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Abstract: The prognosis of patients with multiple myeloma (MM) has improved dramatically with the
introduction of new therapeutic drugs, but the disease eventually becomes drug-resistant, following
an intractable and incurable course. A myeloma niche (MM niche) develops in the bone marrow
microenvironment and plays an important role in the drug resistance mechanism of MM. In particular,
adhesion between MM cells and bone marrow stromal cells mediated by adhesion molecules induces
cell adhesion-mediated drug resistance (CAM-DR). Analyses of the role of mitochondria in cancer
cells, including MM cells, has revealed that the mechanism leading to drug resistance involves
exchange of mitochondria between cells (mitochondrial transfer) via tunneling nanotubes (TNTs)
within the MM niche. Here, we describe the discovery of these drug resistance mechanisms and the
identification of promising therapeutic agents primarily targeting CAM-DR, mitochondrial transfer,
and TNTs.
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1. Introduction

Multiple myeloma (MM) is a B-cell hematologic malignancy characterized by abnormal
proliferation of plasma cells in the bone marrow microenvironment (BMM), monoclonal
protein (M protein), hypercalcemia, renal dysfunction, anemia, and lytic bone lesions [1,2].
MM accounts for approximately 10% of newly diagnosed hematological malignancies [3].
With the advent of innovative analytical technologies in the 2000s, research to elucidate the
molecular pathology of MM has intensified [4]. This has led to the rapid development and
clinical introduction of many novel molecular-targeted therapies, including proteasome
inhibitors (PI), immunomodulatory drugs, and immunotherapies, which have dramatically
improved the prognosis of patients with MM [5]. However, relapse is highly likely in almost
all MM patients; thus, there is an urgent need to develop next-generation therapeutic agents
that could cure MM [6].

MM develops a myeloma niche (MM niche) in the BMM. Data clearly indicate that
MM cells modify the microenvironment to facilitate their survival. Research also indicates
that the BMM plays an important role in the drug resistance mechanism of MM. In partic-
ular, adhesion between MM cells and BM stromal cells mediated by adhesion molecules
induces cell adhesion-mediated drug resistance (CAM-DR) [7]. Analyses of the role of
mitochondria in cancer cells, including MM cells, has revealed that the mechanism leading
to drug resistance involves the exchange of mitochondria between cells (mitochondrial
transfer) via tunneling nanotubes (TNTs) within the MM niche [8–11]. Elucidation of these
mechanisms has facilitated the development of many therapeutic agents targeting CAM-
DR, mitochondrial transfer, and TNTs, and it is expected that more will be developed in
the future.

The purpose of this review is to summarize research findings regarding the MM niche,
CAM-DR, and TNTs and discuss the treatment methods targeting these mechanisms that
are currently under development or have been clinically applied.
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2. Hematopoietic Stem Cell (HSC) Niche and MM Niche

Various pathways and cell types have been shown to tightly control the self-renewal,
proliferation, and differentiation properties of HSCs in normal hematopoiesis and de-
velopment of the HSC niche [12–14]. In particular, the HSC niche consists of a cellular
component (hematopoietic and nonhematopoietic or stromal cells, such as osteoblasts,
osteoclasts, fibroblasts, adipocytes, myocytes, endothelial cells, lymphocytes, dendritic
cells, and macrophages), extracellular matrix (several types of collagen, laminin, fibronectin,
thrombospondin, proteoglycans, and hemonectin), and a soluble component (cytokines,
growth factors, and soluble isoforms of cell adhesion molecules (e.g., serum vascular cell
adhesion protein 1, serum intercellular adhesion molecule 1, sP-selectin, and sE-selectin)),
and it undergoes appropriate remodeling by osteoclasts [15–19]. Importantly, cancer cells,
including MM cells, have been shown to engraft in the endosteal HSC niche, invade bone,
and induce tumor expansion and metastatic disease [12,16,20–22]. Especially in terms of
MM, research clearly shows that osteoclasts, vascular endothelial cells, and BM stromal
cells play important roles in creating the suitable environment for MM cells referred to as
the MM niche [23]. In the MM niche, MM cells alter the normal HSC niche and induce the
expression of specific cytokines and growth factors that promote their survival, growth,
and drug resistance [12].

Interactions between MM cells and the MM niche, either directly through cell adhe-
sion molecule-mediated interactions between MM cells and bone marrow stromal cells
(BMSCs), or indirectly via the effects of growth factors released by both cell types, miRNA,
or mitochondrial transfer, activate a pleiotropic proliferative and antiapoptotic cascade [24].
Importantly, the adhesion of MM cells to BMSCs and/or the extracellular matrix triggers
the NF-κB-dependent transcription and secretion of cytokines such as IL-6, tumor necro-
sis factor-α, and osteopontin in BMSCs, which further stimulates development of drug
resistance or so-called cell adhesion-mediated drug resistance (CAM-DR) [24–26]. Notably,
CAM-DR plays a significant role in the development of drug resistance in MM [7,26,27].
Therefore, targeting CAM-DR is now thought to be a promising option to improve the
prognosis of MM patients.

3. CAM-DR Components as Druggable Targets

The development of targeted therapies for CAM-DR is an area of growing interest [26].
CAM-DR is induced by adhesion molecules such as integrin family members [28,29], CD138
(syndecan-1) [28], CD44 [28], vascular cell adhesion molecule-1 (VCAM-1) [30], lymphocyte
function-associated antigen-1 (LFA-1) [31,32], and intercellular adhesion molecule-1 (ICAM-
1) [33]. Therefore, considerable research is currently focused on the development of drugs
targeting these molecules (Figure 1 and Table 1) [34].

Integrins play crucial roles in adhesion, migration, invasion, BM homing, survival, pro-
liferation, and drug resistance in MM cells [37,59]. In particular, very late antigen-4 (VLA-4)
(α4β1) and α4β7 play pivotal roles in the pathophysiology of MM [59], thus making these
molecules attractive targets. Considering this background, natalizumab, a recombinant
humanized IgG4 monoclonal antibody that binds integrin-a4, has demonstrated an ability
to inhibit the adhesion of MM cells to both noncellular and cellular components of the MM
niche [35,36]. Notably, Hosen et al. reported that integrin β7 is constitutively activated
in MM cells, and chimeric antigen receptor (CAR) T cells targeting integrin β7 exhibit a
superior anti-MM effect [37,38].

CD44 is a ubiquitous surface molecule, as well as a member of the glycoprotein
family [60]. Importantly, CD44 variants are highly expressed in MM cells derived from
extramedullary lesions, which play a role in the mechanism underlying the refractoriness
of MM [61]. MTI-101, a first-in-class peptidomimetic, binds CD44/ITGA4-containing
complexes to induce the activation of Stim1 and TRPC1 expression, triggering necrotic cell
death of MM cell lines. MTI-101 and related peptidomimetics are, thus, regarded as an
attractive class of compounds [40,41]. Considerable research has focused on eliciting anti-
MM effects by modulating CD44 expression. Canella et al. reported that the pan-histone
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deacetylase inhibitor AR-42 downregulated CD44 expression and enhanced the anti-MM
activity of lenalidomide in primary MM cells isolated from lenalidomide-resistant patients
and cells isolated from an in vivo MM mouse model [42].
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receptor tyrosine kinase; ICAM-1: intercellular adhesion molecule-1; VCAM-1: vascular cell adhe-
sion molecule-1; TNF-α: tumor necrosis factor-α. 
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 CAR-T Anti–ICAM-1 antibody–based CAR-T cells. [33,43,44] 

VCAM-1 LLZ1640-2 TGF-β–activated kinase-1 inhibitor that reduces 
VCAM-1 expression. [45] 

Figure 1. Schematic illustration of CAM-DR, OXPHOS, and TNTs as druggable targets in the MM
niche. MM: multiple myeloma; BMSC: bone marrow stromal cell; mAb: monoclonal antibody; CAR-T:
chimeric antigen receptor T cell; TNT: tunneling nanotube; OXPHOS: oxidative phosphorylation;
ADP: adenosine diphosphate; ATP: adenosine triphosphate; VLA-4: very late antigen-4; AXL: AXL
receptor tyrosine kinase; ICAM-1: intercellular adhesion molecule-1; VCAM-1: vascular cell adhesion
molecule-1; TNF-α: tumor necrosis factor-α.

VCAM-1 is an endothelial ligand for VLA-4 (or α4β1) of the β1 subfamily of inte-
grins, and it has been implicated as playing a role in the homing and migration of MM
cells [62–64]. Teramachi et al. reported that inhibition of TGF-β-activated kinase-1 using
LLZ1640-2 reduces VCAM-1 expression in BMSCs and impairs MM cell adhesion to BM-
SCs [45]. In addition, Zhang et al. reported that the Hedgehog inhibitor LDE225 (sonidegib)
inhibits MM cell proliferation by blocking Hedgehog signaling and modulates stromal cells
within the BMM by decreasing the expression of VCAM-1 and other adhesion molecules,
suggesting that Hedgehog inhibition is a promising option for the treatment of MM [46,47].

LFA-1 is an adhesion molecule that mediates lymphocyte adhesion [65]. The LFA-1
inhibitor LFA878 exerts an anti-MM effect via inhibition of the LFA-1/FAK/PI3K/AKT
axis [65]. Importantly, LFA-1 is gaining increased attention for its potential to modulate
the tumor microenvironment (TME). The inability of CD8+ effector T cells in the TME
is an important mechanism of immunotherapy resistance [66]. Hickman et al. elegantly
demonstrated that activation of LFA-1 mediated by the small-molecule LFA-1 activator
7HP349 converts a T-cell-exclusionary TME to a T-cell-enriched TME [66]. Therefore, this
activator could be a promising candidate drug for the treatment of MM.

The overexpression of ICAM-1 in MM, associated with advanced disease and poor sur-
vival, may be a potential therapeutic target even in the relapse/refractory setting [33,67–69].
Sherbenou et al. reported that an anti-ICAM-1 monoclonal antibody conjugated to an auris-
tatin derivative induced potent anti-MM cytotoxicity both in vitro and in vivo. This effect
was assumed to involve in part blockade of cell–cell interactions and the interaction of
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ICAM-1 with its ligand, thus interfering with various immune functions [33]. Furthermore,
a line of anti-ICAM-1 antibody-based chimeric antigen receptor T cells was shown to ex-
hibit significant antitumor effects both in vitro and in vivo in preclinical models of gastric
cancer and thyroid cancer, suggesting they are applicable to the treatment of hematological
malignancies, including MM [33,43,44].

Table 1. Summary of drugs/treatments targeting CAM-DR, OXPHOS, and TNTs.

Druggable Targets Drugs/Treatments Description References

VLA-4 natalizumab Recombinant humanized IgG4 monoclonal antibody that binds integrin-a4. [35,36]

integrin integrin-b7 CAR-T CAR-T cells targeting activated integrin-β7. [37,38]

AXL cabozatinib Small-molecule multiple tyrosine kinases inhibitor. [16,39]

BMS-777607 Small-molecule c-Met/AXL inhibitor. [16,39]

CD44 MTI-101 First-in-class peptidomimetic that binds CD44/ITGA4-containing complexes. [40,41]

AR-42 Pan-histone deacetylase inhibitor that downregulates CD44 expression. [42]

ICAM-1 mAb Anti–ICAM-1 mAb conjugated to an auristatin derivative. [33]

CAR-T Anti–ICAM-1 antibody–based CAR-T cells. [33,43,44]

VCAM-1 LLZ1640-2 TGF-β–activated kinase-1 inhibitor that reduces VCAM-1 expression. [45]

sonidegib Hedgehog inhibitor that blocks Hedgehog signaling and decreases the
expression of VCAM-1 and other adhesion molecules. [46,47]

TNT CK-666 Actin polemerization inhibitor that inhibits TNT formation. [48,49]

ML-141 Cdc42 GTPase inhibitor that decreasess TNT formation. [48,49]

6-thio-GTP Vac-1-Rac signaling inhibitor that decreases TNT formation. [48,49]

BAY-117082 IkB/IKK inhibitor that decreasess TNT formation. [48,49]

octanol Prevents TNT-mediated cell-cell communication. [48,49]

taxanes Partially inhibits mitochondrial transfer by inhibiting microtubule
polymerization. [50]

vinca alkaloids Partially inhibits mitochondrial transfer by inhibiting microtubule
polymerization. [50]

TNF-a inhibitors Indirectly reduces TNT formation and thereby inhibit mitochondrial transfer. [50,51]

OXPHOS anti-CD38 mAb Inhibits mitochondrial transfer and OXPHOS. [50,52]

NB73 Small-compound inhibitor of FOXM1 that promotes FOXM1 degradation and
downregulates OXPHOS. [53]

SR18292 PGC-1a inhibitor that induces dysfunction in OXPHOS metabolism. [54]

CB-839 Glutaminase-1 inhibitor that inhibits mitochondrial respiration. [55]

tigecycline Glycycline antibiotic that inhibits OXPHOS. [56,57]

TAK-242 TLR4 inhibitor that induces more intense and extended oxidative stress, leading
to mitochondrial depolarization and severe impairment of mitochondrial fitness. [58]

The HSC niche can regulate the dormancy of tumor cells [21]. In MM, dormancy
occurs when tumor cells enter a quiescent state (G0), in which they are under reversible
growth arrest [70,71]. Importantly, dormant MM cells can be induced to re-enter the cell
cycle in response to extrinsic stimuli from the microenvironment or various therapeutic
agents, including bortezomib [71,72]. Drug-resistant dormant MM cells residing in skeletal
endosteal niches are thought to mediate disease relapse. These cells exhibit a distinct
transcriptome signature enriched in immunity-related genes and genes associated with
myeloid cell differentiation, including AXL (a TAM receptor tyrosine kinase). Notably, AXL
inhibition using the small-molecule inhibitors cabozatinib and BMS-777607 releases MM
cells from dormancy and sensitizes them to chemotherapy [16,39]. Another study found
that macrophages are the dominant cells regulating the inflammatory milieu of the MM
niche; inhibition of TPL2 kinase in macrophages leads to inhibition of interleukin (IL)-1β
and IL-6, ultimately resulting in myeloma progression [73]. These data could lead to the
development of new therapies that improve of the outcome of MM patients.
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4. Mitochondrial Transfer via TNTs: A Novel CAM-DR Concept
4.1. Mitochondrial Transfer in Cancer Cells, including MM Cells

It is now clear that the metabolic and mitochondrial functions are reprogrammed in
many types of cancer cells to ensure the production of necessary molecules such as lipids,
proteins, and nucleic acids and sustain the mitotic signaling that enables cell prolifera-
tion [74]. Mitochondria generate most of a cell’s energy supply, i.e., adenosine triphosphate
(ATP), via oxidative phosphorylation (OXPHOS) [8]. Cancer cells tend to synthesize ATP
primarily through glycolysis, even under aerobic conditions, although glycolysis is less
efficient than OXPHOS in generating ATP [75]. However, cells of certain solid tumors and
many hematological malignancies appear to exhibit normal or even increased OXPHOS
and mitochondrial metabolism [76]. However, this remains an area of intense research, as
the association between cancer cells and OXPHOS has not been fully elucidated.

Studies have clearly demonstrated the occurrence of mitochondrial transfer in hema-
tological malignancies such as acute myeloid leukemia, acute lymphocytic leukemia, and
MM [8–11,77]. Transcellular mitochondrial transfer is primarily mediated by three in-
tercellular communication pathways: (1) TNTs, (2) extracellular vesicles, and (3) gap
junctions [76]. Interestingly, cancer cells can transfer mitochondria to nonmalignant cells
via mitophagy, which is a process for the clearance of damaged mitochondria [78]. Signifi-
cantly, the transfer of mitochondria and/or mitochondrial DNA to cancer cells increases the
mitochondrial content and enhances OXPHOS, thus favoring proliferation and invasion [8].
The transfer of mitochondria from BMSC was shown to protect mutant hematopoietic
cells during chemotherapy [8]. Thus, mitochondrial exchange occurs preferentially be-
tween nonmalignant cells and cancer cells. Cancer cells that acquire mitochondria exhibit
chemoresistance [79], suggesting that this process is a promising target in the treatment of
various cancers, including MM.

4.2. TNT Formation in Cancer Cells, including MM Cells

TNTs are filamentous, F-actin-rich, long tubular extensions connecting the cytoplasm
of adjacent and/or distant cells that mediate cell-to-cell communication [80–82]. TNTs
are increasingly considered the primary intercellular pathway for the unidirectional and
bidirectional movement of nuclear and cytoplasmic cargo, such as nucleic acids, drugs,
pathogenic molecules, and organelles, including mitochondria [50,83]. Hypoxic conditions
associated with the TME reportedly stimulate an increase in TNT formation [84]. Under
conditions of oxidative stress, the intracellular expression of p53 is upregulated, and protein
kinase B–phosphoinositide 3-kinase–mammalian target of rapamycin (AKT–PI3K–mTOR)
signaling is activated, leading to TNT formation [76]. The mechanism of TNT formation is
closely associated with interactions between a complex of proteins, including leukocyte
specific transcript 1, M-sec, Ras-related protein A, and the exocyst complex [50,85–87].
TNT can rescue diseased cells and tissues by mediating the direct transfer of healthy
mitochondria to compromised cells [88]. Mitochondrial transfer occurs via TNTs and partial
cell fusion, and the process is significantly upregulated in the presence of chemotherapeutic
drugs [89]. Importantly, transferred mitochondria were found to metabolically promote
OXPHOS [11,52]. MM cells can acquire mitochondria from neighboring nonmalignant cells
through TNTs. Moreover, TNT-mediated transfer from cancer cells also plays a role in drug
resistance, as demonstrated by the detoxifying removal of chemotherapeutic agent-loaded
lysosomal vesicles from leukemia cells [90,91]. Therefore, targeting mitochondrial transfer
via TNTs is an attractive option for overcoming chemo-resistance in the treatment of cancers,
including MM.

4.3. OXPHOS and TNTs as Druggable Targets in Cancer and MM Therapy

Numerous compounds have been identified that affect pathways, such as NF-κB
and mTOR, or block actin polymerization, thus inducing a reduction in TNT formation.
The compounds include cytochalasin D, cytarabine, latrunculin A and B, daunorubicin,
everolimus, metformin, nocodazole CK-666, ML-141, 6-thio-GTP, BAY-117082, and octanol
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(Figure 1) [48,49]. In addition, taxanes and vinca alkaloids have the potential to partially
inhibit mitochondrial transfer by inhibiting microtubule polymerization [50]. M-sec, a TNT
marker and regulator of TNT formation, directly induces tumor necrosis factor (TNF)-α.
These data suggest that TNF-α inhibitors could be used to indirectly reduce TNT formation,
thereby inhibiting mitochondrial transfer [50,51].

Targeting mitochondrial respiration and OXPHOS is also an attractive treatment
option (Figure 1). FOXM1 regulates the metabolism of myeloma cells by upregulating
glycolysis and OXPHOS. NB73, a small-compound inhibitor of FOXM1, inhibits MM
cell growth by promoting FOXM1 degradation, suggesting that NB73 could become a
promising OXPHOS-targeted drug [53]. Xiang et al. reported that the expression of
OXPHOS-associated genes is associated with higher PGC-1α expression; treatment with the
PGC-1a inhibitor SR18292 was shown to significantly impair the proliferation and survival
of MM cells due to dysfunction in OXPHOS metabolism [54]. Thompson et al. reported
that PI-resistant MM cells exhibit an increased capacity for and reliance on mitochondrial
respiration [55]. The glutaminase-1 inhibitor CB-839 inhibits mitochondrial respiration and
is more cytotoxic to PI-resistant cells, suggesting that mitochondrial respiration would be a
promising target in the treatment of relapsed/refractory MM [55]. The OXPHOS inhibitor
tigecycline increases the sensitivity of cancer cells to bortezomib, a representative PI [56,57].
Inhibition of PGC-1a by SR18292 was shown to significantly impair the proliferation and
survival of MM cells due to energy exhaustion and oxidative damage [54,56]. Toll-like
receptor 4 (TLR4) induces mitochondrial biogenesis and an increase in mitochondrial mass
in human MM cells. Moreover, bortezomib (BTZ) exposure activates TLR4 signaling in
BTZ-resistant MM cell lines. Combining BTZ with the selective TLR4 inhibitor TAK-242
was shown to overcome drug resistance by inducing more intense and extended oxidative
stress, leading to mitochondrial depolarization and severe impairment of mitochondrial
fitness [58].

In the MM niche, TNT-mediated transcellular transfer of mitochondria from neigh-
boring BMSCs to MM cells supports OXPHOS in MM cells, and this process is dependent
on CD38 expression [76]. CD38 is a transmembrane glycoprotein present both on the cell
membrane and in the intracellular compartment [92]. MM cells express high levels of CD38.
Therefore, monoclonal antibodies against CD38 (e.g., datatumumab and isatuximab) can be
used to successfully treat MM [92]. Anti-CD38 monoclonal antibodies have several mecha-
nisms of action, including antibody-dependent cellular cytotoxicity, antibody-dependent
cellular phagocytosis, complement-dependent cytotoxicity, direct cellular apoptosis, and
modulation of extracellular ectoenzyme activity [93]. Importantly, MM patients receiving
anti-CD38 antibody therapy have shown superior survival benefit. Nevertheless, MM cells
may eventually acquire resistance to anti-CD38 antibody therapy in these patients [94].
Increased CD38 expression facilitating mitochondrial transfer from BMSCs to primary MM
cells is one potential resistance mechanism [50,52]. CD38 expression blockade was shown
to inhibit mitochondrial transfer, reduce tumor volume, and increase overall survival in
mice [50,52]. These reports suggest that TNT inhibition using anti-CD38 antibodies may be
a useful anti-myeloma therapy.

5. Conclusions

With the advent of novel therapeutic drugs, especially monoclonal antibody im-
munotherapies and CAR-T therapies, the prognosis of patients with MM has improved
dramatically. However, MM cells typically eventually develop resistance; therefore, eluci-
dation of the mechanisms via which these cells acquire resistance is urgently needed.

Research has shown that MM cells acquire drug resistance via contact with BMM
constituents such as BMSCs. In particular, CAM-DR plays an important role in this process,
and therapeutic agents that overcome resistance mediated by CAM-DR are, thus, being
developed. Furthermore, recent data indicate that drug resistance is dynamically induced
through mitochondrial transfer between MM cells and other BMM cells via TNTs, providing
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additional new therapeutic targets. Successful application of these therapies in clinical
practice could bring us one step closer to making MM a curable disease.
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