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Abstract

Objective: Convolutional neural networks (CNNs) have achieved state-of-the-art results in various medical image segmen-
tation tasks. However, CNNs often assume that the source and target dataset follow the same probability distribution and
when this assumption is not satisfied their performance degrades significantly. This poses a limitation in medical image
analysis, where including information from different imaging modalities can bring large clinical benefits. In this work,
we present an unsupervised Structure Aware Cross-modality Domain Adaptation (StAC-DA) framework for medical image
segmentation.

Methods: StAC-DA implements an image- and feature-level adaptation in a sequential two-step approach. The first step per-
forms an image-level alignment, where images from the source domain are translated to the target domain in pixel space by
implementing a CycleGAN-based model. The latter model includes a structure-aware network that preserves the shape of
the anatomical structure during translation. The second step consists of a feature-level alignment. A U-Net network with
deep supervision is trained with the transformed source domain images and target domain images in an adversarial manner
to produce probable segmentations for the target domain.

Results: The framework is evaluated on bidirectional cardiac substructure segmentation. StAC-DA outperforms leading
unsupervised domain adaptation approaches, being ranked first in the segmentation of the ascending aorta when adapting
from Magnetic Resonance Imaging (MRI) to Computed Tomography (CT) domain and from CT to MRI domain.

Conclusions: The presented framework overcomes the limitations posed by differing distributions in training and testing
datasets. Moreover, the experimental results highlight its potential to improve the accuracy of medical image segmentation
across diverse imaging modalities.
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Introduction
Over the last years, deep convolutional neural networks
(CNNs) have been successfully used for a variety of
computer vision problems, such as image classification,1

object recognition,2 and segmentation.3 In the medical field,
CNNs have been applied to develop intelligent methods that
assist medical image diagnosis by segmenting anatomical
structures, identifying tumors, studying electronic signals,
among many others. Medical image segmentation is a critical
step in computer-aided diagnosis, where deep learning
models have thrived.4–6 Nevertheless, CNNs often rely on
high-quality and large labeled training datasets to perform
well. Given that annotating medical data are a time-consuming,
tedious, and expensive process, acquiring a large medical
dataset can be a challenge. Moreover, many supervised learn-
ing models assume that the training dataset (source dataset),
and the test set (target dataset), follow the same probability dis-
tribution. This assumption is hardly met in medical images,
where different acquisition protocols, imaging equipment,
imagingmodalities, and patient population produce a high vari-
ation across datasets.7 Research has even shown that the per-
formance of a CNN degrades in proportion to the
distribution difference between target and source domain.8,9

Several techniques have been proposed to solve the
problem of domain shift. The simplest solution is to
perform transfer learning from the source to the target
domain, and sample images from the target domain to fine-
tune the network.10 Nonetheless, this method needs suffi-
cient labeled samples from both domains, which can be
restrictive due to the high cost or complex acquiring
process. Domain adaptation approaches (DA) have also
been presented, whose objective is to transfer knowledge
across domains by learning domain-invariant transforma-
tions. In domain adaptation, it is assumed that the source
domain dataset is annotated while the target dataset can
be fully labeled, partially labeled, or completely unlabeled.7

The latter, also known as unsupervised domain adaptation
(UDA), is especially relevant as the target domain is not
required to be annotated and can broaden the applicability
to different medical datasets. UDA methods are usually
divided into two families, namely feature-level adaptation
models11 and image-level adaptation models.12 Feature-
level adaptation aims to align the feature space distribution
of the source and target domain. Meanwhile, image-level
adaptation methods reduce the gap between the two
domains by aligning the data in pixel space. Recently, a
third family of methods has been proposed, which com-
bines image- and feature-level adaptation models to
further reduce the domain shift.13,14 This type of method
has been shown to provide a better segmentation perform-
ance on the target domain as feature and image adaptation
are complementary perspectives.

While there has been relevant progress in the develop-
ment of UDA models, most works focus on the problems

of natural image segmentation13,15,16 or medical image clas-
sification17–19 Given the complex nature and dimensional-
ity of medical images, segmenting medical data is a more
challenging task. The works devoted to medical image seg-
mentation have mostly used a CycleGAN model20 to map
the source domain images to target domain and train the
segmentation network with the translated source domain
images.21,22 The challenge encountered with this approach
is that by only using an adversarial loss to train the genera-
tors responsible for the translation, there is no guarantee
that the original shape will be conserved during the
mapping. Considering that the annotation correctness
must be preserved during the transformation to succeed in
a segmentation task, this is an issue that requires special
attention. In Ref.23,24, a loss function that encourages the
preservation of anatomical structures during translation
was proposed. Nevertheless, both works present solely an
image-level adaptation method that might not be enough
when the source and target dataset suffer from a severe dis-
tribution shift. Chen et al.14 presented an unsupervised
cross-modality adaptation method that implements an
image and feature alignment. However, the whole frame-
work is trained end-to-end in one step, which is computa-
tionally and memory-intensive and can prohibit its
application in high-resolution imagery or settings were
powerful computer systems are not available.

In this work, we present Structure Aware Cross-modality
Domain Adaptation (StAC-DA), an unsupervised StAC-DA
framework for medical image segmentation. StAC-DA
implements an image- and feature-level adaptation in a
sequential two-step approach. The first step performs an
image-level alignment, where images from the source
domain are translated to the target domain in pixel space by
implementing a CycleGAN-based model. The latter model
includes a structure-aware module composed of two segmen-
tation networks that preserves the shape of the anatomical
structure during translation. The second step consists of a
feature-level alignment. In this step, a U-Net network with
deep supervision is trained with the transformed source
domain images and target domain images in an adversarial
manner to produce probable segmentations for the target
domain. Furthermore, an auxiliary discriminator network
that receives the predicted segmentations of the deep super-
vised layer is added to the model to improve the feature-level
alignment. StAC-DA is purposely designed in a sequential
manner to reduce the computational requirements during
training. Furthermore, to prevent the loss of information
between the two steps, transfer learning is applied from the
architectures from Step 1 to Step 2. The proposed framework
is evaluated on the problem of bidirectional cardiac substruc-
ture segmentation from the Multi-Modality Whole Heart
Segmentation Challenge dataset.25 We validate the proposed
method in unpaired Magnetic Resonance Imaging (MRI) and
Computed Tomography (CT) images by adapting images
from MRI to CT domain, and from CT to MRI domain.
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The experimental results show that StAC-DA outperforms
leading unsupervised domain adaptation and is ranked first
in the segmentation of the ascending aorta when adapting
from MRI to CT domain and from CT to MRI domain.
Moreover, StAC-DA is ranked third in the segmentation of
the left ventricle blood cavity and left ventricle myocardium
in the adaptation from the MRI to CT domain.

The contributions of this work are threefold. First, we
propose an image- and feature-level adaptation framework
for UDA that through its two-step implementation pre-
serves the semantic information and enhances domain
alignment. Secondly, we present a structure-aware
CycleGAN-based model that performs an image-level
alignment to emphasize shape consistency by including a
source and target domain segmentation network in the
model. Finally, we propose a validation loss function,
based on what we have denominated the class area ratio
metric, to monitor the performance of the network on the
unlabeled target dataset.

The remainder of the paper is organized as follows. Section
Related work provides an overview of related work on UDA
models for medical image segmentation. Section Method pre-
sents the two-step StAC-DA framework and the experimental
methodology. Section Results provides ablation studies and
benchmark results obtained on the unsupervised cardiac seg-
mentation task. Section Discussion contains the discussion,
and Section Conclusion presents the conclusions.

Related work
In this section, we provide a review of works on UDA for
medical image segmentation classified by feature-level
adaptation methods, image-level adaptation methods, and
combined image- and feature-level adaptation methods.

Feature-level adaptation methods

Feature-level adaptation methods transform the source and
target domain data from their original feature space to a new
shared and aligned feature space. The alignment is usually
achieved by minimizing a distance measure such as
maximum mean discrepancy,26 correlation distance,27 or
adversarial discriminator accuracy.28 In,11 Dou et al. pro-
posed a plug-and-play adversarial domain adaptation
network that aligns the target and source domain in
feature space at multiple scales. Using adversarial learning,
two discriminators are built to distinguish multilevel
features and predicted segmentation masks on the
two domains. Degel et al.29 presented a combined
deep-learning-based approach that incorporates shape
prior information and a domain discriminator to encourage
feature domain-invariance across datasets. Kamnitsas
et al.30 developed a multilevel feature adaptation method
to derive domain-invariant features with a multiconnected
domain discriminator. Although feature-level adaptation

methods are efficient, they can fail to capture low-level
appearance variance and do not enforce semantic
consistency.

Image-level adaptation methods

In image-level adaptation methods, the images from one
domain are transferred to another domain through a
pixel-to-pixel transformation. The majority of methods
achieve image translation through the application of genera-
tive models such as generative adversarial networks
(GANs).31 Zhao et al.12 proposed a modified U-Net to syn-
thesize MR brain images from CT images using a paired
co-registered image dataset. Afterwards, a MALP-EM
network32 is applied to segment the whole brain from the
synthetic MR images. Nie et al.33 proposed a context-aware
GAN that generates CT images from MR images. An
image-gradient-difference based loss is presented to allevi-
ate the blurriness of the generated CT image. Tomar et al.24

presented a self-attentive spatial adaptive normalization
method that introduces a self-attention module that
focuses on the anatomical structures of organs to improve
the image translation task. Although these methods have
shown promising results, most of them work well mainly
in datasets with a limited domain shift and can lose seman-
tic content.

Combined feature-level and image-level
adaptation methods

Recently, works have proposed using a hybrid image- and
feature-level adaptation method to mitigate severe domain
shift. Chen et al.14 presented a synergistic framework for
cardiac image segmentation. The appearance of the source
images is translated to the target domain with a cycle-
consistent GAN (CycleGAN)20 while simultaneously a
two-stream CNN is trained with a domain discriminator
to reduce the domain gap in feature space. Yan et al.34

applied a CycleGAN with a modified loss, which includes
image and feature-level similarity, to transform target
images to source domain. Afterward, a U-net network is
fully trained in the source domain and used for inference.
Cui et al.35 proposed a GAN-based bidirectional adaptive
framework, which applies a CycleGAN-based process to
translate the images from the source domain to the target
domain. During the image synthesis and semantic predic-
tion, the networks share the same encoder. Furthermore, a
self-attention mechanism and spectral normalization are
included in the generator, encoder, and discriminator net-
works to enhance the authenticity of the generated target
domain images. In Ref.36, we presented a sequential
image- and feature-level adaptation method for brain MRI
segmentation. In the first step, a CycleGAN model is imple-
mented for image translation between the source and target
domain. In the second step, a U-Net network is trained to
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segment the target domain images in an adversarial manner
using information about the shape, texture, and contour of
the predicted segmentation. StAC-DA is a significant exten-
sion of that work. Specifically, we introduce a new
structure-aware CycleGAN-based model in Step 1 to
encourage annotation correctness during translation.
Furthermore, we enhance the validation by performing
experiments on the bidirectional segmentation of a
cardiac dataset and provide a more detailed description of
the framework.

Method
In this predictive study, we propose the StAC-DA frame-
work. StAC-DA is an unsupervised structure-aware cross-
modality domain adaptation method composed of two
sequential steps during training, as shown in Figure 1. In
Step 1, the images of the source domain are translated to
the target domain using a CycleGAN-based model with
a structure-aware module to preserve the shape of the ana-
tomical structures during the domain translation. This step
converts the source domain images into target style-like
images. In Step 2, a feature-level adaptation method is
proposed by training a U-Net segmentation network with
the translated source domain images and the target

domain images using an adversarial training scheme.
The objective is to produce probable segmentations for
the target domain that follow the same probability distri-
bution as the ground truth segmentations from the source
domain. Since the U-Net network is trained with synthe-
sized target domain images, only the trained U-Net archi-
tecture is necessary to produce the predictions during
inference.

In the following subsections, we describe Steps 1 and 2
of the proposed framework, the validation loss function
implemented to monitor the performance of the network,
the dataset used for the experiments, training details,
and the quantitative metrics for evaluation. The computa-
tional experiments where performed at Universidad
San Francisco de Quito, Ecuador, from August 2021 to
August 2022.

Step 1: structure-aware image-level adaptation

In this step, the aim is to learn a structure-aware mapping
network that translates the images from the source
domain S to the target domain T in terms of visual appear-
ance. It is assumed that the morphology of the anatomical
structures is invariant to changes in the image domain
(medical images from different modalities have the same

Figure 1. StAC-DA framework is composed of two sequential steps during training. Step 1 performs a structure-aware image-level
adaptation by implementing a CycleGAN-based model. Step 2 implements a feature-level adaptation by training a deeply supervised U-Net
network with an adversarial training scheme.
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semantic information). Thus, the translated source domain
images can approximate the target domain distribution
and be used to train a target domain segmentation
network. Since the accuracy of the segmentation task is
dependent on the shape of the region of interest (ROI), it
is indispensable that the original structure of the ROI
remains preserved during the transformation. For this
step, a CycleGAN-based model with a structure-aware
network is proposed.

The CycleGAN-based model consists of two modules,
the image synthesis module, and the structure-aware
module. The image synthesis module is made up of the
source domain generator network GS, target domain gener-
ator network GT , source domain discriminator network DS,
and target domain discriminator network DT . Using adver-
sarial training, GS and DS learn to transform images from
domain S to domain T, while GT and DT learn to translate
images from domain T to domain S. Let {xs, ys} =
{ (xsi , ysi )|i = 1, . . . , Ns} represent the images and
ground truth from domain S, and {xT} = { (xTj )|j =
1, . . . , Nt} be the unlabeled images from domain T.
Then, GS is the mapping network that translates the
source domain images xS to synthetic target domain
images x̂T , GS = xS � x̂T . Meanwhile, DS tries to distin-
guish real target domain images xT from synthetic ones
x̂T . Therefore, Ds and Gs compete in a two-player
minimax game where Ds maximizes the objective function
shown in equation (1), while Gs minimizes it. However,
instead of using the original cross-entropy loss, a Least
Squares GAN37 objective function is implemented for a
more stable training.

LGAN(GS, DS) = Ext∼T [logDs( x
t)]

+ Exs∼S[log(1− Ds(Gs( x
s)))] (1)

GT and DT are trained in a similar manner, where GT trans-
lates the target domain images xT to source domain x̂S

(GT = xT � x̂S), and DT aims to discriminate between xs

and x̂S. The generator networks have a ResNet architecture,38

while the discriminators have a PatchGAN structure.39

Furthermore, to avoid model collapse during training
and incentivize the mapped images x̂T and x̂S to return
to their original distribution xs and xT after applying GT

and GS, respectively, a cycle consistency loss Lcyc as dis-
played in equation (2) is added. Where ∗ corresponds to
an L1 loss as it has shown to have better visual results
than an L2 loss.

Lcyc(Gs, GT ) = Exs∼S[GT ( Gs(x
S))− xS]

+ Ext∼T [GS( GT (x
T ))− xT ] (2)

Finally, an identity loss is also included to encourage the
generators to preserve the color composition during
mapping. The identity loss also regularizes the generator
to approximate an identity function when images are

translated to the same domain. The loss is presented in
equation (3), where ∗ represents an L1 loss.

Lidentity(GS, GT ) = Exs∼S[GT (x
S)− xS]

+ Ext∼T [GS(x
T )− xT ] (3)

The second module of the CycleGAN based model is the
structure-aware module. The structure-aware module is
composed of a source domain segmentation network
SegS, and a target domain segmentation network SegT .
The segmentation networks are connected directly to
the system by receiving as input the real and synthetic
images as shown in Figure 1. SegS is trained to
segment the source domain images in a supervised
manner using the labeled source domain dataset
{xs, ys}. Similarly, SegT is trained to segment the target
domain images using the translated source domain

images {x̂T , ys}. The loss function being minimized
during the training of both networks is a linear combin-
ation of the Dice coefficient and cross-entropy loss, as
presented in Eq. 4.

Lseg(SegS, SegT ,Gs )= β
∑
c

αc 1− 2
∑

i ŷicyic∑
i ŷic+

∑
i yic

( )

− (1−β)
∑
c

∑
i

(yic log(ŷic) (4)

where yic and ŷic are the ground-truth label and the pre-
dicted probability of pixel i being part of class c, respect-
ively. αc is a weight parameter for class c in the dice loss,
and β a weight parameter for the dice loss. Since the loss
of SegT depends on the geometric invariance during the
translation from source to target domain, this network
encourages Gs to preserve the anatomical structure of
the region being segmented.

Finally, SegS and SegT are also trained in an unsupervised
manner using a pseudo segmentation loss. The target domain
set {xT} and translated target domain set {x̂S} are sent to SegT
and SegS, respectively, to produce the target domain predicted
segmentation ŷT and source domain predicted segmentation
ŷS. Since SegS is being trained with the labeled source
domain dataset, ŷS provides a better estimation of the
ground truth segmentation. Hence ŷS is considered the
pseudo “ground truth” segmentation, and ŷT the predicted
segmentation. The difference between ŷS and ŷT is penalized
using the same segmentation loss function from equation (4).
Moreover, to incentivize the segmentations from both
domains to be consistent, an L1 loss between ŷT and ŷS is
also added. The pseudo segmentation loss is displayed in
equation (5). Both losses force the predicted segmentations
from the original and translated images to be the same.
Therefore, incentivizing GT to preserve the anatomical struc-
ture information during translation and allowing SegS and
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SegT to recognize the same regions.

Lpseudoseg(SegS, SegT ,GT )=β
∑
c

αc 1− 2
∑

i ŷicT ŷicS∑
i ŷicT+

∑
i ŷicS

( )

− (1−β)
∑
c

∑
i

(ŷic log(ŷic)

+‖ŷT− ŷS‖
(5)

The full objective functions being optimized in the
CycleGAN based method is composed of six loss func-
tion as presented in equation (6), where λi is the weight
for term i.

Ladv(GS, GT , DS,

DT , SegS, SegT ) =LGAN(GS, DS)+ LGAN(GT , DT )

+ λ1 Lcyc(Gs, GT )

+ λ2Lidentity(GS, GT )

+ λ3Lseg(SegS, SegT , Gs )

+ λ4Lpseudoseg(SegS, SegT , GT )

(6)

Following the recommendations of Ref.20, in all experi-
ments the lambdas are set to λ1 =10, λ2 =2.5.
Furthermore, in the segmentation losses, the lambdas
are set to λ3 =0.1 and λ4 =0.1. The model is trained alter-
natively by first fixing DS and DT , and training
GS, GT , SegS, SegT . Afterwards, the generators and

segmentors are fixed, and the discriminators updated.
The segmentation networks have a U-Net architecture.40

Step 2: feature-level adaptation

In Step 2, a feature-level adaptation method in the semantic
prediction space is implemented by using an adversarial
training scheme. This phase is especially necessary when
there is a severe domain gap between the target and
source images. After finishing Step 1, the Gs network is uti-
lized to translate the source domain images {xs, ys} to
target domain {x̂T , ys}. Then, a segmentation network G
takes the role of a generator and receives as input the
mapped source domain images x̂T and target domain
images xT and produces their predicted segmentations
G(x̂T ) = ŷT̂ and G(xT ) = ŷT . A discriminator D is fed the
two predictions ŷT̂ and ŷT , and is trained to discriminate
between the two. Meanwhile, G aims to fool the discrimin-
ator by learning domain invariant features and producing
segmentations that follow the same the distribution. The
loss function being optimized is presented in equation (7),
where G looks to minimize it and D to maximize it.

LFAGAN(G, D) = Ext∼T [logDs(ŷ
T̂ )]

+ Exs∼S[log(1− Ds(ŷ
T ))] (7)

As with the previous step, a least squares objective function
is implemented to stabilize training. The generator network
has a U-Net architecture and the discriminator a PatchGAN

Figure 2. Deeply supervised U-Net network trained in Step 2 to segment the unlabeled target domain images. The numbers over the
convolutional blocks correspond to the height, width, and number of feature maps.
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structure. To help the U-Net learn rich hierarchical features,
a deep supervised layer with an auxiliary segmentation
loss41 is added in the second-last up-sampling block. In
Figure 2, the architecture of the implemented U-Net is pre-
sented. Furthermore, to increase the adaptation in the low-
level feature space, an auxiliary discriminator network

Daux is added to the system. Let ŷT̂aux be the deep supervised
layer predicted segmentation from x̂T , and ŷTaux the deep
supervised layer predicted segmentation from xT . Daux is

trained to discriminate between ŷTaux and ŷ
T̂
aux by maximizing

equation (7). Daux has a PatchGAN architecture.
In addition to the adversarial training, on each iteration

the U-Net is also trained in a supervised manner to
segment the mapped source domain images {x̂T , ys}. The
loss function minimized in this step is a linear combination
of the dice loss and cross entropy loss as shown in equation
8, where Lseg refers to the segmentation loss in equation 4,
and λaux to the weight for the auxiliary segmentation loss of
the deep supervised layer. In our work, λaux is set to 0.1.

LFAseg(G) =
∑Ns

n=1

Lseg(y
s, ŷT̂ )+ λauxLseg(y

s, ŷT̂aux) (8)

The training is done by first fixing D and training G in an
adversarial and supervised manner, and then setting G
and training D. During inference, only the U-Net architec-
ture trained in this step is used to produce the predicted seg-
mentations in target domain.

Monitoring validation metric

Since there are no labeled target domain images, it is a chal-
lenge to select the best weights for testing. Hence, we
propose a pseudo validation loss function based on the seg-
mentation area and dice coefficient to monitor the perform-
ance of the network on the target dataset. First, the ground
truth segmentations from the source domain are used to cal-
culate the average number of pixels per class c and slice
(AvgPixc) as shown in equation (9).

AvgPixc =
∑

ns

∑
i y

s
ic

ns
(9)

where ns are the number of slices on the source domain, and
ysic the pixels on the source domain’s ground truth that have
a value of 1 in class c. Since the morphology of the anatom-
ical structures should be consistent across the different
imaging modalities, AvgPixc is a good approximator of
the average number of pixels from class c that should be
segmented on the target domain. Therefore, to validate
the network during training, the average number of pixels
predicted to be part of class c on the target domain segmen-
tation are calculated and divided by AvgPixc. If the struc-
tures being segmented on the target domain are similar in
area to the structures on the source domain’s ground truth,

this metric should have a value close to 1. On the other
hand, if the network is under-segmenting the ROIs, the
value of the metric should be less than 1, while over-
segmenting the region would receive a value more than
1. Moreover, to include information about the segmenta-
tion performance of the network, in the function we add
the dice loss calculated on the translated source domain
images. The weights that minimize the function displayed
in equation (10) are selected for testing, where nT are the
number of slices in the in the target domain, and ŷTic the pre-
dicted pixels in the target domain that correspond to class c.

Pseudo validation loss =
∑
c

1−

∑
nT

∑
i ŷ

T
ic

nT
AvgPixc

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣
+

∑
c

1− 2
∑

i ŷ
s
icy

s
ic∑

i ŷ
s
ic +

∑
i y

s
ic

( )

(10)

Dataset and preprocessing

The proposed StAC-DA is evaluated on the task of bidirec-
tional segmentation of cardiac structures on MRI and CT
imagining modalities from the Multi-Modality Whole
Heart Segmentation25 (MMWHS) dataset. The MMWHS
dataset consists of 20 MRI and 20 CT whole cardiac
volumes. The MRI and CT images are unpaired and col-
lected from distinct patient cohorts. For both modalities,
the ground truth segmentations for the ascending aorta
(AA), left atrium blood cavity (LA-blood), left ventricle
blood cavity (LV-blood), and myocardium of the left ven-
tricle (LV-myo) are provided. Following the work of,24

the images of 16 subjects are used for training, and
images from 4 subject for testing. Furthermore, the prepro-
cessing proposed by Ref.14 is used, where the central heart
region of the image is first cropped to size of 256 × 256
pixels. Then, a histogram filtering at percentile 2 and 98
is applied. Finally, the pixel values are normalized to zero
mean and unit variance.

Training details

We perform two types of experiments. First, we evaluate
the effectiveness of the method by performing the adapta-
tion from the MRI to the CT domain (MRI � CT). Then,
the adaptation is done from the CT to MRI domain (MRI
� CT). In both experiments, Step 1 is run for 200
epochs with β = 0.25 and αc = 0.20 on the Lseg and
Lpseudoseg loss functions. The generators, discriminators,
and segmentation networks are optimized with the Adam
optimizer with beta 1:0.5 and beta 2: 0.999, a learning
rate of 5 × 10−5, weight decay of 2 × 10−4, and batch size
of 5. Furthermore, to improve the convergence speed of
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the CycleGAN based model, a U-Net network is pretrained
with the source domain images on a supervised manner for
200 epochs and the weights uploaded to the SegS segmen-
tation network. In Figure 3, we present the qualitative
results from the proposed structure-aware translation
model from step 1 and the CycleGAN model. The figure
demonstrates that the proposed network successfully trans-
lates the images from the source to the target domain while
preserving the shape and characteristics of the anatomical
structures. In contrast, the CycleGAN model tends to
produce blurry and low-contrast translations where the
shape of the anatomical regions is altered.

In Step 2, the U-Net model is trained for 100 epochs. The
discriminators and U-Net network are optimized with the
Adam optimizer and a learning rate of 1 × 10−5. Similar to
Step 1, an β = 0.25 and αc = 0.20 are used on the LFAseg
loss function. Finally, in this step, real-time data augmentation
is employed to improve the generalization of the model.
Specifically, random rotation, horizontal flipping, and vertical
flipping are applied with a 0.5 probability. StAC-DA is imple-
mented using Python 3.8 and the Pytorch framework. The
experiments are carried out on a DGX station with 4 V100
GPUs with 32 GB, 2.2 GHz CPU, and 256 GB RAM.

Evaluation metrics

The Dice similarity coefficient (Dice) and average symmet-
ric surface distance metric (ASSD) are employed to quanti-
tatively evaluate the segmentation performance of the
models. The Dice coefficient is an overlap-based metric
that measures the intersection between the ground truth seg-
mentation and predicted segmentation. The ASSD distance
is a spatial-based metric that calculates the average of all
distances between points on the ground truth´s boundary
surface to points on the predicted segmentatiońs boundary
surface. Let Y be the ground truth segmentation, Y1 the
pixels from the ground truth that are part of the foreground,
and Y0 the pixels from the background. Moreover, let Ŷ be
the predicted segmentation, Ŷ1 the pixels predicted to be
part of the foreground, and Ŷ0 the pixels from the back-
ground. The Dice coefficient is calculated as shown in equa-
tion (11), and the ASSD as presented in equation (12). The
evaluation is performed on the subject-level segmentation
volume.

Dice(Y , Ŷ) = 2|Y1 ∩ Ŷ
1|

|Y1| + |Ŷ1|
(11)

Figure 3. Examples of the translation results using the CycleGAN model and structure-aware model from Step 1. (a) Adaptation from CT to
MRI domain. (b) Adaptation from MRI to CT domain. The proposed structure-aware model successfully translates the images between
domains while keeping the structure of the anatomical region.
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ASSD(Y , Ŷ)= 1

|Y||Ŷ|
∑
y∈Y1

min
ŷ∈Ŷ1

‖y− ŷ‖+
∑
ŷ∈Ŷ1

min
y∈Y1

‖y− ŷ‖
⎛
⎝

⎞
⎠

(12)

Results

Ablation studies

The proposed StAC-DA model is composed of a
structure-aware CycleGAN-based model in Step 1 and a
segmentation network with feature-level alignment in
Step 2. In this section, we perform ablation studies to evalu-
ate the contribution of each of these steps. For this object-
ive, we train four models for the adaptation from MRI to
CT domain. The results are displayed in Table 1. In the
first model, we implement the CycleGAN model20 to trans-
late the images fromMRI to CT modality, and train a U-Net
network on the translated CT images in a supervised
manner. In the second model, we apply the proposed
structure-aware CycleGAN-based model for image transla-
tion and use the trained SegT network for the segmentation
of the target domain images. This model is denoted as
“Step1 StAC-DA.” In the third model, we train the
structure-aware CycleGAN-based model to synthesize CT
images from MRI images and use the translated CT
images to train a U-Net network in a supervised manner.
This model is designated as “Step1 StAC-DA+U-Net.”
In the last model, we test the proposed StAC-DA model
where we add the adversarial training for feature alignment
to the previously described “Step1 StAC-DA+U-Net.”

The results demonstrate that including the structure-
aware module in the CycleGAN network helps translate
the overall shape of the heart better as the segmentation
network is able to identify and segment the different
cardiac regions with higher accuracy. Particularly, “Step 1
StAC-DA” and “Step 1 StAC-DA+U-Net” have an
important improvement over CycleGAN in the segmenta-
tion of ascending aorta, left ventricle blood cavity, and
myocardium of the left ventricle when considering Dice

and ASSD metrics. The experiments also show that training
a segmentation network with the synthesized images
obtained from the structure-aware CycleGAN-based
network increases the performance in comparison to using
the SegT network obtained in Step 1. This behavior can
be attributed to the complexity of the optimization
problem being solved in the CycleGAN-based network.
Specifically, SegT is trained with the other five networks
while optimizing six objective functions that not only aim
to improve segmentation performance but also image trans-
lation. Meanwhile, the U-Net network is trained exclusively
to minimize the segmentation loss which seems to enhance
its segmentation capability. Finally, the results also prove
that including the feature-level adaptation through the dis-
criminators networks further boosts performance.

Benchmark results

Our method is compared against six leading unsupervised
domain adaptation networks: U-GAT-IT model,42

PnP-Ada-Net model,11 SynSeg-Net,43 AdaOutput,15

Cycada,13 and SIFA model.14 Moreover, we provide a per-
formance upper bound to measure the performance gap by
training the U-Net network in a supervised manner on the
target domain (denoted as “UpperB U-Net”). To evidence
the domain shift, a performance lower bound is also pre-
sented (denoted as “LowerB U-Net”) by using the U-Net
trained on the source domain to predict the segmentation
on the target domain images without any adaptation
method. Finally, the results obtained after applying only
Step 1 of the proposed framework and using the SegT
U-Net segmentation network for the segmentation on the
target domain are also shown as “Step 1 StAC-DA.” In
Table 2 the results from the MRI� CT adaptation are pre-
sented, while in Table 3 the results from the CT � MRI
adaptation. As can be seen from the quantitative evalu-
ation, the proposed model outperforms other models in
the segmentation of the ascending aorta (AA). In the
MRI � CT adaptation, StAC-DA is ranked first in terms

Table 1. Ablation study of the components of StAC-DA.

Method

AA LA-blood LV-blood LV-myo

Dice ASSD Dice ASSD Dice ASSD Dice ASSD

CycleGAN 0.57 19.63 0.66 15.98 0.45 12.46 0.31 9.58

Step 1 StAC-DA 0.71 18.48 0.64 13.37 0.55 11.84 0.43 8.91

Step 1 StAC-DA+U-Net 0.73 7.67 0.59 13.97 0.68 7.25 0.50 7.67

StAC-DA (proposed) 0.82 12.84 0.63 13.25 0.73 5.15 0.53 7.25

In bold is the performance of the proposed model.
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Table 2. Performance comparison of the proposed method (StAC-DA) and leading unsupervised domain adaptation methods
for cardiac structure segmentation from MRI to CT domain (MRI � CT).

Method

AA LA-blood LV-blood LV-myo

Dice ASSD Dice ASSD Dice ASSD Dice ASSD

UpperB U-Net 0.83 2.3 0.92 1.93 0.92 1.7 0.85 1.8

LowerB U-Net 0.13 23.0 0.01 65.6 0 70.4 0 57.7

U-GAT-IT 0.68 12.0 0.66 13.7 0.55 8.9 0.39 8.9

Pnp-Ada-Net 0.74 12.8 0.69 6.3 0.62 17.4 0.51 14.7

SynSeg-Net 0.72 11.7 0.69 7.8 0.52 7.0 0.41 9.2

AdaOutput 0.65 17.9 0.76 5.5 0.54 5.9 0.44 8.9

Cycada 0.73 9.6 0.77 8.0 0.62 9.6 0.45 10.5

SIFA 0.81 7.9 0.80 6.2 0.74 5.5 0.62 8.5

Step 1 StAC-DA 0.71 18.5 0.64 13.4 0.55 11.8 0.43 8.9

StAC-DA (our model) 0.82 12.8 0.63 13.2 0.73 5.2 0.53 7.3

Note. The values presented for competing models are as reported by Ref.14 in the published paper. Values in bold represent the best performance.

Table 3. Performance comparison of the proposed method (StAC-DA) and leading unsupervised domain adaptation methods
for cardiac structure segmentation from CT to MRI domain (CT � MRI).

Method

AA LA-blood LV-blood LV-myo

Dice ASSD Dice ASSD Dice ASSD Dice ASSD

UpperB U-Net 0.85 3.3 0.87 1.83 0.93 1.2 0.81 1.7

LowerB U-Net 0 50 0 45.4 0 48.8 0 39.3

U-GAT-IT 0.55 16.5 0.39 12.1 0.69 7.6 0.49 7.0

Pnp-Ada-Ne 0.44 11.4 0.47 14.5 0.78 4.5 0.49 5.3

SynSeg-Net 0.41 8.6 0.58 10.7 0.64 5.4 0.37 5.9

AdaOutput 0.61 5.7 0.40 8.0 0.72 4.6 0.36 4.6

Cycada 0.61 7.7 0.44 13.9 0.78 4.8 0.48 5.2

SIFA 0.65 7.3 0.62 7.4 0.79 3.8 0.47 4.4

Step 1 StAC-DA 0.54 10.2 0.40 14.3 0.50 9.6 0.18 9.2

StAC-DA (our model) 0.68 7.4 0.39 11.5 0.68 8.4 0.44 7.8

Note. The values presented for competing models are as reported by Ref.14 in the published paper. Values in bold represent the best performance.
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of the Dice score and is only 0.01 below the U-Net trained
in a supervised manner on the target domain. Similarly,
using the Dice score and ASSD metric, the proposed
model is ranked first and third, respectively, in the AA seg-
mentation on the CT � MRI adaptation. In the segmenta-
tion of the left ventricle blood cavity on the MRI � CT
domain adaptation, StAC-Da is also first in terms of
ASSD and second in relation to the Dice score. Finally,
in the segmentation of the left ventricle myocardium on
the MRI � CT domain adaptation, we are ranked
second in relation to the Dice score and first in ASSD. It
is interesting to see that the SegT segmentation network
obtained from Step 1 produces competitive segmentations
on the target domain. For example, in the segmentation of
the AA on the MRI � CT adaptation, the SegT obtains a
Dice score of 0.71, which outperforms the U-GAT-IT
and AdaOutput model. However, as discussed in Sec. 4.4
this adaptation method is not sufficient by itself to
produce the best-performing segmentations. The feature-
level adaptation proposed in Step 2 is indispensable to
improve the segmentation performance on all cardiac sub-
structures. Another interesting observation is the degrad-
ation in performance all models suffer when adapting
from the CT � MRI domain. MRIs usually offer greater
contrast, image clarity, and detail than CT imaging.44

Hence, when reconstructing MRIs from CT some informa-
tion is lost, which reduces the accuracy of the segmentation
models.

In Figures 4 and 5 a qualitative evaluation of the pro-
posed model is shown on the MRI � CT and CT �
MRI adaptation respectively. Furthermore, the segmenta-
tion achieved with the U-Net without adaptation and the
SegT network after Step 1 is also included for comparison.
StAC-DA produces good segmentations that considerably
reduce the performance degradation evidenced in the pre-
dictions of the U-Net without adaptation. Step 1 from the
StAC-DA framework achieves an acceptable performance;
however, in some slices where the domain shift is severe,
the model does not correctly identify the regions of interest.
The feature-level adaptation implemented in Step 2 helps
improve the segmentation performance in these slices.

Computational requirements

StAC-DA is designed sequentially to reduce computational
requirements during training. In Table 4, we present the
GPU and RAM memory used in each step during training,
using a batch size of 1, as well as the number of trainable
parameters. For comparison, we have also included the
computational requirements of the unified model proposed
by Chen et al.14 In terms of GPU and RAM usage, the entire
StAC-DA framework has lower requirements. Furthermore,
as each step is trained independently, the model can be
trained in facilities with less powerful GPUs and RAM
memory. Regarding the number of trainable parameters,

SIFA is smaller. Nevertheless, since the entire StAC-DA
framework is not processed simultaneously, it is unneces-
sary to save all the models in Steps 1 and 2. Specifically,
after training Step 1, only the Generator network is
needed in Step 2 to transfer the images from the source to
target domain. The Generator network has 7.8 × 106 train-
able parameters. Lastly, after Step 2, only the
Segmentation network is needed for inference, which has
6.9 × 106 parameters. Hence, for deployment, only the
Segmentation network needs to be kept. While it is advan-
tageous to train only once a unified model as in Chen
et al.,14 scenarios with limited computational resources
for training can prohibit its application.

Discussion
Deep learning models have been shown to excel in various
complex tasks when large amounts of data are available.
Nevertheless, when the networks are tested in data that
does not follow the training distribution, their performance
can significantly degrade. This challenge is of special inter-
est in the medical imagining community, where labeling
images is very costly, and due to the different imaging
modalities and acquisition protocols, the testing data can
differ significantly from the training set. Developing
unsupervised cross-modality models is advantageous for
the application of AI in medical settings because it
decreases the need to obtain costly labeled data while
exploiting to the fullest the unlabeled data from the target
domain. In this work, we presented StAC-DA, an unsuper-
vised structure-aware domain adaptation framework for
cross-modality medical image segmentation. The proposed
framework is comprised of a two-step image and feature-
level adaptation that importantly reduces the performance
degradation when moving from two different imaging
modalities.

StAC-DA has been tested on two domain adaptation
tasks from a publicly available cross-modality cardiac seg-
mentation challenge. We implemented the proposed frame-
work for domain adaptation from MRI to CT imaging
modality (MRI � CT), as well as from CT to MRI modal-
ity (CT �MRI). As shown in Tables 2 and 3, the segmen-
tation network without any domain adaptation method
suffered from a severe domain shift. On average, the
U-Net without adaptation had a 0.035 dice score when
moving from MRI � CT domain, and a 0 dice score
when translating between CT�MRI domain. After apply-
ing the proposed image and feature-level adaptation frame-
work, the performance improved considerably. StAC-DA
attained an average 0.68 dice score when translating
between MRI � CT domain, and an average 0.55 dice
score between the CT � MRI domain. A specially good
performance is achieved in the segmentation of the ascend-
ing aorta on the MRI � CT domain adaptation, where
StAC-DA got a 0.82 dice score that is only 0.01 lower
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than the dice score achieved by the segmentation network
trained in a supervised manner with the labeled target
domain images. In comparison with the leading methods
in UDA, StAC-DA had a competitive performance being
ranked first in the segmentation of the ascending aorta.

An interesting observation is that although all competing
models seem to reduce the domain shift, there is still a per-
formance gap, particularly in the CT�MRI domain adap-
tation task. This behavior can be due to the characteristics of
the imaging modalities. The left ventricle blood cavity and
left ventricle myocardium had a low contrast to the sur-
rounding tissues on the CT imaging, hence when transfer-
ring to the MRI domain the contrast information could
not be recovered. This is an important point to consider
when developing cross-modality models, to obtain a good
result the source domain images must have a good quality
and contrast so that the information is kept during
translation.

A limitation of the proposed framework is applying 2D
CNNs for image translation and segmentation. Although
2D CNNs are able to capture intra-slice information, they
do not fully exploit volumetric information. Hence, some
important 3D features that can boost performance might
be missed. Since training the 2D structure-aware
CycleGAN-based model is already computationally and
time intensive, a future direction can be using a 3D segmen-
tation CNN for Step 2 or using 3D patches instead of the
whole 3D image for Steps 1 and 2. Furthermore, when util-
izing the monitoring validation metric we are assuming the
morphology of anatomical structures is consistent across
the imaging modalities. However, if the population in the
source domain is considerably different from that of the
target domain the metric might not be applicable. Lastly,
although the proposed framework aims to reduce the com-
putational cost by dividing the training process into two
steps, the memory usage can still be limiting with large

Figure 4. Segmentation results after the MRI � CT adaptation. (a) Original CT image. (b) Segmentation results of the U-Net without
adaptation. (c) Segmentation results after applying Step 1 of the proposed framework. (d) Segmentation results of the proposed StAC-DA.
(e) Ground truth segmentation.
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datasets, high-resolution images or more complex segmen-
tation tasks. To address these issues, future work could
explore optimization techniques like model pruning,

distributed training strategies, and scalable architectures,
potentially broadening the framework’s applicability.

Conclusion
In this work, we present StAC-DA, an unsupervised
structure-aware cross-modality domain adaptation framework
for medical image segmentation. StAC-DA is composed of
two sequential steps. First performs a structure-aware image-
level adaptation, where images from the source domain are
mapped to the target domain through a CycleGAN-based
model. The latter includes a segmentation network that pre-
serves the anatomical structures during translation. In the
second step, a feature-level adaptation is applied by training
a deeply supervised U-Net architecture in an adversarial
manner to produce probable segmentations for the target
domain. StAC-DA is evaluated on the task of bidirectional

Figure 5. Segmentation results after the CT � MRI adaptation. (a) Original CT image. (b) Segmentation results of the U-Net without
adaptation. (c) Segmentation results after applying Step 1 of the proposed framework. (d) Segmentation results of the proposed StAC-DA.
(e) Ground truth segmentation.

Table 4. Computational requirements of StAC-DA and SIFA during
training with a batch size of 1.

Method
GPU usage
(MiB)

RAM
usage (MiB)

Number of
trainable
parameters

StAC-DA (Step 1) 3432 3293 35.1 × 106

StAC-DA (Step 2) 1458 3259 12.5 × 106

StAC-DA (total) 4890 6552 47.6 × 106

SIFA 5900 9694 43.3 × 106
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cardiac substructure segmentation from the Multi-Modality
Whole Heart Segmentation Challenge dataset. The experi-
ments demonstrate that the proposed model has a very com-
petitive performance, being ranked first in the segmentation
of the ascending aorta when adapting from MRI to CT
domain and from the CT to MRI domain.
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