An increase in tau protein
hyperphosphorylation may be a consequence of increased translation or inhibition of its degradation
or blocked clearance. Data show that post-ischemic brain injury activates neuronal changes and death
in the brain dependent on amyloid and tau protein, thus determining a new and important way to
regulate neuron survival and/or death after ischemia (Tables 1 and 2, Figures 1–3). Induced pathological
changes such as oxidative stress, apoptosis, autophagy and excitotoxicity, neuroinflammation by
amyloid and tau protein determine their potential pathological mechanisms in the brain after ischemia
(Figures 1–3).
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The presented facts confirm the opinion that brain damage after ischemia with reperfusion plays
an important role in the pathological behavior of amyloid and tau protein in brain tissue and plasma
(Figures 1–3). Expression of amyloid and tau protein genes and their brain and blood protein levels
that are increased after ischemia (Tables 1 and 2) (Figures 1–3) [3,50,53–56,62–64,117], are involved
in the development of neuropathology characteristic of Alzheimer’s disease. One study provided
evidence that the regional distribution of tau protein from neuropil to the neuronal body after cerebral
ischemia was similar to that found in Alzheimer’s disease [141]. It is highly likely that the modified
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amyloid and tau protein additionally increase ischemic damage and/or neuronal death post-ischemia
(Figures 1–3). The above evidence allows us to identify acute and chronic processes during neuronal
death and the development of slow and progressive brain atrophy after ischemia with dementia with
the Alzheimer’s disease phenotype (Figures 1 and 2) [1,2,19,28–32,153,154]. After cerebral ischemia in
humans, the increase in plasma levels of amyloid and tau protein negatively correlated with clinical
outcome, which reflected the degree of brain damage [50,53–56]. It seems that post-ischemic brain injury
promotes the development of irreversible neurodegeneration of the Alzheimer’s disease type with
massive neuronal loss [1,2], neuroinflammation [20,22,23], changes in white matter with general brain
atrophy [1,2,26,27], and accumulation of amyloid [2,43,52] and dysfunctional tau protein [3,61,63,117].
Although significant progress has recently been made in studying the pathogenicity of amyloid and
tau protein after ischemia, key mechanisms involved in irreversible ischemic brain neurodegeneration
induced by amyloid and tau protein are still unknown. Post-ischemic brain damage has also been
shown to induce neuronal death in association with amyloid and tau protein (Figures 1–3) [39,62,117],
defining a new and important way of regulating neuronal survival or death. The relationship between
amyloid and tau protein associated with Alzheimer’s disease and experimental cerebral ischemia and
ischemic stroke in humans appears to be significant.

According to the scientific observations, it can be stated that transient ischemic brain injury
modifies tau protein and amyloid at both gene and protein levels (Figure 3), leading to development
of amyloid plaques [43,106,113] and the accumulation of tau protein as neurofibrillary tangles in
the brain tissue [39,117,135,137,148]. The conclusions presented from the exploration of Alzheimer’s
disease-related tau protein and amyloid and their genes in ischemic brain injury, which are partly
associated with neuronal death by the development of neurofibrillary tangles and amyloid plaques
(Figures 1–3), are key to improving treatment of irreversible ischemic neurodegeneration [155–157].
Since the decreasing importance of tau protein and amyloid in the etiology of Alzheimer’s disease
is proposed [158–160] and it is believed that the deposition of tau protein and amyloid is not the
reason of Alzheimer’s disease, as presented in the NIA-AA Research Framework: towards the true
explanation of Alzheimer’s disease [161], in this situation we need more innovative investigation in
this field. Therefore, the animal models of brain ischemia with reperfusion used in the exploration of
Alzheimer’s disease seem to be a useful new methodology to clearing up the role of folding proteins
and their genes in neurodegeneration of brain ischemia and Alzheimer’s disease.

Although the role of ischemia in amyloid changes and tau protein hyperphosphorylation is
generally complex and requires further research, and amyloid and tau protein are a relatively
underestimated pathological factors in the brain after ischemia in animals and humans, we have reason
to believe that determining the role of these molecules in brain ischemia can help us understand the
basis for developing a new treatment goals for ischemic stroke in a human clinic [155–157]. Everything
indicates that the regulation of amyloid and tau protein activity can be considered as a potential new
therapeutic target in ischemic stroke [155–157,162,163].

5. Conclusions

Data indicate genomic and proteomic changes of amyloid and tau protein in post-ischemic
hippocampus and medial temporal cortex. Thus, two-sided damage to the above-mentioned regions
causes a short-term memory deterioration, which leads to the inability to create new memories.
It is well-known that amyloid and hyperphosphorylated tau protein are closely associated with
neurodegeneration and cognitive impairment in Alzheimer’s disease. However, further research is
needed to determine whether damage and death of neurons in the hippocampus and medial temporal
cortex are causative events or independent consequences of ischemia occurring in parallel and leading
to the development of neuropathology and dementia after ischemia of the nature of Alzheimer’s
disease. It appears that the prevention of ischemic brain damage and early treatment of ischemic stroke
may have important implications for the development of Alzheimer’s disease and deserve further
research. Thus, animal models of cerebral ischemia appear to be a useful experimental approach
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for determining the role of genes and proteins directly or indirectly associated with Alzheimer’s
disease. In-depth research into the shared genetic and protein mechanisms associated with these two
neurological diseases can accelerate the current understanding of the neurobiology of cerebral ischemia
and Alzheimer’s disease, as well as conduct future research on cerebral ischemia or Alzheimer’s
disease in new directions.
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Jabłoński, M.; Furmaga-Jabłońska, W.; Brzozowska, J.; et al. Dysregulation of autophagy, mitophagy
and apoptotic genes in the medial temporal lobe cortex in an ischemic model of Alzheimer’s disease.
J. Alzheimers Dis. 2016, 54, 113–121. [CrossRef]

153. Krajewski, S.; Mai, J.K.; Krajewska, M.; Sikorska, M.; Mossakowski, M.J.; Reed, J.C. Upregulation of bax
protein levels in neurons following cerebral ischemia. J. Neurosci. 1995, 15, 6364–6376. [CrossRef]

154. Sadowski, M.; Wisniewski, H.M.; Jakubowska-Sadowska, K.; Tarnawski, M.; Lazarewicz, J.W.;
Mossakowski, M.J. Pattern of neuronal loss in the rat hippocampus following experimental cardiac
arrest-induced ischemia. J. Neurol. Sci. 1999, 168, 13–20. [CrossRef]

155. Pradeepkiran, J.A.; Reddy, P.H. Structure based design and molecular docking studies for phosphorylated
tau inhibitors in Alzheimer’s disease. Cells 2019, 8, 260. [CrossRef] [PubMed]

156. Pradeepkiran, J.A.; Reddy, A.P.; Reddy, P.H. Pharmacophore-based models for therapeutic drugs against
phosphorylated tau in Alzheimer’s disease. Drug Discov. Today 2019, 24, 616–623. [CrossRef] [PubMed]

157. Pradeepkiran, J.A.; Reddy, A.P.; Yin, X.; Manczak, M.; Reddy, P.H. Protective effects of BACE1 inhibitory
ligand molecules against amyloid beta-induced synaptic and mitochondrial toxicities in Alzheimer’s disease.
Hum. Mol. Genet. 2020, 29, 49–69. [CrossRef] [PubMed]

158. Castellani, R.J.; Smith, M.A. Compounding artefacts with uncertainty, and an amyloid cascade hypothesis
that is ‘too big to fail’. J. Pathol. 2011, 224, 147–152. [CrossRef] [PubMed]

159. Tse, K.H.; Herrup, K. Re-imagining Alzheimer’s disease—The diminishing importance of amyloid and a
glimpse of what lies ahead. J. Neurochem. 2017, 143, 432–444. [CrossRef]

160. Kametani, F.; Hasegawa, M. Reconsideration of amyloid hypothesis and tau hypothesis in Alzheimer’s
disease. Front. Neurosci. 2018, 12, 25. [CrossRef]

161. Jack, C.R.; Bennett, D.A.; Blennow, K.; Carrillo, M.C.; Dunn, B.; Haeberlein, S.B.; Holtzman, D.M.; Jagust, W.;
Jessen, F.; Karlawish, J.; et al. NIA-AA Research, Framework: Toward a biological definition of Alzheimer’s
disease. Alzheimers Dement. 2018, 14, 535–562. [CrossRef]

162. Chen, X.; Jiang, H. Tau as a potential therapeutic target for ischemic stroke. Aging 2019, 11, 12827–12843.
[CrossRef]

163. Radenovic, L.; Andjus, P.R. Stroke and Alzheimer’s disease: Common mechanisms and therapeutic
approaches. In Brain Ischemia: Alzheimer’s Disease Mechanisms; Pluta, R., Ed.; Nova, Science Publishers, Inc.:
New York, NY, USA, 2019; pp. 251–264.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1038/s41467-017-00618-0
http://dx.doi.org/10.1093/brain/awr286
http://dx.doi.org/10.3233/JAD-160387
http://dx.doi.org/10.1523/JNEUROSCI.15-10-06364.1995
http://dx.doi.org/10.1016/S0022-510X(99)00159-8
http://dx.doi.org/10.3390/cells8030260
http://www.ncbi.nlm.nih.gov/pubmed/30893872
http://dx.doi.org/10.1016/j.drudis.2018.11.005
http://www.ncbi.nlm.nih.gov/pubmed/30453058
http://dx.doi.org/10.1093/hmg/ddz227
http://www.ncbi.nlm.nih.gov/pubmed/31595293
http://dx.doi.org/10.1002/path.2885
http://www.ncbi.nlm.nih.gov/pubmed/21557219
http://dx.doi.org/10.1111/jnc.14079
http://dx.doi.org/10.3389/fnins.2018.00025
http://dx.doi.org/10.1016/j.jalz.2018.02.018
http://dx.doi.org/10.18632/aging.102547
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Amyloid in Post-Ischemic Brain 
	Dysregulation of Amyloid Associated Genes 
	Dysregulation of Amyloid Associated mRNAs 
	Changes in Amyloid Staining in Animal and Human Brain 
	Blood-Brain Barrier and Amyloid in the Blood 

	Tau Protein in Post-Ischemic Brain 
	Dysregulation of the Tau Protein Gene 
	Changes in Tau Protein Staining in Animal and Human Brain 
	Blood-Brain Barrier and Tau Protein in the Blood and Cerebrospinal Fluid 
	Tau Protein Hyperphosphorylation 

	Discussion 
	Conclusions 
	References

