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ABSTRACT Estimation of allele dosage, using genomic data, in autopolyploids is challenging and current
methods often result in the misclassification of genotypes. Some progress has been made when using SNP
arrays, but the major challenge is when using next generation sequencing data. Here we compare the use of
read depth as continuous parameterization with ploidy parameterizations in the context of genomic
selection (GS). Additionally, different sources of information to build relationship matrices were compared.
A real breeding population of the autotetraploid species blueberry (Vaccinium corybosum), composed of
1,847 individuals was phenotyped for eight yield and fruit quality traits over two years. Continuous geno-
typic based models performed as well as the best models. This approach also reduces the computational
time and avoids problems associated with misclassification of genotypic classes when assigning dosage in
polyploid species. This approach could be very valuable for species with higher ploidy levels or for emerg-
ing crops where ploidy is not well understood. To our knowledge, this work constitutes the first study of
genomic selection in blueberry. Accuracies are encouraging for application of GS for blueberry breeding.
GS could reduce the time for cultivar release by three years, increasing the genetic gain per cycle by 86% on
average when compared to phenotypic selection, and 32% when compared with pedigree-based selection.
Finally, the genotypic and phenotypic data used in this study are made available for comparative analysis of
dosage calling and genomic selection prediction models in the context of autopolyploids.
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Polyploidy events are not an exception in plants, as about 70% of
Angiosperms and 95% of Pteridophytes underwent at least one poly-
ploidization event (Soltis and Soltis 1999). Polyploids are normally
grouped into two categories, autopolyploids and allopolyploids, but

intermediate forms are also possible, such as segmental allopolyploids
(Spoelhof et al. 2017). Thresholds for polyploid classification have been
controversial, but following the general taxonomic definition, autopoly-
ploids arise from within-species whole genome duplication, and al-
lopolyploids arise from whole genome duplication prior to or after
an inter-specific hybridization event (Soltis et al. 2007).

Because speciation via ploidy increase can generate new phenotypic
variability, this phenomenon is considered a powerful evolutionary
source (Hieter and Griffiths 1999; Soltis et al. 2016). Despite the im-
portant role of polyploidization in plant evolution, its effects on in-
heritance of many agronomic traits and population genetics are still
poorly understoodwhen compared with diploid species (Dufresne et al.
2014). This especially holds true for autopolyploids. Examples of the
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complex nature of autopolyploid genetics are the presence of genotypes
with higher allele dosage than diploids, larger number of genotypic
classes, possibility of multivalent pairing, and poor knowledge of chro-
mosome behavior during meiosis (Slater et al. 2014; Dufresne et al.
2014; Mollinari and Serang 2015).

The adventofhigh-throughputgenotypingmethods, associatedwith
the development of genetic and statistical analysis tools, has generated
significant genetic gains for diploid species (Desta and Ortiz 2014).
However, the application of genomic information to polyploid crops
remains a challenge (Comai 2005; Grandke et al. 2016). Although the
theory for the computation of average genetic effect assuming arbitrary
ploidy have been published by Kempthorne (1957), most of the meth-
ods for analysis and interpretation of genetic data in polyploids have
only recently been described (see review in Bourke et al. 2018; Kerr et al.
2012; Endelman et al. 2018), and most of them have not yet been fully
investigated for different species, especially for new breeding ap-
proaches, such as genomic selection.

Genomic selection (GS) is a method to increase the efficiency and
accelerate the selection process in breeding programs. GS is used to
capture the simultaneous effects ofmolecularmarkers distributedacross
the genome, based in the premise that the linkage disequilibrium
between causal polymorphisms and markers allow phenotype predic-
tion based on genotypic values (Meuwissen et al. 2001; Zhang et al.
2011; Daetwyler et al. 2013; de los Campos et al. 2013). Promising
results have been reported in GS studies addressing polyploids (e.g.,
Gouy et al. 2013; Annicchiarico et al. 2015; Ashraf et al. 2016), however
simplified assumptions were mostly considered, in other words diploid
genetic models were used to circumvent the complexity involved in
accurately defining allelic dosage (i.e., the number of copies of each
allele at a given polymorphic locus). Besides the existence of methods
that allow accounting for ploidy effects (Kerr et al. 2012; Endelman
et al. 2018), only a few studies have inserted this factor in the analyses
(e.g., Slater et al. 2016; Sverrisdóttir et al. 2017; Nyine et al. 2018). In
addition, these methodologies were not yet extensively compared, a
point that is addressed in this article.

Polyploidy can affect phenotypes through allelic dosage (additive
effect of multiple copies of the same alleles), or by creating more
complex interactions between loci or alleles, such as dominance or
epistasis (Osborn et al. 2003). Thus, the inclusion of allelic dosage
information may improve GS results (e.g., increase of accuracy) by
creating a more realistic representation of the effects of each geno-
typic class. Although the evidence of dosage effects in the expression
of important economic traits exists (Guo et al. 1996; Birchler et al.
2001; Adams et al. 2003; Osborn et al. 2003), few studies linking
dosage effects to phenotype prediction have been reported in auto-
polyploid species (e.g.; Slater et al. 2016; Sverrisdóttir et al. 2017;
Nyine et al. 2018; Endelman et al. 2018). Genotype classification is
one of the major challenges for polyploids. Studies about genotyping
calling evaluation for autopolyploids with next generation sequenc-
ing (NGS) data showed that none of the existing methods performs
properly (Grandke et al. 2016), unless high sequencing coverage
(60-80x) is used (Uitdewilligen et al. 2013).

Here we compare a novel approach to GS in the context of auto-
polyploid, using Vaccinium corymbosum (southern highbush blue-
berry, SHB) as a model. The cultivated SHB is an autotetraploid,
presenting 2n = 4X = 48 chromosomes (Lyrene 2002). Inbreeding de-
pression is strong in SHB and population improvements have been
achieved by long-term recurrent phenotypic selection alongside with
long testing phase and slow genetic gain per generation (Lyrene 2008).
Our goal was to investigate and compare the influence of different
sources of information and ploidy parameterizations used to build

relationship matrices on phenotype prediction, and thus the potential
of GS in blueberry breeding.

MATERIAL AND METHODS

Population and phenotyping
The population used in this study encompasses one cycle of the
University of Florida blueberry breeding program’s recurrent selection,
comprising 1,847 SHB unique individuals. This population was origi-
nated from 124 biparental controlled crosses, from 146 parents that
presented superior phenotypic performance (cultivars and advanced
stage of breeding). Phenotypic data of eight yield and fruit quality-
related traits were collected during two production seasons
(2014 and 2015), when the plants were 2.5 and 3.5 years of age at
the University of Florida Plant Science Research and Education Unit
in Citra (29�24’42.01”N -82�06’36.00”W, Florida, USA). Yield (rated
using a 1-5 scale), weight (g), firmness (g mm-1 of compression force),
scar diameter (mm), fruit diameter (mm), flower bud density (report-
ed as buds per 20 cm of shoot), soluble solids content (oBrix), and
pH were evaluated. The last three traits were phenotyped only in one
year – soluble solids content and pH were phenotyped in 2014 and
flower buds in 2015.

Five berries (fully mature and presenting picking quality) were
randomly sampled to compose the measurement of fruit traits for each
individual. Fruit weight was measured using an analytical scale
(CP2202S, Sartorious Corp., Bohemia, NY). The FirmTech II firmness
tester (BioWorks Inc., Wamego, KS) was used to measure fruit di-
ameter andfirmness. The scar diameterwas obtainedby image analysis
of the fruits using FIJI software (Schindelin et al. 2012). The number of
flower buds was counted in the main cane upright shoot, in the top
20 cm. A digital pocket refractometer (Atago, U.S.A., Inc., Bellevue,
WA) was used to obtain soluble solids measures from 300ml of berry
juice. The pH was measured using a glass pH electrode (Mettler-
Toldeo, Inc., Schwerzenbach, Switzerland). More details are provided
by Amadeu et al. (2016), Cellon et al. (2018), and Ferrão et al. (2018).

Genotyping
GenomicDNAwas extracted and genotyped using sequence capture by
Rapid Genomics (Gainesville, FL). Polymorphisms were genotyped in
genomic regions captured by 31,063 120-mer biotinylated probes,
designed based on the 2013 blueberry draft genome sequence (Bian
et al. 2014; Gupta et al. 2015). Sequencing was performed in the Illu-
minaHiSeq2000 platform using 100 cycle paired-end sequencing. After
trimming (quality score of 20), demultiplexing, and removing barcodes,
reads were aligned to the draft genome using Mosaik v.2.2.3 (Lee et al.
2014). Genotypes were called using FreeBayes v.1.0.1 (Garrison
and Marth 2012) considering the diploid and tetraploid options.
Single-nucleotide polymorphisms (SNPs) were filtered consider-
ing i) minimum sequencing depth of 40 (average depth for the pop-
ulation); ii) minimum SNP phred quality score (QUAL) of 10; iii) only
biallelic markers; iv) maximum population missing data of 0.5; and
v) minor population allele frequency of 0.05. After filtering a total of
85,973 SNP were used in the GS analysis (the average sequencing-depth
per sample was 73X). Further information regarding population compo-
sition and genotyping approach were described in Ferrão et al. (2018).
The genotypes for the diploid calling were coded as 0 (AA), 1 (AB), or
2 (BB). For the tetraploid parameterization theywere coded as 0 (AAAA),
1 (AAAB), 2 (AABB), 3 (ABBB), and 4 (BBBB). A third parameteriza-
tion (assumption-free method) was used, which considered allele ratio
#A=ð#Aþ#aÞ, where #A is the allele count (sequencing depth) of
the alternative allele and #a is the allele count of the reference allele.
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Nodosage callingwas performed in thismodel (File S1); these data varied
continuously between 0 and 1.

Population genetics analysis
In order to compare the information captured by each genomic-based
relationship matrix, we performed linkage disequilibrium (LD), and
principal components (PC) analyses. Pearson correlation tests (r2) were
performed for pairwise LD estimation among SNPs within scaffolds,
considering draft reference genomes (Bian et al. 2014; Gupta et al.,
2015). One SNP was randomly sampled per probe interval, and a total
of 22,914 SNPs were used in the analysis. LD was obtained for all
marker-based scenarios: i) diploid (G2); ii) tetraploid (G4) and iii) ratio
(i.e., continuous genotypes; Gr). The LD decay over physical distance
was determined as themean distance at the LD threshold of r2 = 0.2. To
compare the LD among scenarios, the mean distances (Kb) and their
interval confidences at r2 = 0.2 were compared. The diversity captured
from each relationship matrix was obtained by PC using the R package
adegenet v. 1.3-1 (Jombart and Ahmed 2011).

Wealso evaluated the observedheterozygosity in thepopulation. For
this, we obtained the ratio between the number of heterozygote geno-
types and the totalnumberof individuals.Toestimate theheterozygosity
for the continuous genotypes, empirical limitswere establishedbased on
themean and standard deviations presented for homozygotes classes of
the tetraploid parameterization.

Models
One-step single-trait Bayesian linearmixedmodels were used to predict
breeding values for each individual in the population, as follows:

�y ¼ mþ Xbþ Z1cþ Z2r þ Z3aþ Z4bxaþ e (1)

Where �y is a vector of the phenotypic values of the trait being
analyzed, m is the population’s overall mean, b is the fixed effect of
year, c is the random effect of ith column position in the field � N
(0, Is2

c ), r is the random effect of the ith row position in the field � N
(0, Is2

r ), a is the random effect of genotype�N (0,Gas
2
a), whereGa was

replaced by the different additive relationship matrices as described in
the next section. The bxa is the random effect of the year by genotype
interaction � N (0, Is2

bxa), and e is the random residual effect � N
(0, Is2

e ). Row and column effects were considered nested within year
only for the traits evaluated in two years. For traits measured in a single
year, the same equation (1) was used without the year and the year by
genotype interactions. The variance components for each random vari-
able were: additive (s2

a), column (s2
c ), row (s2

r ), year-by-genotype in-
teraction (s2

bxa), and residual (s2
e ). X; Z1; Z2; Z3; and Z4 were

incidence matrices for year, column, row, genotype, and year by geno-
type interaction, respectively. The narrow-sense heritabilities were es-
timated considering the ratio between the additive variance component
and the total phenotypic variance (sum of all variance components).

Relationship matrices
To quantify the effect of the genetic information used to build the
relationship matrices on the predictive ability (PA), we performed
analyses considering different approaches to modeling the genotypic
values in autotetraploid species (Table 1, File S1). The factors tested
were: i) the source of information used to build the relationship matrix
(pedigree, genomic, or no relationship information); and ii) ploidy in-
formation (diploid, tetraploid, and assumption-free method).

The methods chosen to obtain the relationship matrices are shown
in the Table 1. The R package AGHmatrix v. 0.0.3003 (Amadeu et al.

2016) was used to obtain all relationship matrices (description of ma-
trices File S1). The pedigree-based relationship matrices (A) were built
considering a diploid model (Henderson 1976) and autotetraploid
model without double-reduction (Kerr et al. 2012). The marker-based
relationship matrices (G) were based on the incidence matrices of
markers effects (X) according to VanRaden (2008) and adapted by
Ashraf et al. (2016). Different assumptions can be made regarding
the marker allele dosage in autotetraploids (Table 2). We built the X
matrices under three assumptions regarding the additive marker allele
dosage effect: i) a pseudo-diploid model, where all the heterozygous
genotypes were assumed as one class, corresponding to a unique effect
(data coded as 0, 1, and 2); ii) an additive autotetraploid model, where
each genotype had a specific value, and cumulative additive effect was
assumed (data coded as 0, 1, 2, 3, and 4); and iii) an assumption-free
method based on the ratio of reads count for the alternative and refer-
ence alleles (continuous parameterization, assuming values between
0 and 1), where also a cumulative additive effect was assumed. For
the construction of the relationship matrices based on marker data,
the missing genotypes were substituted by the mean.

Model implementation
The six models described above (Table 1) were fitted using the R
package (R Core Team 2018) BGLR v. 1.0.5 (de los Campos and
Pérez-Rodríguez 2016). Predictions were based on 30,000 iterations
of the Gibbs sampler, in which 5,000 were taken as burn-in, and a
thinning of five. The number of iterations, burn-in, and thinning in-
terval parameters were evaluated to define the final values used in the
analysis (Figure S1). A single step regression approach was applied to
perform all phenotypic BLUP (I matrix), pedigree-BLUP (P-BLUP),
and genomic-BLUP (G-BLUP). Default hyper-parameters were used,
as previously described (Pérez and de los Campos 2014).

Validation and model comparison
For each trait,modelswere compared based on their PA, stability (mean
square errors), goodness-of-fit, and expected genetic gain. A 10-fold
cross validation scheme was applied to compute model PA, for this the
genotypeswere assigned to ten groups, on each cross-validation step the
phenotypic information for one of the groups was omitted (validation
set) and predicted considering the model obtained from the remaining
nine groups (training set). Because each validation group might have a
differentmean (Resende et al. 2012b), the phenotypic PAwere obtained
as the Pearson correlation coefficient between the empirical best linear
unbiased estimation values (eBLUEs) obtained by considering all the
variables in the equations 1 as fixed (i.e., Least Square means estima-
tions; LSMeans) and the cross-validated breeding values (BV) predicted
by the models for each validation fold. The goodness-of-fit for the
different models was evaluated with measures of DIC (Spiegelhalter

n Table 1 Methods and assumptions used to compare the
influence of relationship matrices, ploidy and continuous
genotypes in the prediction of breeding values for blueberry

Relationship
matrix Model

Ploidy
assumption Methodology

Identity I none none
Pedigree-based A2 2 Henderson (1976)

A4 4 Kerr et al. (2012)
Marker-based G2 2

VanRaden (2008)G4 4
Gr none
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et al. 2002) obtained from the full data set, extracted from the object
returned by BGLR. The model with the lowest value for this parameter
defined the best fit for the data. For the expected genetic gain estimation
we used the following formula: DG = (PA � sa � i)/L, where PA is the
phenotypic predictive ability, sa is the square root of additive genetic
variance in the population, i is the selection intensity, and L is the
breeding cycle length. To make it comparable between methods the
selection intensity (i) was considered constant for all methods and
equal to 1.

Average phenotypic and raw genotypic data used during the current
study will become available to promote further studies on the effect of
dosage calling in the context of GS modeling.

Data availability
Phenotypic datasets (eBLUES) are available from the Dyrad Digital
Repository (accession number doi: 10.5061/dryad.kd4jq6h). Genotypic
data and supplemental material are available at Figshare. Files include
diploid, tetraploidandcontinuousgenotypes, supplemental information
1 to 5, which includes: 1) description of the matrices used in the study;
2) model convergence figure; 3) LD distribution per parameterization;
4) principal components plots for each parameterization; 5) table of the
predictive abilities, MSE, goodness-of-fit and beta for each parameter-
ization. The authors ratify that all data necessary for confirming the
conclusions of the article are present within the article, figures, and
tables. Supplemental material available at Figshare: https://doi.org/
10.25387/g3.7728365.

RESULTS

Population genetics analyses
Linkage disequilibrium decayed below r2 = 0.2 at distances of 88.3 Kb,
92.6 Kb, and 98.2 Kb for the diploid, tetraploid and continuous models,
respectively (Figure 1A-C). No significant difference was observed con-
sidering the confidence interval for the mean distance (Kb) at r2 = 0.2
among different ploidies and continuous genotyping scenarios
(Figure S2).

Similarly, no major differences were found between parameteriza-
tions within methodology (i.e., pedigree-based or marker-based meth-
ods) in the PC analysis (Figure S3). The first two PC components of the
marker-based (G) matrices were consistent across all matrices, explain-
ing approximately 20% of the variation, G2matrix captured 20.60% of
the variation, while G4 captured 21.71%, and Gr captured 23.36%
(Figure S3 A-C). The PC analysis results were consistent between ped-
igree methodologies as well. Approximately 38% of the variation was
explained (i.e., 37.74% of the variability was explained for theA2matrix
and 37.86% was explained for the A4 matrix, Figure S3 D-E). The
results obtained in the PC analysis did not justify a stratified sampling
of cross-validation populations, since no evidence of sub-population
structure was detected for any of the relationship matrices.

Considering the heterozygosity observed in each scenario, genotypes
assumed as homozygotes in the diploid parameterizationwere classified
as one of the possible heterozygote classes in the tetraploid and in the
assumption-free parameterizations (Figure 1D-F). As a result of this
process, the tetraploid parameterization presented 37.50% more hetero-
zygotes than the diploid parameterization. Considering the empirical
thresholds established to compare the proportion of “heterozygotes”
in the continuous genotypes with the ploidy parameterizations, values
equal to or below 0.058 and equal to or above 0.908 were considered as
“homozygotes” classes (dashed lines, Figure 1F).With this, 61.59% of the
genotypes were considered “heterozygotes”, thus the continuous method
would have presented 89.92% and 41.23% more heterozygotes than the
diploid and the tetraploid parameterization, respectively. Nevertheless,
some misclassification of data into classes in the diploid and tetraploid
parameterization might have occurred (Figure 2A-B).

Variance estimates
The posterior means of the genetic parameters are summarized in
Table 3. All the traits presented additive genetic variance significantly
higher than zero. A wide range of variance was observed within a given
parameter for the different methodologies, and most of the values were
significantly different from each other (considering Tukey test results;
Table 3, Table S1).Marker-basedmethodologies generated significantly
smaller estimations for variance components when compared with
pedigree-based estimations. Within marker-based methodologies, the
assumption-free parameterization generated significantly smaller esti-
mations. The effects of the difference in the estimation of variance
components are reflected in the estimated heritabilities – smaller values
were estimated for marker-based methodologies. The lowest heritabil-
ity was obtained for soluble solids, flower buds, and pH. Considering all
methods, narrow-sense heritability values varied between 0.152 and
0.574, for flower buds and fruit weight, respectively.

Effect of the genetic information to build the
relationship matrices
The incorporation of relationship information in the analysis generated
better PA results than the phenotypic-BLUPmodel without it. Overall,
we observed that higher values for the phenotypic PA were obtained
when marker-based relationship matrices were used, when compared
with phenotypic and pedigree BLUP (I and A matrices, respectively).
However, the marker-based and pedigree-based results were not always
significantly different from each other (Figure 3, Table S1). The use of
molecular data yielded phenotypic PA values ranging from 0.27 (pH)
to 0.49 (fruit scar) in 2014, and from 0.15 (flower buds) to 0.51 (fruit
firmness) in 2015. Lower PA values were obtained for traits with lower
heritability and better results were observed for the second year of
evaluation. The biggest increase in the PA values can be seen for fruit
firmness – when we compared marker and pedigree results, we ob-
served an average increase of 13.37% in 2014. Also, an increase in the
PA values of 11% was observed for fruit diameter and yield in
2015 when markers were used instead of pedigree data.

The use of pedigree-based relationship matrices generated higher
phenotypic PA values for all the traits, when compared with the
assumption of unrelated individuals (i.e., identity matrix). Unlike the
identity matrix, the use of pedigree-based matrix assumes that there is
relationship (expected values) among individuals. The phenotypic PA
obtained for the pedigree methods in 2014 yielded values from 0.20
(flower bud) to 0.49 (fruit firmness). As with marker-based methods,
smaller values were observed for traits with lower heritability (i.e., pH,
brix, and flower bud). For 2015, the PA results for the phenotypic-
BLUP were 0.36, 0.38, and 0.42, for fruit weight, fruit scar, and fruit

n Table 2 Theoretical genotype codes for marker-allele dosage
effects considering pseudo-diploid, autotetraploid and continuous
parameterizations. Adapted from Slater et al. (2016)

Genotype
Pseudo-
Diploid Autotetraploid

Continuous
valuesa

AAAA 0 0

0 - 1
AAAB 1 1
AABB 1 2
ABBB 1 3
BBBB 2 4
a
Continuous value with a ploidy assumption-free parameterization.
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firmness, respectively. The PA values obtained for the same traits with
pedigree-BLUP were 0.40, 0.45, and 0.49, respectively. No significant
differences between the models’ stability were observed (Table S1).

Use of dosage information and continuous genotypes
Our results indicate that the importance of dosage in GS will vary
depending on the trait being analyzed. For example, in 2014 the PA for
fruit firmness, fruit scar, and fruit diameter showed modestly better
phenotypic PA when the tetraploid and continuous parameterizations
were applied, as opposed to the diploid parameterization (Figure 3,
Table S1). The addition of more classes for the representation of the
genotypic classes added complexity to the models (Table S1), in other
words bigger values of DIC were observed for G4 and Gr models.
Although no significant difference was observed betweenmarker-based
models, the use of relationship matrices derived from continuous ge-
notype data (ploidy-free parameterization) performed equally well as
the best models (Figure 3, Table S1).

Expected genetic gain in a perennial fruit
tree, blueberry
The results obtained for the expected genetic gain (EGG) are summa-
rized in Table 3. GS offers the possibility to accelerate genetic im-
provement by decreasing the breeding cycle and selecting superior
individuals earlier in the breeding program. Considering a breeding

cycle (L) of 12 years (Cellon et al. 2018) we propose that routine
genomic selection could be implemented in the second stage of the
blueberry breeding program, which would allow the omission of a
whole stage (stage III), and a three-year reduction for cultivar release
(Figure 4).

Higher EGGwas obtained for all traits whenmarker-basedmatrices
(i.e., genomic selection) were applied (Table 3), which was mainly re-
lated to the reduction in cycle time. The implementation of GS in the
second stage population would lead to an increase in the EGG varying
from 27% (pH) to 119% (scar) when compared with the application of
phenotypic BLUP. Considering the comparison of marker-based and
pedigree-based models, an increase of 15% (pH) to 41% (fruit weight,
fruit scar, and flower buds) in the EGG was observed (Table 3).
In addition, the use of continuous data generated EGG values that were
not significantly different of the best models for all traits (Table 3).

DISCUSSION
In this study, six approaches were applied to predict breeding values for
eight yield and fruit-quality traits measured in a real blueberry breeding
population. Analyses were based on phenotypic, pedigree, and high-
density marker data from 1,847 individuals.We compared the expected
genetic gain, the stability, and the PA of models considering different
sources to build the relationship matrices (only phenotype = BLUP,
phenotypes + pedigree = P-BLUP, phenotypes + genomic = G-BLUP).

Figure 1 Linkage disequilibrium decay and heterozygosity for blueberry. Linkage disequilibrium decay estimation using one marker per probe,
within scaffolds for (A) diploid, (B) tetraploid and (C) continuous genotype parameterizations. Heterozygosity observed in (D) diploid, (E)
tetraploid, and (F) heterozygosity empirically established for the continuous genotypes’ scenario, assuming the limits of 0.058 # X # 0.908.
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Our results also exploredmodels accounting for ploidy information and
compared the use of genotypic data that is independent of assumptions
regarding ploidy levels (continuous) to perform GS, avoiding the need
for a priori parameterization for a given ploidy level.

Continuous data
Our research showed empirical evidences that the use of continuous
genotypic data from NGS can be effectively applied in GS models for
autotetraploid species. This method was tested and compared with
marker calling methodologies at the individual level in genome wide
association studies (Grandke et al. 2016). It was also tested in family
pool data for GS (Ashraf et al. 2014; Cericola et al. 2018; Guo et al.
2018), as well as used at the individual level in tetraploid potato for GS
by Sverrisdóttir et al. (2017). However, to our knowledge the compar-
ison of continuous genotypes with ploidy parameterizations for geno-
mic selection has not yet been reported. Here we empirically compare
diploid, tetraploid, and continuous data at the individual level for the
application of genomic selection in an autotetraploid species.

Inpolyploids, the assignmentof genotypic classes basedonNGSdata
has been amajor challenge, with high risk ofmisclassification (Grandke
et al. 2016, Bourke et al. 2018). The problem is further exacerbated as
the ploidy increases – for a given level of ploidy, n, the expected number
of genotypic classes is 2n+1. As a consequence, the signal distribution
derived from each genotypic class increasingly approximates a contin-
uous distribution, where no clear separation is observed (Grandke et al.
2016). Despite extensive research to address these challenges (Serang
et al. 2012), advances have been mostly limited to SNP arrays in tetra-
ploid data (Schmitz Carley et al. 2017). Studies that evaluated genotype
calling with NGS data obtained from polyploids show that no method
works properly, and thatmisclassification of genotypes can significantly
interfere in the results of genetic studies (Grandke et al. 2016). This
misclassification can be observed in our results when are diploid, or
tetraploid parameterization were used in the genomic data (Figure 2A-
B), even with our high sequencing depth and with standard parameters
of filtering. The use of the continuous genotyping approach provides a
relevant alternative to overcome this issue that is independent of as-
sumptions regarding ploidy level. Models that used continuous geno-
typic data performed as well as the best models and resulted in
modestly better predictive abilities for some of the traits (i.e., fruit

firmness, fruit scar, and fruit diameter; Table 3), which could indicate
better prediction of future populations. The use of continuous geno-
types also simplifies the analysis complexity and time, by eliminating
the genotype calling and parameterization for a give ploidy, because
instead, the ratio of reads assigned to each allele are used. The benefits
of continuous genotyping could easily be extended to more complex
polyploids (higher ploidies), where the genotype attribution is even
more difficult, however higher sequencing depth would be required.
Meanwhile, for more complex models, such as those that consider
dominance effects, dosage calling is still necessary.

Relationship matrices
Our results also showed that including information based on the genetic
merit of the individuals yielded better results when compared with
the phenotypic-BLUP analysis (based on the identity matrix; Table 3),
corroborating previous studies in the literature (e.g., Muir 2007;
Resende et al. 2012a; Muñoz et al. 2014a). In addition, the use of
marker-based methodologies generated better predictions than pedi-
gree for most of the traits. Marker-based methods allow the capture of
Mendelian segregation (Daetwyler et al. 2013;). This is especially im-
portant in our population, since it was composed of 117 full-sib fam-
ilies. In this context, pedigree-based methods have no power to
distinguish variance within families. Another advantage is that
marker-based methods allows the computation of genetic similarity
among unidentified individuals in the pedigree, and corrections of
errors in the pedigree, which can affect parameter estimation causing
reduction in the genetic gain (Muñoz et al. 2014b).

In our results, some non-significant differences between pedigree
and marker-based methods were identified, which could be an effect of
the extensive pedigree data used, as well as bias in pedigree-based
estimations. Pedigree-based methods can overestimate the reliability
of selection and consequently, the accuracy (Bulmer 1971; Gorjanc et al.
2015). Furthermore, it also presents low efficiency to capture and esti-
mate genetic relationships among individuals (Resende et al. 2017).

It is interesting tonotice thatwe used extensive pedigree information
thatdatesback to1907 forourpredictions,whichmaynotbe common in
other autopolyploid breeding. This extensive information can have
significant implications on the estimation of relationship coefficients
(Amadeu et al. 2016) and consequently, in breeding value predictions.

Figure 2 Relationship between continuous values and
the classes assumed in the (A) diploid and (B) tetraploid
parameterizations.
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Therefore, for breeding programs with smaller pedigree depth infor-
mation, the comparison between accuracies of prediction from marker
and pedigree-based methodologies could be even bigger than what was
found in our study.

Allele dosage
The results obtained for both models that assumed more than three
genotypic classes (G4 and Gr) demonstrate the importance of con-
sidering dosage in the prediction of breeding values. However, this

will depend on the trait analyzed, as previously reported by Nyine
et al. (2018) and Endelman et al. (2018). For example, modest im-
provement was verified in the PA for fruit firmness, fruit scar, and
fruit diameter when this factor was considered in the models. The
addition of classes for the representation of ploidy increased the
complexity of the models (Figure 3, Table 3, Table S1) however,
these assumptions also show a more realistic representation of the
nature of the species. The inclusion of nonadditive effects into the
models could also improve model accuracy. Endelman et al. (2018)

n Table 3 Genetic parameters estimated for eight yield and fruit-related traits analyzed with six linear mixed models, considering the use
of ploidy information and continuous genotypes. Source of information, and dosage parameterizations for the relationship matrices
indicated by the letters (I, A, or G), and index 2, 4, and r respectively�

Trait Relationship matrix Additive Variance Residual Variance Heritability EGG 20141 EGG 20151

Soluble Solid (�Brix) I 0.806 b 1.794 d 0.257 a 0.018 b —

A2 0.777 c 2.129 b 0.239 b 0.021 ab —

A4 0.764 c 2.125 b 0.236 b 0.021 ab —

G2 0.848 a 2.026 c 0.262 a 0.028 a —

G4 0.673 d 2.109 b 0.215 c 0.026 a —

Gr 0.546 e 2.241 a 0.174 d 0.022 ab —

Flower Buds I 2.133 a 4.752 d 0.270 a — 0.018 a
A2 1.247 cd 6.080 a 0.153 de — 0.019 a
A4 1.232 d 6.070 a 0.152 e — 0.018 a
G2 2.106 a 5.562 c 0.251 b — 0.030 a
G4 1.526 b 5.881 b 0.188 c — 0.025 a
Gr 1.315 c 6.115 a 0.161 d — 0.023 a

Fruit Diameter I 2.236 f 6.804 b 0.162 f 0.047 b 0.041 c
A2 3.647 a 6.854 b 0.250 a 0.063 b 0.054 bc
A4 3.581 b 6.825 b 0.247 b 0.061 b 0.054 bc
G2 3.428 c 6.799 b 0.242 c 0.088 a 0.079 a
G4 2.992 d 6.954 ab 0.216 d 0.083 a 0.072 ab
Gr 2.910 e 7.219 a 0.207 e 0.082 a 0.071 ab

Fruit Firmness I 509.180 f 737.735 b 0.275 f 0.567 c 0.798 c
A2 806.908 a 741.089 b 0.401 a 0.881 b 1.16 b
A4 786.601 b 742.547 b 0.395 b 0.877 b 1.135 b
G2 725.192 c 734.332 b 0.376 c 1.243 a 1.511 a
G4 659.584 e 749.865 b 0.351 e 1.217 a 1.446 a
Gr 687.685 d 783.729 a 0.354 d 1.257 a 1.490 a

pH I 0.053 a 0.118 d 0.253 a 0.005 a —

A2 0.052 a 0.140 c 0.241 b 0.006 a —

A4 0.052 a 0.140 c 0.238 b 0.005 a —

G2 0.052 a 0.141 c 0.241 b 0.007 a —

G4 0.040 b 0.147 b 0.191 c 0.006 a —

Gr 0.035 c 0.153 a 0.165 d 0.006 a —

Fruit Scar I 0.086 f 0.073 d 0.381 f 0.008 c 0.009 c
A2 0.139 a 0.075 c 0.528 a 0.013 b 0.014 b
A4 0.135 b 0.075 bc 0.522 b 0.013 b 0.014 b
G2 0.123 d 0.075 cd 0.500 c 0.018 a 0.018 a
G4 0.115 e 0.077 b 0.479 e 0.018 a 0.017 a
Gr 0.126 c 0.081 a 0.494 d 0.019 a 0.018 a

Fruit Weight I 0.217 f 0.214 b 0.374 f 0.013 c 0.014 c
A2 0.403 a 0.207 c 0.574 a 0.021 b 0.021 b
A4 0.393 b 0.205 c 0.568 b 0.021 b 0.021 b
G2 0.344 d 0.206 c 0.535 c 0.030 a 0.029 a
G4 0.323 e 0.215 b 0.513 e 0.029 a 0.027 a
Gr 0.352 c 0.231 a 0.522 d 0.030 a 0.028 a

Yield I 0.326 f 0.444 bc 0.310 f 0.012 b 0.015 c
A2 0.549 a 0.442 bc 0.447 a 0.019 a 0.022 b
A4 0.536 b 0.442 bc 0.441 b 0.020 a 0.021 b
G2 0.470 c 0.441 c 0.407 c 0.026 a 0.030 a
G4 0.421 d 0.458 b 0.374 d 0.024 a 0.028 a
Gr 0.411 e 0.493 a 0.356 e 0.023 a 0.027 a

�Letters based on Tukey test performed considering estimations obtained from 10 independent runs of the full models with BGLR (equation 1).
1
Expected Genetic Gain on trait scale.
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demonstrated that the inclusion of digenic effects, as well as ac-
counting for ploidy information, presented a higher accuracy over
diploid models when using a SNP array.

Genomic selection for perennial autopolyploids
We also demonstrate the value of applying GS in a perennial fruit
tree, blueberry. One cycle of blueberry breeding takes from 12 to
15 years until the release of a new cultivar (Lyrene 2008; Cellon et al.
2018). By applying selection based on high-density markers at early
stages of the program, the time to cultivar release could decrease by
three years (Figure 4), significantly improving the expected genetic
gain per unit of time. More specifically, the use of GS would lead to
an average increase of 86% in the EGG when compared with phe-
notypic BLUP, and an average increase of 32% over the application

of pedigree-based models (Table 3). Implementing GS as we pro-
pose here could eliminate one stage in the breeding and selection
process toward cultivar development, which will reduce costs asso-
ciated with field trials and phenotyping. The implementation of GS
would require extra financial outlay when genotyping and accu-
rately phenotyping the training population. However, the savings
on phenotyping and field trials of future generations (selection pop-
ulations) could result in a break-even financial exercise, and as a
result could be a cost-effective application of GS. However, this
financial analysis needs to be performed for each crop in a case-
by-case basis. To promote further studies on the effect of dosage
calling using NGS, as methods and software improve, we are pro-
viding genotypic and phenotypic data to use as comparison of
methods in the context of GS.

Figure 3 Phenotypic predictive abilities. Predictive abilities obtained for (A) seven traits in 2014, and (B) for six traits in 2015 considering different
dosage parameterizations (indicated by the numbers 2 or 4, and r for ratio values), and different relationship matrices (indicated by the letters I, A,
and G) in the prediction of breeding values of 1,847 blueberry genotypes.
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