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ABSTRACT: A matched molecular series is the general form of a
matched molecular pair and refers to a set of two or more molecules
with the same scaffold but different R groups at the same position.
We describe Matsy, a knowledge-based method that uses matched
series to predict R groups likely to improve activity given an
observed activity order for some R groups. We compare the Matsy
predictions based on activity data from ChEMBLdb to the
recommendations of the Topliss tree and carry out a large scale
retrospective test to measure performance. We show that the basis
for predictive success is preferred orders in matched series and that
this preference is stronger for longer series. The Matsy algorithm
allows medicinal chemists to integrate activity trends from diverse medicinal chemistry programs and apply them to problems of
interest as a Topliss-like recommendation or as a hypothesis generator to aid compound design.

■ INTRODUCTION

Matched molecular pair analysis (MMPA) has proven to be a
powerful tool to rationalize and predict many aspects of
structure−activity relationships (SARs) within a series of
analogues.1−3 MMPA is based upon the concept of a matched
(molecular) pair which in the simplest case is defined as two
molecules with the same scaffold but which have different
substituents at a particular position (R groups). The power of
MMPA is derived from the hypothesis that changes in property
values are easier to predict than absolute values. Furthermore, as
the property change is associated with a single structural change,
the origin of the property change is clearly defined.
MMPA has successfully been used for the prediction of

physicochemical properties such as log P and solubility.4 It has
also has been used to find bioisosteres, R group or molecular
scaffold replacements that retain biological activity across a wide
range of targets.5,6 However, as a guide to improving biological
activity, MMPA has had limited success as a general method.
Hajduk and Sauer7 analyzed SAR data for 84 000 compounds
from lead optimization programs against 30 protein targets at
Abbott Laboratories and found that the potency changes
associated with most R group transformations were (nearly)
normally distributed around zero. For the specific case of the
“magic methyl”, Jorgensen8 also found a normal distribution of
potency changes for H → Me centered around zero.
The difficulty in applying MMPA to predicting biological

activity is that such an analysis involves averaging data from
diverse binding sites with different SAR characteristics, hence the
distributions observed byHajduk and Sauer. This is in contrast to
using MMPA for physicochemical properties which depend on
molecular interactions with bulk solvent rather than on the

specific nature of the protein environment around the bound
ligand. Indeed several physicochemical properties may be
predicted reasonably well using group or atomic contribution
approaches (e.g., log P 9), and so it is not surprising that the
change in property value caused by an R group replacement can
be calculated.
Several approaches have been adopted to address this

deficiency of MMPA by restricting the analysis to those matched
pairs having the same context (in some way) as the scaffold or
target of interest. The simplest approach is to use only matched
pairs obtained from the same assay for the same target. Where
sufficient data are available, for example, for common off-targets,
or where the activity correlates strongly with a physicochemical
descriptor, this approach may work well; for example, inhibition
of the hERG potassium channel correlates strongly with log D.10

Papadatos et al.11 and Warner et al.12 (“WizePairZ”) have gone
further and included context in the form of the atom
environment around the R group attachment position. The 3D
matched pair approach of Posy et al.13 used 3D protein−ligand
structures to restrict predictions to those matched pairs where
the R group is in the same location in the binding site. For many
targets an alternative approach is required, as sufficient matched
pair data for a particular target does not exist. In addition
matched pair data from targets with similar binding sites may also
yield useful predictions. The VAMMPIRE database of Weber et
al.14 uses 3D protein−ligand structures to characterize the amino
acid environment of a particular matched pair under the
assumption that if the environment is the same, then the same

Received: January 6, 2014
Published: March 6, 2014

Article

pubs.acs.org/jmc

© 2014 American Chemical Society 2704 dx.doi.org/10.1021/jm500022q | J. Med. Chem. 2014, 57, 2704−2713

Terms of Use CC-BY

pubs.acs.org/jmc
http://pubs.acs.org/page/policy/authorchoice/index.html
http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html


matched pair transformation will always have the same effect on
binding affinity.
Here we describe a method that uses matched molecular series

to predict R groups that improve binding affinity. The concept of
matched series was introduced in 2011 by Wawer and Bajorath15

(“matching molecular series”) as a generalization of matched
pairs; where matched pairs involve exactly two molecules (i.e., N
= 2) with the same scaffold but different R groups, a matched
series may contain two or more molecules (i.e.,N≥ 2; see Figure
1).Matched series have been extensively investigated by Bajorath

and co-workers in the context of SAR transfer,16−19 mechanism
hopping,20 and the visualization of SAR networks15 and SAR
matrices.21 With the SAR transfer approach, one searches a
database to find matched series where the corresponding
activities are highly correlated with a query matched series.
When found, any additional R groups in the database match that
have improved activities are considered likely to improve activity
also in the query series. Mills et al.22 have used the same concept
(“series with well-matched SARs”) to predict compounds with
improved potency by finding matching series in the Pfizer
database. The SAR transfer methods described by Mills and
Bajorath work well for longer matched series (about N > 6,
although theymight work well for shorter series if using a focused
data set) if a match to the series can be found with high activity
correlation. However, in general, either no such match can be
found (particularly for publicly available data) or the series length
is too short for a specific match.
Our algorithm (“Matsy” from “MATched SEries”) uses a

statistical approach to predict the R groups most likely to
improve activity given an observed activity order for a matched
series. A similar statistical approach has been used previously for
matched pair data (Leach et al.,4 for example) and for triplets
(Mills et al.22 describe the use of a third R group to add context to
a matched pair). We identify the basis for predictive success as
preferences for particular orders in matched series and show that
the longer the matched series, the more successful it will be at
predicting activity. The method is validated using a retrospective

test that places a lower bound on expected prospective
performance. We compare the data-driven predictions of the
Matsy algorithm with those of the rationally designed Topliss
tree23 to show how the algorithm could be used in practice to
guide a medicinal chemistry project. The results presented here
describe a practical method to exploit SAR data from historical
medicinal chemistry projects to yield concrete prospective
guidance for new projects.

■ RESULTS

Preferred Order of Matched Series. The predictive
method proposed, Matsy, relies on the hypothesis that a
particular matched series tends to have a preferred activity
order, for example, that not all six possible orders of [Br, Cl, F]
are equally frequent (see Methods for details of this notation).
Although a rather straightforward idea, we have been unable to
find any quantitative analysis of this question in the literature. Let
us consider two examples of R group substituents that frequently
occur in medicinal chemistry projects: a set of halides and a set of
alkanes of increasing length.
Table 1 shows the details of the halide set. There are 15 588

instances of ordered matched series for [H, F] in the data set,
3849 of [H, F, Cl], and 982 of [H, F, Cl, Br]. Table 1 also shows
the values for the enrichment defined as the ratio of the observed
frequency to that expected by chance, assuming all N! orders of
the series are equally likely.
For the series of length 2 (the matched pairs) the maximum

enrichment observed (1.06) is not very large. However, on
moving to longer series, there is a large increase in the maximum
enrichment from 1.06 to 1.85 to 5.62. The most frequent order
for the quartet is [Br > Cl > F > H], where the order of activity
corresponds to increasing molecular weight. The second most
frequent order is a slight variation that may correspond to
situations where the Br is too large to fit the binding site. The
third most frequent order is the exact opposite of the most
frequent, with the R groups decreasing in activity with increasing
molecular weight. The frequency table also highlights orders that
are unfavored or occur less frequently than expected by chance.
For example, the least frequent order is [Br > H > F > Cl].
Examples of the most frequent and least frequent orders are
shown in Figure 1.
The data for the alkanes are shown in Table 2. There are 6349

instances of ordered matched series for [C, CC] in the data set,
1166 of [C, CC, CCC], and 404 of [C, CC, CCC, CCCC].
Again, on moving to longer matched series, the maximum
enrichment increases from 1.00 to 1.79 to 5.64.
These two examples illustrate the general observation that

longer matched series are more likely to exhibit preferred orders
while matched pairs exhibit only a small preference if any. Indeed
it is striking that while [CCCC > CCC > CC > C] occurs 5.64
more than expected by chance, the [C, CC] matched pair shows
almost no preferred order. At the matched pair level, the signals
from all of the preferred orders from longer matched series cancel
each other out.

Matsy Algorithm: Prediction of Substituents That Will
Improve Activity. Let us consider the question “If we have
observed that [H > F > Cl], would Br be likely to increase the
activity further?” Using just the data in Table 1 , there are 69
observations of [H > F > Cl > Br], 30 of [H > F > Br > Cl], 20 of
[H > Br > F > Cl], and 9 of [Br >H > F >Cl]. In other words, out
of 128 observations of [H > F > Cl] in combination with Br, in
only 9 cases (7%) did Br increase the activity. In addition, the fact

Figure 1. Activity data for two examples of the same matched series [H,
F, Cl, Br]. The example on the left from Carroll et al.32 (binding to
dopamine transporter) has the most preferred order [Br > Cl > F > H],
while that on the right from Chavette et al.33 (inhibition of COX-2) has
the least preferred order [Br > H > F > Cl].
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that the enrichment for [Br > H > F > Cl] is very low (at 0.22)
indicates that this is not a likely order.
The actual question we wish to answer is “Given an observed

order for a matched series, what substituent is likely to improve
the activity?” The prediction method we propose follows from
the previous example, and we refer to this algorithm as the Matsy
algorithm.
Let us suppose that we have synthesized and measured the

activity of two analogues in a matched series, that is, [A, B], and
their observed activity order is [A > B]. We wish to make a
prediction for what substituent Rwill increase the activity further,
i.e., such that [R > A > B]. For each potential substituent R, the
database is searched for all instances of the matched series [R, A,
B] with [A > B]. The percentage of cases where [R > A > B] is
true is then calculated. The substituent R associated with the
highest percentage is then considered the most likely to increase
activity. This procedure is illustrated in Figure 2. A cutoff is
typically applied as described in the Methods.
Table 3 shows the top five predictions for [CCC > CC > C]

using a cutoff of 20. Not surprisingly, the method predicts that

longer or more bulky alkanes will increase the activity further.
The top prediction is a hexyl chain which was observed 53 times
in combination with [CCC > CC > C]; in 40 of those cases
(75%) it was associated with increased activity. The targets
associated with these 40 cases are diverse and include 22 GPCRs
(muscarinic acetylcholine, glucagon, endothelin, and angiotensin

Table 1. Preferred Activity Order for Halide Matched Series

series enrichment p (corrected)a observations

F > H 1.06 0.000 (0.000) 8250
H > F 0.94 0.000 (0.000) 7338
Cl > F > H 1.85 0.000 (0.000) 1185
H > F > Cl 1.08 0.038 (0.189) 690
F > Cl > H 0.88 0.001 (0.005) 566
Cl > H > F 0.79 0.000 (0.000) 504
F > H > Cl 0.78 0.000 (0.000) 503
H > Cl > F 0.63 0.000 (0.000) 401
Br > Cl > F > H 5.62 0.000 (0.000) 230
Cl > Br > F > H 2.79 0.000 (0.000) 114
H > F > Cl > Br 1.69 0.000 (0.001) 69
F > Cl > Br > H 1.47 0.004 (0.090) 60
Br > Cl > H > F 1.39 0.013 (0.302) 57
Cl > Br > H > F 0.88 0.473 (10.873) 36
F > Cl > H > Br 0.86 0.380 (8.738) 35
Cl > F > Br > H 0.83 0.299 (6.880) 34
Br > H > Cl > F 0.81 0.231 (5.304) 33
H > Br > Cl > F 0.76 0.128 (2.954) 31
H > F > Br > Cl 0.73 0.093 (2.132) 30
Br > F > Cl > H 0.68 0.038 (0.865) 28
F > Br > Cl > H 0.66 0.025 (0.574) 27
F > H > Cl > Br 0.61 0.008 (0.191) 25
Cl > F > H > Br 0.56 0.003 (0.069) 23
Cl > H > F > Br 0.49 0.000 (0.009) 20
H > Br > F > Cl 0.49 0.000 (0.009) 20
Cl > H > Br > F 0.46 0.000 (0.004) 19
Br > F > H > Cl 0.44 0.000 (0.002) 18
H > Cl > Br > F 0.44 0.000 (0.002) 18
F > H > Br > Cl 0.42 0.000 (0.001) 17
H > Cl > F > Br 0.37 0.000 (0.000) 15
F > Br > H > Cl 0.34 0.000 (0.000) 14
Br > H > F > Cl 0.22 0.000 (0.000) 9

aThe p-value measured the likelihood of the observed enrichment
occurring by chance. This was measured using a two-tailed binomial
test. The p-value was corrected for multiple testing using the
Bonferroni correction. This is a conservative correction that involves
multiplying the original p-value by the degrees of freedom. Here there
were N! − 1 degrees of freedom, and so the values for N = 4 were
corrected by multipling by 23. Values are considered to be significant if
the corrected p-value is ≤0.05.

Table 2. Preferred Activity Order for Alkane Matched Series

series enrichment p (corrected) observations

CC > C 1.00 0.744 (0.744) 3188
C > CC 1.00 0.744 (0.744) 3161
CCC > CC > C 1.79 0.000 (0.000) 348
C > CC > CCC 1.32 0.000 (0.000) 256
CC > CCC > C 1.04 0.556 (2.778) 202
CC > C > CCC 0.96 0.582 (2.912) 187
C > CCC > CC 0.57 0.000 (0.000) 111
CCC > C > CC 0.32 0.000 (0.000) 62
CCCC > CCC > CC > C 5.64 0.000 (0.000) 95
CCC > CCCC > CC > C 3.15 0.000 (0.000) 53
CC > C > CCC > CCCC 1.54 0.033 (0.755) 26
CC > CCC > CCCC > C 1.49 0.046 (1.064) 25
C > CC > CCC > CCCC 1.49 0.046 (1.064) 25
CCC > CC > CCCC > C 1.49 0.046 (1.064) 25
CC > CCC > C > CCCC 1.37 0.133 (3.066) 23
CC > C > CCCC > CCC 0.83 0.617 (14.193) 14
CCC > CC > C > CCCC 0.83 0.617 (14.193) 14
CCCC > CC > CCC > C 0.77 0.453 (10.420) 13
CC > CCCC > CCC > C 0.59 0.104 (2.387) 10
C > CCC > CCCC > CC 0.53 0.060 (1.379) 9
CCCC > CCC > C > CC 0.53 0.060 (1.379) 9
C > CCC > CC > CCCC 0.53 0.060 (1.379) 9
CC > CCCC > C > CCC 0.42 0.012 (0.274) 7
C > CCCC > CC > CCC 0.42 0.012 (0.274) 7
C > CCCC > CCC > CC 0.36 0.004 (0.089) 6
CCCC > C > CCC > CC 0.36 0.004 (0.089) 6
C > CC > CCCC > CCC 0.36 0.004 (0.089) 6
CCC > C > CC > CCCC 0.30 0.001 (0.025) 5
CCC > CCCC > C > CC 0.30 0.001 (0.025) 5
CCCC > CC > C > CCC 0.24 0.000 (0.009) 4
CCC > C > CCCC > CC 0.24 0.000 (0.009) 4
CCCC > C > CC > CCC 0.24 0.000 (0.009) 4

Figure 2.Overview of theMatsy algorithm. Given a database of matched
series and a query matched series, the algorithm identifies R groups
likely to improve activity.
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receptors), 5 oxidoreductases (cytochrome P450 and cyclo-
oxygenase), 3 acyltransferases, and 3 hydrolases. Futher details of
the 40 targets and scaffolds are included in the Supporting
Information. The scaffolds are diverse, even where the same
target is involved multiple times (as for the muscarinic
acetylcholine receptor), although duplicates do exist.
When the order of the ethyl and propyl is swapped to give [CC

> CCC > C], the predictions change accordingly (Table 4).
While longer alkyl groups are still featured, the knowledge-based
predictions now highly rank the less bulky isopropyl and tert-
butyl groups. The top prediction of tert-butyl was observed to
increase the activity 9 times (39%) out of 23 observations in
combination with the query. While the absolute percentage
values are much lower than in Table 3, by digging down into the

underlying data and assessing it by comparison to the actual
target or compound of interest, a decision can be made whether
to proceed withmaking the tert-butyl analogue or not. In this case
the nine targets include three proteases (HIV-1 protease and
cathepsin K), two kinases (serine/threonine protein kinase ATR
and CDK2), and a single GPCR (melanin-concentrating
hormone receptor).

Comparison with the Topliss Tree. The idea behind the
Matsy algorithm is that general trends in activity exist across
different targets and scaffolds and that these trends can be used to
make predictions. In one of the best known applications of this
idea, Topliss23 described a decision tree approach to guide a
medicinal chemist to the most potent analogue by rational
analysis of the activity order observed so far. The Matsy
algorithm may be considered the data-driven equivalent to the
Topliss tree based on observed trends in the data, and it is
interesting to compare the predictions from Matsy with the
guidance provided by Topliss.
Topliss described a decision tree for a substituted phenyl ring,

a subset of which is reproduced in Figure 3a. Given that [4-Cl >
H], Topliss recommends 3,4-diCl. This is also the top prediction

by Matsy (54% of 326 observations, using a cutoff of 100). If this
group is indeedmore potent, then Topliss recommends 3-CF3-4-
Cl or 3-CF3-4-NO2 whereas Matsy recommends 2-naphthyl to
replace the phenyl (30% of 50, cutoff of 20) or 4-NO2 (28% of
40). However it is worth noting that if the cutoff is reduced to 10,
then the Matsy recommendation is also 3-CF3-4-Cl (36% of 11).
For the situation where 3,4-diCl does not improve the activity
beyond Cl, i.e., [4-Cl > 3,4-diCl > H], Topliss recommends 4-

Table 3. Top Five Predictions for Substituents That Will
Improve Activity for the Query [CCC > CC > C]

Table 4. Top Five Predictions for Substituents That Will
Improve Activity for the Query [CC > CCC > C]

Figure 3. (a) Decision tree described by Topliss23 for a substituted
phenyl ring. The abbreviations used follow Topliss (e.g., 4-Cl means 4-
chlorophenyl). Only the portion of the Topliss tree discussed in the text
is shown (the dotted lines indicate further branches). (b) Matsy
predictions for a substituted phenyl ring given either [H > 4-Cl] or [4-Cl
> H]. The 2-naphthyl replaces the phenyl ring (rather than being a
substituent).
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CF3, 4-Br, or 4-I. The topMatsy recommendations are 4-Br (53%
of 34, cutoff of 20), 4-NO2 (33% of 27), 4-OMe (27% of 60), and
2,4-diCl (19% of 26). Apart from the 4-OMe, the others all
appear on that branch of the Topliss tree.
On the left-hand branch of the tree, there is less agreement.

Given that [H > 4-Cl], Topliss recommends 4-OMe while Matsy
recommends 4-OH (45% of 134, cutoff of 100). In fact, the 4-
OMe is the 20th recommendation (26% of 668) and that
particular order is not considered to be enriched (enrichment of
0.78 based on 1356 observations). If it turns out to bemore active
than the phenyl, i.e., [4-OMe > H > 4-Cl], then Topliss
recommends 4-N(Me)2 whereas Matsy is even more insistent on
4-OH (65% of 31, cutoff of 20). If instead it turns out to be less
active than 4-Cl, i.e., [H > 4-Cl > 4-OMe], Topliss recommends
3-Cl which is the fourth recommendation of Matsy (39% of 84,
cutoff of 20) after 2-F (48% of 46), cyclohexyl (45% of 31), and
4-OH (31% of 39).
Figure 3b summarizes the “Matsy trees” for [H > 4-Cl] and [4-

Cl >H], showing the results if theMatsy predictions are followed
at the first branch rather than the Topliss recommendations.
Case Study: Sunitinib. Sunitinib is a receptor tyrosine

kinase inhibitor used to treat renal cell carcinoma and
gastrointestinal stromal tumor. The ChEMBL assay
CHEMBL768949 (Sun et al.24) contains the matched series [F
> Cl > Br >H] for IC50 values of the structure shown in Figure 4a

against PDGF-Rβ (platelet-derived growth factor receptor β);
the fluorine analogue is sunitinib. If the fluorine is removed and
the remaining members are used as a query (i.e., [Cl > Br > H]),
then the Matsy predictions based on the kinase data set (see
Methods) are methyl (24% of 36 observations), methoxy (22%
of 37 observations), fluorine (17% of 47 observations after
removing the self-prediction), and CF3 (5% of 22 observations).
Although improving potency is only one aspect of the

multiobjective problem that is developing a drug, it is interesting
to see whether Matsy can predict R groups that would improve
the binding affinity further. Given [F > Cl > Br > H] as a query
and again using just the kinase data, Matsy finds the eight R
groups shown in Figure 4c. Each of these R groups was observed
5 times in combination with the query, and in all of the 5 cases

each showed improved binding affinity over sunitinib. However,
on inspection the primary sources of the data are two assays
against CDK1 and CDK2 in the same paper (Bramson et al.25)
involving the scaffold shown in Figure 4b; the other three
observations are duplicate reports in more recent literature.
Although the evidence for these R groups turns out to be based
simply on a single paper, the similarity of the scaffolds may
indicate a potential for SAR transfer.

Retrospective Test of the Matsy Algorithm. To assess
the predictive ability of ordered matched series, we took matched
series with known activities, removed the most active R group
(the reference), and checked whether it occurred in the top five
Matsy predictions (see Methods for details). Note that not being
able to find the known R group in the top five does not
necessarily mean that the predictive method failed. There may be
one or more true actives in the five predictions, and this would be
a positive outcome. However, since we can only assess the
method on the basis of the known data, the measure of success
will be the percentage of cases where the reference appears in the
top five. This value is a lower bound on the true measure of
success and will be used to compare performance of different
data sets.
The average results from the 100 repetitions (see Methods)

are shown in Figure 5, while Table 5 shows in more detail the
corresponding values for the first of the 100 repetitions. Figure 6
shows the predicted rank of the reference substituent (where the
reference substituent was listed in the predictions) for the data
described in Table 5.
As shown in Figure 5, for those cases where predictions were

made, the quality of predictions increases with increasing length:

Figure 4. Scaffolds (a, b) and R groups (c) from the sunitinib case study.

Figure 5. Retrospective test results for the Matsy algorithm. The results
denoted as “base” are those obtained using the entire matched series as
present in the test set, while “shorten” indicates the results obtained if
the series is shortened when no prediction is originally found (see text
for details). The “null model” uses the most common substituents.

Journal of Medicinal Chemistry Article

dx.doi.org/10.1021/jm500022q | J. Med. Chem. 2014, 57, 2704−27132708



from 6.1% for matched pair data through 19.6% forN = 3, 39.6%
forN = 4, and 52.6% forN = 5 (the value of 44.2% forN = 6 is on
the basis of only a small number of results and has large error
bars). However, at the same time, the percentage of series for
which predictions could be made decreases rapidly with
increasingly series length: 84.3% for N = 2, 53.7% for N = 3,
27.4% for N = 4, 8.0% for N = 5, and 0.4% for N = 6. No
prediction is made where there is no match to the query series in
the database or where there are insufficient observations to have
confidence. These situations may arise in particular for longer
series because of the smaller number of such series in the data set
as well as the increasing number of ways in whichN items may be
ordered.
One approach to handling cases where no predictions are

made is to successively remove the least common substituent
until either some predictions are made or the series is too short.
Here we define too short as series of length 3. In other words, a
series of length 5 might be shortened first to 4 and then to 3 to
find predictions but it will not be shortened further. The results
are shown as the dashed line in Figure 5. Predictions are now
made for 53−66% of the series, but as expected, the percentage
success is reduced compared to the original test as the more
accurate results for longer series are combined with less accurate
results for shorter subseries.
To put these results in context, we compared the performance

of the Matsy algorithm to that of a very simple prediction
method:What if we use the five most frequent substituents in the
training set series (that do not occur in the query) as the
predictions? The five most frequent substituents were hydrogen,
methyl, phenyl, chloro, and methoxy. Figure 5 shows the results
compared to the Matsy algorithm; this trivial prediction method
does surprising well because of the fact that the five most
frequent substituents comprise 32.5% of the training data, and so
just by chance they will often occur at the top of any matched

series. In fact, the Matsy predictions for N = 2 are beaten by this
simple method.
The median numbers of predictions for the data in Table 5 are

72 forN = 2, 16 forN = 3, 8 forN = 4, 4 forN = 5, and 2 forN = 6.
It may be argued that the relatively poor performance of matched
pairs is solely due to the fact that while a larger number of
predictions are typically generated for matched pairs, only the
top five are considered in this test. Figure 7 gives a more

complete picture of the performance by considering the top X
predictions where X is from 1 to 100 (and not just X = 5). For
example, this shows that while 40% are found in the top five forN
= 4 (Figure 7 and Table 5), to get equivalent performance when
using matched pairs, one needs to consider the top 65 and even
then the null model would perform slightly better (41%).
It is also worth considering the performance when no cutoff is

used. For the predictions summarized in Table 5, if we consider
the test to pass when the reference R group appears anywhere in
the predictions, then the success rates are 62% forN = 2, 62% for
N = 3, 61% for N = 4, 58% for N = 5, and 48% for N = 6. That is,

Table 5. Retrospective Test Results for Series of Different
Lengths

series
length

test set
size predictions

number in
top five

% found
predicteda

% found
overallb

2 41789 35251 (84%) 2124 6 5
3 37313 19982 (54%) 3926 20 11
4 29807 7942 (27%) 3180 40 11
5 20792 1682 (8%) 891 53 4
6 14655 52 (0%) 25 48 0

aThe percentage of series where predictions were made, where the
reference R group appeared in the top five predictions. bThe
percentage of all test series, where the reference R group appeared
in the top five predictions.

Figure 6. Rank of the reference substituent in the Matsy predictions (if present).

Figure 7. Effect on performance of searching for the reference R group
in the top X predictions, where X is from 1 to 100. The “null model” uses
the most common substituents. The curve forN = 6 levels off at X = 4 as
the reference R group (if present) never appears beyond the top 4;
similarly the N = 5 curve levels off at X=20 and N = 4 at 84.
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almost equivalent performance is found for N = 5 and its four
predictions (on average) as forN = 2with 18 times the number of
predictions.
Further tests were carried out to investigate whether using a

focused subset of the data would perform better, that is, whether
kinase data are better at predicting kinases (as done for the
sunitinib case study earlier) and similarly for GPCR data. These
tests are described in the Supporting Information. Although the
amount of data available is much less, it appears that for shorter
series at least the focused subset performs better.
Correlation with Physicochemical Properties. Increased

binding affinity as measured by pIC50 may correlate trivially with
a physicochemical property such as molecular weight or log P. To
check whether the predictive success of Matsy is solely linked to
such correlations, we took the 891 series of length 5 listed in
Table 5 as correctly predicted and calculated the Spearman
correlation versus a number of common descriptors, namely,
predicted log P, molar refractivity (MR), molecular weight, total
polar surface area (TPSA), and heavy-atom count. Descriptor
values were calculated using the RDKit.26

The results are shown in Figure 8. For example, the data for
log P indicate that 16 series are perfectly correlated with log P

while 55 have perfect anticorrelation. Some weak trends may be
observed: increased activity is associated with more heavy atoms,
lower log P and MR, and greater TPSA. It is clear, however, that
the activity order observed is not explained by any one descriptor.

■ DISCUSSION
TheMatsy algorithm is an extension of the SAR transfer methods
developed by Mills and Bajorath. Whereas those methods make
predictions based on a single match to an ordered series in a
database, our approach combines the results from multiple
matches to come up with R groups most likely to improve
activity. In the limit of a single match in the database the Matsy
predictions are identical to those made using SAR transfer,
although in practice a minimum cutoff of five observations (or
more if possible; see Methods) is recommended when using the
Matsy algorithm so that the calculated likelihoods are reliable.

The basis of the Matsy algorithm is that particular matched
series have preferred orders. For example, if each of the 24 orders
of [hexyl, C, CC, CCC] were equally likely, then the hexyl would
not rank particularly highly in Table 3. The reason that it does is
that the order [hexyl > CCC > CC > C] is enriched. An
alternative and equally valid way of looking at this is that instead
of basing our prediction on all of the matched pairs [hexyl,
CCC], we have used the information that [CCC > CC > C] is
true to filter the matched pairs to just those that are most
relevant. To illustrate this, the entire data set shows that [hexyl >
CCC] is true in 65% of cases, compared to 75% when [CCC >
CC > C]. As discussed in the Introduction, this can be seen as
another example of annotating matched pairs using context; in
this case the context is the presence of an observed activity order
for a query matched series. Knowing the relative activities of two
(or more) R groups tells us more information than just
considering an R group on its own. Some matched pairs studies
have touched on this idea. Mills et al.22 refer to “local SAR” and
Hajduk and Sauer7 to “compound triplets”. However, we believe
that matched series provide a simpler and more elegant approach
to the handling of activity orders between more than two R
groups at the same scaffold position.
Note that the observed frequencies in preferred orders may be

affected by sampling bias. For example, with reference to the data
in Table 2, if we assume that the shorter carbon chains would
have been synthesized and analyzed first, then the butyl analogue
would not have been synthesized unless it was expected to
improve the activity. Therefore, except for those cases where the
four analogues were synthesized prior to any measurement of
activity, there will be an increased frequency in the database for
those orders involving butyl at themore active end of the series of
four.
The origin of the preferred orders of particular series has not

been investigated in the current study beyond ruling out a general
link to simple physicochemical descriptors. Topliss27 related the
possible potency orders of five substituted phenyl rings to the
Hansch π and σ parameters and steric effects. Mills et al.22

describe the identification of “well-matched SARs” as a purely
empirical approach that could work because the binding pockets
are similar or because of similar steric and conformational
constraints. Weber et al.14 in their 3D method assume that
potency changes relating to a particular matched pair trans-
formation must depend on the protein atoms around that
location and are able to rationalize a published SAR relationship
for COX-2 on the basis of matched pairs from similar
environments in factor Xa and thrombin.
The Matsy algorithm may be considered a formalism of

aspects of how a medicinal chemist works in practice. Observing
a particular trend, a chemist considers what to make next on the
basis of chemical intuition, experience with related compounds
or targets, and ease of synthesis. The structures suggested by
Matsy preserve the core features of molecules while recommend-
ing small modifications, a process very much in line with the type
of functional group replacement that is common in lead
optimization projects. This is in contrast to recommendations
from fingerprint-based similarity comparisons where the
structural similarity is not always straightforward to rationalize
and near-neighbors may look unnatural to a medicinal chemist.
The algorithm may also be seen as a way to package existing

SAR data frommultiple medicinal chemistry projects andmake it
available as a tool to help decision-making in other projects. One
can view it as a recommender system28 (“I see that the observed
activity order in your project is [C > CC > CCC]; 30% of

Figure 8. Spearman correlations between the activity order of 891
matched series of length 5 and their calculated descriptor values. The
graph labeled “random” indicates the frequencies of different
correlations for 891 random series (created using 100 000 random
series and then scaled).
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matched series that displayed this activity order had improved
activity with chlorine.”) or as a tool for hypothesis generation or
simply as a way to navigate and explore existing SAR information.
It is a completely knowledge-based method, and all predictions
can be linked back to the underlying data, the targets and
structures from which the predictions are derived. There is no
black box, fingerprint calculation, or complex machine-learning
model. All of the information used to make the prediction is
available and can be inspected. This means that in practice one
can look beyond the stated statistical preference of a particular
substituent and assess whether the supplied prediction is likely to
apply in a particular case. The results are also dynamic, with
predictions being updated as new data are incorporated into the
underlying data set.
Being a knowledge-based method also comes with certain

disadvantages, as it is not possible to extrapolate beyond the
underlying training set. For example, there may be little or no
data for unusual or uncommon substituents. As shown in the
evaluation, a more serious problem is that even where
substituents are common, a particular matched series may not
be. For longer matched series this is particularly true (see Figure
5), a situation that can only be improved by using larger
databases of assay data; in this respect it is worth mentioning the
approach of MedChemica3 who pools matched pair data from
several pharmaceutical companies for mutual gain. To handle the
situation in practice, the approach described earlier is useful
where the least common substituent in a matched series is
successively removed until a prediction can be made.
Here we have focused on improving binding affinities.

However, the Matsy algorithm can be used equally well to
predict R groups that decrease binding affinity to an antitarget
given a particular matched series. In practice, selectivity between
very similar binding sites may be difficult to achieve if it relies on
subtle differences that are unique to one or the other, as the
predictive method relies on matches in the underlying database.
All of the work described here used publicly available activity

data abstracted from the literature by the ChEMBL group. If this
were to be applied to in-house pharmaceutical data, it is expected
that equivalent or better results would be obtained because there
would be a large number of results from a smaller number of
assays. Furthermore, given the systematic approach of medicinal
chemists in pharmaceutical companies toward the synthesis and
testing of structural series, the quantity of matched series data
available in-house is also expected to be larger.

■ CONCLUSIONS
We have developed an algorithm, Matsy, for predicting R groups
that improve biological activity given an observed activity order
for other R groups. This is similar to the decision tree approach
described by Topliss except that predictions are linked to
observed data rather than a proposed rationale.
The basis of the method is preferred activity orders in matched

series. We show that there is little enrichment of particular orders
in matched pair data (in agreement with previous work) but that
as onemoves to longer matched series, themaximum enrichment
increases significantly and it is possible to identify trans-
formations that increase activity. By measuring performance in
a retrospective test, we show that longer series are more
predictive and that these predictions are not simply driven by
correlations to physicochemical properties. In short, the concept
of matched molecular series is muchmore effective thanmatched
molecular pairs at capturing and predicting trends in biological
activity.

Our algorithm provides a straightforward way for medicinal
chemists to apply matched series information from previous
medicinal chemistry projects to their project, whether as an
absolute guide, a hypothesis generator, or simply a way of
querying existing activity data.

■ METHODS
Ordered Matched Series. A matched (molecular) series is a

straightforward extension of the concept of a matched pair to encompass
more than just a pair of molecules. Specifically, here we consider a
matched series to be a set of two or more molecules all of whose
structures can be interconverted by replacement of terminal groups at
the same point. A matched series of length 2 is synonymous with the
term matched pair.

Rather than consider a specific set of molecular structures, it is useful
to consider generic matched series as characterized by just the structural
replacements, e.g., the matched series [F, Cl, Br]. This represents not
just the specific three molecules that comprise a matched series but all
other sets of three structures that just differ by halide replacement at the
same position.

In general, a matched series describes a set of molecules without any
implicit ordering. An ordered matched series is one where the set of
molecules is ordered with respect to some experimental property, for
example, binding affinity to a protein. For example, the ordered matched
series [F > Cl > Br] may indicate a set of halides where the fluorine
analogue has the best binding affinity to a particular target, followed by
the chlorine analogue and then the bromide.

Data Set of Matched Series from ChEMBLdb. All analyses
presented use pIC50 data derived from the IC50 values in ChEMBLdb
16.29 The assays with which these data are associated are grouped into
three types: “B” for binding data, “F” for functional assays, and “A” for
ADMET. Only data from assays marked as type “B” were included. In
total, this came to 188 801 assays and 2 165 644 data points. For certain
analyses, a subset of these data relating to kinases or GPCRs was used.
Information on which targets are kinases and GPCRs is available from
ChEMBL as part of the Kinase SARfari and GPCR SARfari interfaces.
The kinase data set includes 24 288 assays and 144 036 data points,
while the GPCR data set includes 31 693 assays and 282 731 data points.

All matched series in these data were calculated using the method of
Hussain and Rea30 using in-house Python code and the OEChem
toolkit.31 The fragmentation scheme used involved a single cut at each
acyclic single bond in turn if either end of the bond was involved in a ring
or if the bond was between a non-sp2-hybridized carbon atom and a non-
carbon atom. Scaffolds were required to have 5 or more heavy atoms,
while R groups were required to have 12 or fewer heavy atoms.

Figure 9 gives an overview of the distribution of the matched series of
different lengths. Note that although there were only 9197 matched
series of length 6, there are many more matched series of length 6

Figure 9. Histogram showing the frequency of matched series of
different lengths. Note that the y axis uses a log scale.
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embedded in series that are longer. The five most common R groups in
the matched series data set are hydrogen, methyl, phenyl, chloro, and
methoxy.
IC50 values in ChEMBLdb may be marked as “NA” (not active) or

include qualifiers such as “>1000”. As all of our analyses rely simply on
the order of values, “NA” values were rank-ordered at the bottom of any
series. For values with qualifiers, the qualifier was simply removed.
Use of Cutoffs for Matsy Predictions. To avoid spurious results

when using Matsy such as 100% improvement based on a single or low
number of observations as for D and E in Figure 2, it is useful to
implement a cutoff for the number of observations required. We have
found that a value of 20 observations provides a useful initial cutoff. If no
predictions initially pass the cutoff, then this is reduced to 10 and finally
5. After this there are two approaches: either no prediction is made or
else members of the series are removed until a prediction is made for a
subseries. Since inability to predict is due to insufficient data, the R
group removed was chosen to maximize the number of observations of
the remaining ordered matched series; typically this is the least common
R group.
Training and Test Data for Retrospective Test.The training and

test data were chosen to simulate prospective prediction. The training
set was all data in our ChEMBLdb-derived pIC50 data set from before
2012, while the pIC50 data from 2012 or later were used as source data to
generate the test set.
First of all, series of length 5 or shorter were discarded from the source

data. To avoid trivial predictions due to duplicates, we discarded any
series in the test set that had the same scaffold as any series in the training
set. To generate the test set for series of lengthN (whereNwas from 2 to
6), 10 subsets of length N were selected from each series in the source
data. The 10 subsets were chosen at random without replacement from
all possible subsets. Series in the test set where the activity values were
not ordered (for example, two “NA” values) were discarded. Generation
of the test set was repeated 100 times with different random seeds in
order to estimate the variance.
For each series in the test set, the R group with the highest activity was

removed. The Matsy algorithm was then used to predict substituents
that improve activity based on the remaining R groups.
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