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ABSTRACT: Excited-state calculations are implemented in a development version of the GPU-based TeraChem software package
using the configuration interaction singles (CIS) and adiabatic linear response Tamm�Dancoff time-dependent density functional
theory (TDA-TDDFT)methods. The speedup of the CIS and TDDFTmethods using GPU-based electron repulsion integrals and
density functional quadrature integration allows full ab initio excited-state calculations on molecules of unprecedented size. CIS/
6-31G and TD-BLYP/6-31G benchmark timings are presented for a range of systems, including four generations of oligothiophene
dendrimers, photoactive yellow protein (PYP), and the PYP chromophore solvated with 900 quantummechanical water molecules.
The effects of double and single precision integration are discussed, andmixed precision GPU integration is shown to give extremely
good numerical accuracy for both CIS and TDDFT excitation energies (excitation energies within 0.0005 eV of extended double
precision CPU results).

’ INTRODUCTION

Single excitation configuration interaction (CIS),1 time-de-
pendent Hartree�Fock (TDHF), and linear response time-
dependent density functional theory (TDDFT)2�6 are widely
used for ab initio calculations of electronic excited states of large
molecules (more than 50 atoms, thousands of basis functions)
because these single-reference methods are computationally
efficient and straightforward to apply.7�9 Although highly
correlated and/or multireference methods, such as multirefer-
ence configuration interaction (MRCI),10 multireference
perturbation theory (MRMP11 and CASPT2), 12and equa-
tion-of-motion coupled cluster methods (SAC-CI13 and
EOM-CC),14,15 allow for more reliably accurate treatment of
excited states, including those with double excitation character,
these are generally too computationally demanding for large
molecules.

CIS/TDHF is essentially the excited-state corollary of the
ground-state Hartree�Fock (HF) method and thus similarly
suffers from a lack of electron correlation. Because of this, CIS/
TDHF excitation energies are consistently overestimated, often
by ∼1 eV.8 The TDDFT method includes dynamic correlation
through the exchange�correlation functional, but standard
nonhybrid TDDFT exchange�correlation functionals generally
underestimate excitation energies, particularly for Rydberg and
charge-transfer states.5 The problem in charge-transfer excitation
energies is due to the lack of the correct 1/rCoulombic attraction
between the separated charges of the excited electron and hole.16

Charge-transfer excitation energies are generally improved with
hybrid functionals and also with range separated functionals that
separate the exchange portion of the DFT functional into long-
and short-range contributions.17�21 Neither CIS nor TDDFT
(with present-day functionals) properly includes the effects of

dispersion but promising results have been obtained with an
empirical correction to standard DFT functionals,22,23 and there
are continued efforts to include dispersion directly in the
exchange�correlation functional.24,25 Both the CIS and
TDDFT26 single reference methods lack double excitations
and are unable to model conical intersections or excitations in
molecules that have multireference character.27,28 In spite of
these limitations, the CIS and TDDFTmethods can be generally
expected to reproduce trends for one-electron valence excita-
tions, which are a majority of the transitions of photochemical
interest. TDDFT using hybrid density functionals, which include
some percentage of HF exact exchange, has been particularly
successful in modeling the optical absorption of large molecules.
Furthermore, the development of new DFT functionals and
methods is an avid area of research, with many new functionals
introduced each year. Thus it is a virtual certainty that the quality
of the results available from TDDFT will continue to increase. A
summary of the accuracy currently available for vertical excitation
energies is available in a recent study by Jacquemin et al. which
compares TDDFT results using 29 functionals for ∼500
molecules.29

Although CIS and TDDFT are the most tractable methods for
excited states of large molecules, their computational cost still
prevents application to many systems of photochemical interest.
Thus, there is considerable interest in extending the capabilities
of CIS/TDDFT to even larger molecules, beyond hundreds
of atoms.

Quantum mechanics/molecular mechanics (QM/MM)
schemes provide a way to model the environment of a
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photophysically interesting molecule by treating the molecule
with QM and the surrounding environment with MM force
fields.30�34 However, it is difficult to know when the MM
approximations break down and when a fully QM approach is
necessary. With fast, large-scale CIS/TDDFT calculations, all
residues of a photoactive protein could be treated quantum
mechanically to explore the origin of spectral tuning, for example.
Explicit effects of solvent�chromophore interactions, including
hydrogen bonding, charge transfer, and polarization, could be
fully included at the ab initio level in order to model solvato-
chromic shifts.

One potential route to large scale CIS and TDDFT calcula-
tions is through exploitation of the stream processing
architectures35 now widely available in the form of graphical
processing units (GPUs). The introduction of the compute
unified device architecture36 (CUDA) as an extension to the C
language has greatly simplified GPU programming, making it
more easily accessible for scientific programming. GPUs have
already been applied to achieve speed-ups of orders of magnitude
in ground-state electronic structure,37�40 ab initio molecular
dynamics41 and empirical force field-based molecular dynamics
calculations.42�45

In this article we extend our implementation of GPU quantum
chemistry in the newly developed TeraChem program46 beyond
our previous two-electron integral evaluation47 and ground-state
self-consistent field,39,48,49 geometry optimization, and dynamics
calculations41 to also include the calculation of excited electronic
states.We use GPUs to accelerate both thematrixmultiplications
within the CIS/TDDFT procedure and also the integral evalua-
tion (these steps comprise most of the effort in the calculation).
The computational efficiency that arises from the use of rede-
signed quantum chemistry algorithms on GPU hardware to
evaluate electron repulsion integrals (ERIs) allows full QM
treatment of the excited states of very large systems—both large
chromophores and chromophores in which the environment
plays a critical role and should be treated with QM. We herein
present the results of implementing CIS and TDDFT within the
Tamm�Dancoff approximation using GPUs to drastically speed
up the bottleneck two-electron integral evaluation, density func-
tional quadrature, and matrix multiplication steps. This results in
CIS calculations over 400 times faster than those achieved
running on a comparable CPU platform. Benchmark CIS/
TDDFT timings are presented for a variety of systems.

’CIS/TDDFT IMPLEMENTATION USING GPUS

The linear response formalism of TDHF and TDDFT has
been thoroughly presented in review articles.4,7,8,50 Only the
equations relevant for this work are presented here, and real
orbitals are assumed throughout. The TDHF/TDDFT working
equation for determining the excitation energies ω and corre-
sponding X and Y transition amplitudes is

A B
B A

 !
X
Y

 !
¼ ω

1 0
0 �1

 !
X
Y

 !
ð1Þ

where for TDHF (neglecting spin indices for simplicity):

Aai, bj ¼ δijδabðεa � εiÞ þ ðiajjbÞ � ðijjabÞ ð2Þ

Bai, bj ¼ ðiajbjÞ � ðibjajÞ ð3Þ

and for TDDFT:

Aai, bj ¼ δijδabðεa � εiÞ þ ðiajjbÞ þ ðijjfxcjabÞ ð4Þ

Bai, bj ¼ ðiajbjÞ þ ðibjfxcjajÞ ð5Þ
The two electron integrals (ERIs) are defined as

ðiajjbÞ ¼
Z Z

φiðr1Þφaðr1Þφjðr2Þφbðr2Þ
jr1 � r2j dr1dr2 ð6Þ

and within the adiabatic approximation of density functional
theory, in which the explicit time dependence of the exchan-
ge�correlation functional is neglected:

ðiajfxcjjbÞ ¼
Z Z

φiðr1Þφaðr1Þ
δ2Exc

δFðr1ÞδFðr2Þ φjðr2Þφbðr2Þdr1dr2
ð7Þ

The i,j and a,b indices represent occupied and virtual molecular
orbitals (MOs), respectively, in the HF/Kohn�Sham (KS)
ground-state determinant.

Setting the B matrix to zero within TDHF results in the CIS
equation, while in TDDFT this same neglect yields the equation
known as the Tamm�Dancoff approximation (TDA):

AX ¼ ωX ð8Þ
In part because DFT virtual orbitals provide a better starting
approximation to the excited state than HF orbitals, the TDA
generally gives results that are very close to the full linear
response TDDFT results for nonhybrid DFT functionals at
equilibrium geometries.7,8,51 Furthermore, previous work has
shown that a large contribution from the B matrix in TDDFT
(and to a lesser extent also in TDHF) is often indicative of a poor
description of the ground state, either due to singlet�triplet
instabilities or multireference character.52 Casida and co-workers
have examined the breakdown of TDDFT in modeling photo-
chemical pathways52 and have come to the conclusion that “the
TDA gives better results than does conventional TDDFTwhen it
comes to excited-state potential energy surfaces in situations
where bond breaking occurs.” Thus, if there is substantial
deviation between the full TDDFT and TDA-TDDFT excitation
energies, then the TDA results will often be more accurate.

A standard iterative Davidson algorithm53 has been imple-
mented to solve the CIS/TDA-TDDFT equations. As each AX
matrix�vector product is formed, the required two-electron
integrals are calculated over primitive basis functions within
the atomic orbital (AO) basis directly on the GPU. Within
CIS, the AX matrix�vector product is calculated as

ðACISXÞbj ¼ ∑
ia
½δijδabðεa � εiÞ þ ðiajjbÞ � ðijjabÞ�Xia ð9Þ

∑
ia
½ðiajjbÞ � ðijjabÞ�Xia ¼ ∑

μν
CμjCνbFμν ð10Þ

Fμν ¼ ∑
λθ

TλθfðμνjλθÞ � ðμλjνθÞg ð11Þ

Tλθ ¼ ∑
ia
XiaCλiCθa ð12Þ

Here Greek indices represent AO basis functions, Cλi is the
ground-stateMO coefficient of the HF/KS determinant, andTλθ
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is a nonsymmetric transition density matrix. For very small
matrices, there is no time savings with GPU computation of
the matrix multiplication steps in eqs 10 and 12. For matrices of
dimension less than 300, we thus perform the linear algebra on
the CPU. For larger matrices, the linear algebra is performed on
the GPU using calls to the NVIDIA CUBLAS library, a CUDA
implementation of the BLAS library.54

In quantum chemistry the AO basis functions are generally a
linear combination of primitive atom-centered Gaussian basis
functions. For a linear combination ofM primitive basis functions
χ centered at a nucleus, the contracted AO basis function jμ is

φμðrÞ ¼ ∑
M

m¼ 1
cμmχmðrÞ ð13Þ

Thus the two-electron integrals in the contracted AO basis that
need to be evaluated for eq 11 above are given by

ðμνjλθÞ ¼ ∑
Mμ

m1

∑
Mν

m2

∑
Mλ

m3

∑
Mθ

m4

cμm1 cνm2 cλm3 cθm4 ½χm1
χm2

jχm3
χm4

� ð14Þ

where parentheses indicate integrals over contracted basis func-
tions and square brackets indicate integrals over primitive
functions.

While transfer of matrix multiplication from the CPU to the
GPU provides some speedup, the GPU acceleration of the
computation of the ERIs delivers a much more significant
reduction in computer time. Details of our GPU algorithms for
two-electron integrals in the J and K matrices (Coulomb and
exchange operators, respectively) have been previously
published,39,47 so we only briefly highlight information relevant
to our excited-state implementation, which uses these algo-
rithms. Both J and K algorithms employ extensive screening
and presorting on the CPU. The GPU evaluates the J and K
matrices over primitives, and these are contracted on the CPU.
Initially pairs of primitive atomic orbital functions are combined
using the Gaussian product rule into a set of bra- and ket- pairs. A
prescreening threshold is used to remove negligible pairs, and the
remaining pairs are sorted by angular momentum class and by
their [bra| or |ket] contribution to the total [bra|ket] Schwarz
bounds, respectively.55 All data needed to calculate the [bra|ket]
integrals (e.g., exponents, contraction coefficients, atomic co-
ordinates, etc.) are then distributed among the GPUs. The
Coulomb J matrix and exchange K matrix are calculated sepa-
rately, with both algorithms designed to minimize interthread
communication by ensuring that each GPU has all necessary data
for its share of integrals. The [bra| and |ket] pairs are processed in
order of decreasing bound, and execution is terminated once the
combined [bra|ket] bound falls below a predetermined thresh-
old. Because the ground-state density matrix is symmetric, both
the ground-state J and K matrices are also symmetric, and thus
only the upper triangle of each needs to be computed.

The Coulomb J matrix elements are given by

Jμν ¼ ∑
λθ

PλθðμνjλθÞ ð15Þ

Within our J matrix algorithm, one GPU thread evaluates one
primitive two-electron integral using the Hermite Gaussian
formulation as in the McMurchie�Davidson algorithm,56,57

which then must be contracted into the final J matrix element
as given in eq 15. J matrix computation uses the μν T νμ and
λθTθλ symmetry and eliminates duplicates within the bra and ket

primitive Hermite product lists, reducing the number of integrals
calculated from O(N4) to O(N4/4). A different GPU subroutine
(or GPU kernel) is called for each angular momentum class,
leading to nine GPU kernel calls for all s- and p- combinations:
[ss|ss], [ss|sp], [ss|pp], [sp|ss], [sp|sp], [sp|pp], [pp|ss], [pp|sp],
and [pp|pp]. Many integrals are calculated twice because [bra|
ket] T [ket|bra] symmetry is not taken into account. This is
intentional—it is often faster to carry out more (but simpler)
computations on the GPU (compared to an algorithm that
minimizes the number of floating point operations) in order to
avoid bookkeeping overhead and/or memory access bottlenecks.
This may be viewed as a continuation of a trend that began
already on CPUs and has been discussed in that context
previously.58

The maximum density matrix element of all angular momen-
tum components weights the ket contribution to the Schwarz
upper bound. This allows the Jmatrix algorithm to take complete
advantage of sparsity in the density matrix, since there is a one-to-
one mapping between ket pairs and density matrix elements.
Also, because density matrix elements are packed together with
the J matrix ket integral data, its memory access pattern is
contiguous, i.e., neighboring threads access neighboring memory
addresses. In general, noncontiguous access patterns increase the
number of executed memory operations, hampering GPU
performance.

The exchange K matrix elements are given by

Kμν ¼ ∑
λθ

PλθðμλjνθÞ ð16Þ

Within our K matrix algorithm, one block of GPU threads
evaluates one K matrix element and thereby avoids any commu-
nication with other thread blocks. Because the integrals (bra|νθ)
and (bra|θν) are paired with different density matrix elements,
the K matrix algorithm does not take into account the μλT λμ
and νθ T θν symmetry. On the other hand, [bra|ket] T [ket|
bra] symmetry is used, leading toO(N4/2) integrals computed to
form the final K matrix.

In addition to having to compute more integrals than is
required for the Jmatrix computation, the Kmatrix computation
is slowed relative to J matrix computation by two additional
issues. The first is that unlike the J matrix GPU implementation,
the K matrix algorithm cannot map the density matrix elements
onto the ket integral data, since the density index now spans both
bra and ket indices. Instead each thread must load an indepen-
dent density matrix element noncontiguously. The second issue
facing K matrix computation is that because the sparsity of the
density cannot be included in the presorting of ket pairs, the
sorted integral bounds cannot be guaranteed to be strictly
decreasing, and a more stringent cutoff threshold (still based
on the product of the density matrix element and the Schwarz
upper bound) must be applied for K kernels, meaning that K
computation does not take as much advantage of density matrix
sparsity as J computation. As a result of these drawbacks, the
exchange matrix takes longer to calculate than its Coulomb
counterpart. Based solely on the number of integrals required,
the K/J timing ratio for ground-state SCF calculations should be
∼2. In practice, with the memory access and the thresholding
issues, values of 3�5 are more common.

In our excited-state calculations, we use the same J and K
matrix GPU algorithms, adjusted for the fact that the nonsym-
metric transition density matrix T replaces the symmetric
ground-state density matrix P. The portion of the F matrix from
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the product of Tλθ with the first integral in eq 11 is computed
with the Jmatrix algorithm. The portion of the Fmatrix from the
product ofTλθwith the second integral in eq 11 is computed with
the K matrix algorithm. While the J matrix remains symmetric
even with a nonsymmetric transition density matrix, theKmatrix
does not. We must thus calculate both the upper and lower
triangle contributions for the CIS/TDDFTKmatrix, resulting in
two calls to the K matrix algorithm and computation of up to
O(N4) integrals. In addition to an increased number of integrals
in the excited state, theK/J timing discrepancy (comparing CIS/
TDDFT to ground-state SCF calculations) is also increased due
to the sparseness of the transition density compared to the
ground-state density.

Evaluation of the exchange�correlation functional contribu-
tion from eq 7 needed for TDDFT excited states7 is performed
using numerical quadrature on a three-dimensional grid, which

maps efficiently onto massively parallel architectures, such as the
GPU. This was recently demonstrated for ground-state DFT, for
both GPU38,41 and related59 architectures. The expensive steps
are evaluating the electron density/gradient at the grid quad-
rature points to numerically determine the necessary functional
derivatives and summing the values on the grid to assemble the
matrix elements of eq 7. We use a Becke-type quadrature
scheme60 with Lebedev angular61 and Euler�Maclaurin radial62

quadrature grids. For the excited-state calculations, we generate
the second functional derivative of the exchange�correlation
functional only once, saving its value at each quadrature point in
memory. Then, for each Davidson iteration, the appropriate
integrals are evaluated, paired with the saved functional deriva-
tive values, and summed into matrix elements.

’RESULTS AND DISCUSSION

We evaluate the performance of our GPU-based CIS/TDDFT
algorithm on a variety of test systems: 6,60-bis(2-(1-triphenyl)-4-
phenylquinoline (B3PPQ), an oligoquinoline recently synthe-
sized and characterized by the Jenekhe group for use in OLED
devices63 and characterized theoretically by Tao and Tretiak;64

four generations of oligothiophene dendrimers that are being
studied for their interesting photophysical properties;65�67 the
entire photoactive yellow protein (PYP)68 solvated by TIP3P69

water molecules; and deprotonated trans-thiophenyl-p-couma-
rate, an analogue of the PYP chromophore70 that takes into
account the covalent cysteine linkage, solvated with an increasing
number of QM waters. We use the 6-31G basis set for all
computations, since we do not yet have GPU integral routines
implemented for d-functions. This limits the quality of the
excited-state energies, as polarization functions can give im-
proved accuracy relative to experimental values and are often
necessary for metals and hypervalent atoms, such as sulfur and
phosphorus. Benchmark structures are shown in Figures 1 and 2
along with the number of atoms and basis functions for a 6-31G

Figure 2. Structures, number of atoms, and basis functions (fns) for the 6-31G basis for benchmark systems photoactive yellow protein (PYP), the
solvated PYP chromophore, and oligoquinoline B3PPQ. For PYP, carbon, nitrogen, oxygen, and sulfur atoms are green, blue, red, and yellow,
respectively. For the other molecules, atom coloration is as given in Figure 1, with additional red and blue coloration for oxygen and nitrogen atoms,
respectively.

Figure 1. Structures, number of atoms, and basis functions (fns) using
the 6-31G basis set for four generations of oligothiophene dendrimers,
S1�S4. Carbon atoms are orange, and sulfur atoms are yellow.
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basis set. For the solvated PYP chromophore, only three
structures are shown in Figure 2, but benchmark calculations
are presented for 15 systems with increasing solvation, starting
from the chromophore in vacuum and adding water molecules
up to a 16 Å solvation shell, which corresponds to 900 water
molecules. Cartesian coordinates and geometry details for all
structures are provided in the Supporting Information.

For our benchmark TDDFT calculations, we use the general-
ized gradient approximation with Becke’s exchange functional71

combined with the Lee, Yang, and Parr correlation functional72

(BLYP), as well as the hybrid B3LYP functional. During the
SCF procedure for the ground-state wave function, we use two
different DFT grids. A sparse grid of ∼1000 grid points/atom is
used to converge the wave function until the DIIS error reaches
a value of 0.01, followed by a more dense grid of ∼3000 grid
points/atom until the ground-state wave function is fully con-
verged. This denser grid is also used for the excited-state TDDFT
timings reported herein, unless otherwise noted.

An integral screening threshold value of 1 � 10�11 atomic
units is used by default unless otherwise noted. Within Ter-
aChem, this means that Coulomb integrals with products of the
density element and Schwarz bound below the integral screening
threshold are not computed, and exchange integrals with pro-
ducts of the density element and Schwarz bound below the
threshold value times a guard factor of 0.001 are not computed.
The initial N2 pair quantities list is also pruned, with a default
pruning value of 10�15 for removing pairs from integral compu-
tation. The pair quantity pruning value is set to the smaller of
10�15 and 0.01 � the integral screening threshold. The timings
reported herein were obtained on a desktop workstation using
dual quad-core Intel Xeon X5570 CPUs, 72 GB RAM, and 8
Tesla C1060 GPUs.

All CPU operations are performed in full double precision
arithmetic, including one-electron integral evaluation, integral
postprocessing and contraction, and diagonalization of the sub-
space matrix of A. To minimize numerical error, integral

accumulation also uses double precision. Calculations carried
out on the GPU (Coulomb and exchange operator construction
and DFT quadrature) use mixed precision unless otherwise
noted. The mixed precision integral evaluation is a hybrid of
32- and 64-bit arithmetic. In this case, integrals with Schwarz
bounds larger than 0.001 au are computed in full double
precision, and all others are computed in single precision. The
potential advantages of mixed precision arithmetic in quantum
chemistry have been discussed in the context of GPU architec-
tures by several groups47,73,74 and stem in part from the fact that
there are often fewer double precision floating point units on a
GPU than single precision floating point units. To study the
effects of using single precision on excited-state calculations, we
have run the same CIS calculations using both single and double
precision integral evaluation for many of our benchmark systems.

In general we find that mixed (and often even single) precision
arithmetic on the GPU is more than adequate for CIS/TDDFT.
In most cases we find that the convergence behavior is nearly
identical for single and double precision until the residual vector
is quite small. Figure 3 shows the typical single and double
precision convergence behavior as represented by the CIS
residual vector norm convergence for B3PPQ, the first and third
generations of oligothiophene dendrimers S1 and S3, and a
snapshot of the PYP chromophore surrounded by 14 waters. The
convergence criterion of the residual norm, which is 10�5 au, is
shown with a straight black line. Note that for the examples in
Figure 3, we are not using mixed precision—all two-electron
integrals on the GPU are done in single precision (with double
precision accumulation as described previously).39 This is there-
fore an extreme example (other calculations detailed in this paper
used mixed precision where large integrals and quadrature
contributions are calculated in double precision) and serves to
show that CIS and TDDFT are generally quite robust, irrespec-
tive of the precision used in the calculation. Nevertheless, a few
problematic cases have been found in which single precision
integral evaluation is not adequate and where double precision is
needed to achieve convergence.75 During the course of hundreds
of CIS calculations performed on snapshots of the dynamics of
the PYP chromophore solvated by various numbers of water
molecules, a small number (<1%) of cases yield ill-conditioned
Davidson convergence when single precision is used for the
GPU-computed ERIs and quadrature contributions. For illustra-
tion, the single and double precision convergence behavior for
one of these rare cases, here the PYP chromophore with 94
waters, is shown in Figure 3. In practice, this is not a problem
since one can always switch to double precision, and this can be
done automatically when convergence problems are detected.
Recent work in our group76 shows a speedup of 2�4 times for an
RHF ground-state calculation in going from full double precision
to mixed or single precision for our GPU ERI algorithms. Similar
speedups are observed here for excited-state calculations.

Timings andCIS excitation energies (from the ground-state S0
to the lowest singlet excited state S1) for some of the test systems
are given in Table 1 and compared to the GAMESS quantum
chemistry package version 12 Jan 2009 (R3). The GAMESS
timings are obtained using the same Intel Xeon X5570 eight-core
machine as for the GPU calculations (where GAMESS is running
in parallel over all eight cores).We compare to GAMESS because
it is a freely available and mature quantum chemistry code and
provides a reasonable benchmark of the expected speed of the
algorithms on a CPU. GAMESS may not represent the absolute
best performance that can be achieved using the implemented

Figure 3. Plot of single and double precision (SP and DP) convergence
behavior for the first CIS/6-31G excited state of five of the benchmark
systems. The convergence threshold of 10�5 (norm of residual vector) is
indicated with a straight black line. In most cases, convergence behavior
is identical for single and double precision integration until very small
residual values well below the convergence threshold. A very small
percentage of calculations require double precision for convergence.
One such example is shown here for a snapshot of the PYP chromophore
(PYPc) surrounded by 94 waters.
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algorithms on a CPU.40 Coordinates of all the geometries used in
the tests are provided in Supporting Information, so the inter-
ested reader can determine timings for other codes and archi-
tectures if further comparisons are desired. Unfortunately, it is
not possible to compare our own code against itself, running on
the CPU or GPU, since there does not presently exist a compiler
that can generate a CPU executable from CUDA code.

Comparing the values for the CIS first excited-state energy
(ΔE S0/S1) given in Table 1, we find that the numerical accuracy
of the excitation energies for mixed precision GPU integral
evaluation is excellent for all systems studied. The largest
discrepancy in the reported excitation energies between GA-
MESS and our GPU implementation in TeraChem is less than
0.00004 eV. We also report the CIS times and speedups for
GAMESS and GPU accelerated CIS in TeraChem (note that the
times reported refer to the entire CIS calculation from the
completion of the ground-state SCF to the end of program
execution). Since CIS is necessarily preceded by a ground-state
SCF calculation, we also report the SCF speedups to give a

complete picture. We leave out the absolute SCF times, since the
efficiency of the GPU-based SCF algorithm has been discussed
for other test molecules previously.39,41,76 We find a large
increase in performance is obtained using the GPU for both
ground- and excited-state methods. The speedups increase as
system size increases, with SCF speedups outperforming CIS
speedups. For the largest system compared with GAMESS,
which is the 29 atom chromophore of PYP surrounded by 487
QM water molecules, the speedup is well over 500 times for
SCF and 400 times for CIS. Some possible reasons for the
differing speedups in ground- and excited-state calculations are
discussed below.

In the Supporting Information, we also include a table giving
the absolute TeraChem SCF and CIS times for four of the test
systems, along with the corresponding SCF and CIS energies, for
both mixed and double precision computation and for three
different integral screening threshold values. While the timings
increase considerably in switching from mixed precision to
double precision and in tightening the integral screening thresh-
olds, the CIS excitation energies remain nearly identical, suggest-
ing that the CIS algorithm is quite robust with respect to
thresholding.

The dominant computational parts in building the CIS/
TDDFT AX vector can be divided into Coulomb J matrix,
exchange K matrix, and DFT contributions. Figure 4 plots the
CPU þ GPU time consumed by each of these three contribu-
tions (both CPU and GPU times are included here, although the
CPU time is a very small fraction of the total), in which J and K
timings are taken from an average of the 10 initial guessAX builds
for a CIS calculation, and the DFT timings are from an average of
the initial guess AX builds for a TD-BLYP calculation. The initial
guess transition densities are very sparse, and thus this test
highlights the differing efficiency of screening and thresholding
in these three contributions. The J timings for CIS and BLYP are
similar, and only those for CIS are reported. Power law fits are
shown as solid lines and demonstrate near-linear scaling behavior
of all three contributions to the AX build. The Jmatrix and DFT
quadrature steps are closest to linear scaling, with observed
scaling of N1.1 for both contributions, where N is the number
of basis functions. The K matrix contribution scales as N1.4

because it is least able to exploit the sparsity of the transition
density matrix. These empirical scaling data demonstrate that
with proper sorting and integral screening, the AX build in CIS
and TDDFT scales much better than quadratic, with no loss of
accuracy in excitation energies.

Table 1. Time for CIS computation, relative speedups of SCF and CIS computation for GPU-based TeraChem compared to CPU-
based GAMESS, and first excited-state energies (ΔES0/S1)

a

CIS timings (s) speedup ΔES0/S1 (eV)

molecule (atoms; basis functions) GPU GAMESS SCF CIS GPU GAMESS

B3PPQ oligoquinoline (112; 700) 41.9 371.5 11 9 4.7056398 4.7056482

S2 oligothiophene dendrimer (128; 958) 97.1 755.9 13 8 4.1130572 4.1130275

PYP chromophore þ 101 waters (332; 1501) 133.2 3032.7 48 23 3.6409681 3.6409411

PYP chromophore þ 146 waters (467; 2086) 217.5 8654.9 84 40 3.6394478 3.6394222

PYP chromophore þ 192 waters (605; 2684) 318.1 20546.8 131 65 3.6425942 3.6425632

PYP chromophore þ 261 waters (812; 3581) 493.2 57800.5 218 117 3.6454079 3.6453773

PYP chromophore þ 397 waters (1220; 5349) 894.0 243975.7 426 273 3.6496150 3.6495829

PYP chromophore þ 487 waters (1490; 6519) 1221.2 562606.6 547 461 3.6549966 3.6549636
aCalculations were performed on a dual Intel Xeon X5570 (8 CPU cores) with 72 GB RAM. GPU calculations use 8 Tesla C1060 GPU cards.

Figure 4. Contributions to the time for building an initial AX vector in
CIS and TD-BLYP. Ten initial X vectors are created based on the MO
energy gap, and the timing reported is the average time for building AX
for those 10 vectors. The timings are obtained on a dual Intel Xeon
X5570 platform with 72 GB RAM using 8 Tesla C1060 GPUs. Data
(symbols) are fit to power law (solid line, fitting parameters in inset).
Fewer points are included for the TD-BLYP timings because the SCF
procedure does not converge for the solvated PYP chromophore with a
large number of waters or for the full PYP protein.
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Of the three integral contributions (J, K, and DFT quad-
rature), the computation of theKmatrix is clearly the bottleneck.
This is due to the three issues with exchange computation
previously discussed: (1) the J matrix takes full advantage of
density sparsity because of efficient density screening that is not
possible for our K matrix implementation, (2) exchange kernels
access the density inmemory noncontiguously, and (3) exchange
requires the evaluation of 4 times more integrals than J both
because it lacks the μλ T λμ and νθ T θν symmetry and
because it needs to be called twice to account for the nonsym-
metric excited-state transition density matrix. It is useful to
compare the time required to calculate theKmatrix contribution
to the first ground-state SCF iteration (which is the most
expensive iteration due to the use of Fock matrix updating77)
and to the AX vector build for CIS (or TD-B3LYP). We find that
for the systems studied herein the K matrix contribution is on
average almost 2 times faster in CIS compared to the first
iteration of the ground-state SCF. One might have expected
the excited-state computation to be 2 times slower because of the
two K matrix calls, but the algorithm efficiently exploits the
greater sparsity of the transition density matrix (compared to the
ground-state density matrix).

Due to efficient prescreening of the density and integral
contributions to the Schwarz bound before the GPU Coulomb
kernels are launched, the J matrix computation also exploits
the greater sparseness of the transition density and therefore is
3.5 times faster than the ground-state first iteration J matrix
computation. Since J matrix computation profits more from
transition density sparsity than K matrix computation, the
current implementation of the Jmatrix computation scales better
with system size than the implementation of the K matrix
computation (N1.1 vs N1.4 for the excited-state benchmarks
presented here).

As can be seen in Figure 4,78 the DFT integration usually takes
more time than the J matrix contribution. This is because of the
larger prefactor for DFT integration, which is related to the
density of the quadrature grids used. It has previously been
noted79 that very sparse grids can be more than adequate for
TDDFT. We further support this claim with the data presented
in Table 2, where we compare the lowest excitation energies and
the average TD-BLYP integration times for the initial guess
vectors for six different grids on two of the test systems. For both
molecules, the excitation energies from the sparsest grid agree
well with those of the more dense grids but with a substantial
reduction in integration time, suggesting that a change to an ultra
sparse grid for the TDDFT portion of the calculation could result
in considerable time savings with little to no loss of accuracy. The
TD-BLYP values computed with NWCHEM

80 using the default
‘medium’ grid are also given to show the accuracy of our
implementation. The small (<0.0002 eV) differences in excita-
tion energies between our GPU-based TD-BLYP and the CPU-
based NWChem are likely due to slightly differing ground-state
densities, which differ in energy by 7 microhartrees for the
chromophore and 1.9 millihartrees for the S2 dendrimer.

While successive ground-state SCF iterations take less com-
putation time than the first (because of the use of Fock matrix
updating), all iterations in the excited-state calculations take
roughly the same amount of time. This is the dominant reason for
the discrepancy in the speedups for ground-state SCF and
excited-state CIS shown in Table 1. An additional reason that
the SCF speedup is greater than the CIS speedup is decreased
parallel efficiency because the ground-state density is less sparse
than the transition density (all of the reported calculations are
running on eight GPU cards in parallel).

GPU-accelerated CIS and TDDFT computation provides the
excited states of much larger compounds than can be currently
studied with ab initio methods. For the well-behaved valence
transitions in the PYP systems, CIS convergence requires very
few Davidson iterations. The total wall time (SCF þ CIS)
required to calculate the first CIS/6-31G excited state of the
entire PYP protein (10869 basis functions) is less than 6 h, with
∼4.7 h devoted to the SCF procedure and ∼1.2 h to the CIS
procedure. We can thus treat the protein with full QM and study
how mutation within PYP will affect the absorbance. For any
meaningful comparison with the experimental absorption energy
of PYP at 2.78 eV,70 many geometrical configurations need to be
taken into account. For this single configuration, the CIS
excitation energy of 3.69 eV ismuch higher than the experimental
value, as expected with CIS. The TD-B3LYP bright state (S5) is
closer to the experimental value but still too high at 3.33 eV.

Solvatochromic studies in explicit water are problematic for
standard DFT methods, including hybrid functionals, due to the
well-known difficulty in treating charge-transfer excitations.16,81

In calculating the timings for the first excited state of the PYP
chromophore with increasing numbers of waters, we found that
the energy of the CIS first excited state quickly leveled off and
stabilized, while that for TD-BLYP and TD-B3LYP generally
decreased to unphysical values, at which point the ground-state
SCF convergence was also problematic. This behavior of the first
excitation energies for the PYP chromophore with increasing
numbers of waters is shown in Figure 5 for CIS, TD-BLYP, and
TD-B3LYP. While the 20% HF exchange in the hybrid TD-
B3LYP method does improve the excitation energies over TD-
BLYP, the energies are clearly incorrect for both methods, and a
higher level of theory or a range-separated hybrid functional19,21

Table 2. TD-BLYP Timings and First Excitation Energies
Using Increasingly Dense Quadrature Gridsa

grid points points/atomb time (s)c ΔE (eV)

PYPChromophore (29 atoms)
0 29497 1017 0.12 2.31734131

1 81461 2809 0.21 2.31743628

2 182872 6305 0.39 2.31742594

3 330208 11386 0.68 2.31736989

4 841347 29011 1.53 2.31737016

5 2126775 73337 3.77 2.31737016

NWChem/medium 21655 n/a 2.31751053

S2Dendrimer (128 atoms)
0 141684 1106 0.70 2.28428601

1 382576 2988 1.41 2.28429445

2 848918 6632 2.73 2.28429363

3 1506502 11769 4.54 2.28429472

4 3770640 29458 10.57 2.28429472

5 9472331 74002 25.48 2.284299472

NWChem/medium 25061 n/a 2.28445412
aTD-BLYP timings (average time for the DFT quadrature in one AX
build for the initial 10 AX vectors). For comparison, NWChem
excitation energies are also given using the default ‘medium’ grid.
bNumber of points/atom refers to the pruned grid for TeraChem and
the unpruned grid for NWChem. cNWChem was run on a different
architecture, so timings are not comparable.
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is certainly necessary for studying excitations involving explicit
QM waters.

The recent theoretical work by Badaeva et al. examining the
one and two photon absorbance of oligothiophene dendrimers
was limited to results for the first three generations S1�S3, even
though experimental results were available for S4.65�67 In
Table 3, we compare our GPU accelerated results on the first
bright excited state (oscillator strength >1.0) using TD-B3LYP
within the TDA to the full TD-B3LYP and experimental results.
Results within the TDA are comparable to those from full TD-
B3LYP, for both energies and transition dipole moments. Our
results for S4 show the continuing trend of decreasing excitation
energy and increasing transition dipole moment with increasing
dendrimer generation.

’CONCLUSIONS

We have implemented ab initio CIS and TDDFT calculations
within the TeraChem software package, designed from inception
for execution on GPUs. This allows full QM calculation of the
excited states of large systems. The numerical accuracy of the
excitation energies is shown to be excellent usingmixed precision
integral evaluation. A small percentage of cases require full
double precision integration. For these occasional issues, we
can easily switch to full double precision to achieve the desired
convergence. The ability to use lower precision in much of the

CIS and TDDFT calculation is reminiscent of the ability to use
coarse grids when calculating correlation energies, as shown
previously for pseudospectral methods.79,82�85 Recently, it has
also been shown86 that single precision can be adequate for
computing correlation energies with Cholesky decomposition
methods which are closely related to pseudospectral methods.87

Both quadrature and precision errors generally behave as relative
errors, while chemical accuracy is an absolute standard (often
taken to be 1 kcal/mol). Thus, coarser grids and/or lower
precision can be safely used when the quantity being evaluated
is itself small (and therefore less relative accuracy is required), as
is the case for correlation and/or excitation energies.

For some of the smaller benchmark systems, we present
speedups as compared to the GAMESS quantum chemistry
package running over eight processor cores. The speedups
obtained for CIS calculations range from 9 to 461 times, with
increasing speedups with increasing system size. These speedup
figures are not necessarily normative (other quantum chemistry
packages might be more efficient), but we feel they give a good
sense of the degree to which redesign of quantum algorithms
for GPUs may be useful.

The increased size of the molecules that can be treated using
our GPU-based algorithms exposes some failings of DFT and
TDDFT. Specifically, the charge-transfer problem16 of TDDFT
and the delocalization problem88 of DFT both seem to become
more severe as the molecules become larger, especially for the
case of hydrated chromophores with large numbers of surround-
ing quantum mechanical water molecules. It remains to be seen
whether range-separated hybrid functionals19,21 can solve these
problems for large molecules, and we are currently working to
implement these.
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