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Purpose: It has been suggested that p16 has a role in glucocorticoid 
(GC)-related apoptosis in leukemic cells, but the exact mechanisms 
have yet to be clarified. We evaluated the relationship between the GC 
response and p16 expression in a lymphoma cell line.
Methods: We used p16 siRNA transfection to construct p16-inactivated 
cells by using the B-cell lymphoblast cell line NC-37. We compared 
glucocorticoid receptor (GR) expression, apoptosis, and cell viability 
between control (p16+ NC-37) and p16 siRNA-transfected (p16– NC-
37) cells after a single dose of dexamethasone (DX). 
Results: In both groups, there was a significant increase in cytoplasmic 
GR expression, which tended to be higher for p16+ NC-37 cells 
than for p16– NC37 cells at all times, and the difference at 18 h was 
significant (P<0.05). Similar patterns of early apoptosis were observed 
in both groups, and late apoptosis occurred at higher levels at 18 h 
when the GR had already been downregulated (P<0.05). Cell viability 
decreased in both groups but the degree of reduction was more severe 
in p16+ NC-37 cells after 18 h (P<0.05). 
Conclusion: These results suggest a relationship between GR 
expression and cell cycle inhibition, in which the absence of p16 leads 
to reduced cell sensitivity to DX. 
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Introduction

Glucocorticoid (GC) is an important chemotherapeutic agent 
used to treat leukemias and lymphomas1-3). GC combines with a 
cytoplasmic glucocorticoid receptor (GR) that binds to specific 
DNA sequences as a transcription factor. The liganded receptors 
also bind to and interfere with other transcription factors, such 
as activator protein-1 and nuclear factor-[kappa]B, and inhibit 
the mitogen-activated protein kinase pathways that mediate the 

expression of many of the genes involved in inflammatory and 
immune responses, including apoptosis and cell cycle arrest4, 

5). Clinically, GC sensitivity is an important factor determining 
prognosis of acute lymphoblastic leukemia (ALL), and non-
responsiveness to GC is used as a marker for classifying patients into 
risk groups1, 6). However, the molecular mechanisms of the anti-
leukemic effects and the clinically important phenomenon of GC 
resistance require further study4, 5, 7).

Progression from the G1 to S phase of the cell cycle is regulated 
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by a series of structurally related enzymes: cyclin regulates the 
activation of cyclin-dependent kinases (CDKs); CDKs regulate the 
retinoblastoma protein (pRb) and induce the subsequent release 
of E2F transcription factors and expression of the genes required 
for the S phase. Cyclin-CDK complexes are regulated negatively 
by a family of kinase inhibitors8, 9). The p16INK4 (CDKN2A) gene 
located on chromosome 9p21 encodes a protein (p16) that inhibits 
CDKs and that can block cell cycle progression8-10). Frequently, p16 
is mutated or inactivated in primary tumors, including leukemias, 
lymphomas, gliomas, lung carcinomas, and many cancer cell lines; 
it is thus regarded as a tumor suppressor gene11-13). Recently, some 
studies have reported that p16 is associated with the prognosis of 
hematologic malignancies, although this is controversial11). It has 
also been suggested that p16 has a role in GC-related apoptosis 
in leukemic cells, and the inactivation of p16 in B-cell ALL may 
induce cells that are more resistant to GC14, 15). However, few studies 
have examined the relationship between GC responsiveness and 
p16, and the roles and exact mechanisms of p16 in hematologic 
malignancies are not clear.

This study evaluated the relationship between GC responses, 
including GR expression and subsequent apoptosis, and p16, using 
the B-cell lymphoblast cell line NC-37.

Materials and methods

1. Cell line, culture conditions, and reagents
The B-cell lymphoblast cell line NC-37 (ATCC number, CCL-

214) was purchased from ATCC (Rockville, MD, USA). NC-37 
cells were maintained in RPMI-1640 medium (Gibco BRL Life 
Technologies, Grand Island, NY, USA) supplemented with 10% 
fetal bovine serum (Gibco BRL, Rockville, MD, USA) at 5% CO2 

and 37℃ at saturated humidity.

2. p16 siRNA transfection
For p16 siRNA transfection, a commercial kit was used (Santa 

Cruz Biotechnology, Santa Cruz, CA, USA). Briefly, the following 
solutions were prepared: solution A contained 7 µL p16 siRNA (sc-
36143) or control siRNA (sc-36869 or sc-37007) in 100 µL siRNA 
transfection medium (sc-36868). Solution B contained 6 µL siRNA 
transfection reagent (sc-29528) in 100 µL siRNA transfection 
medium.

Solution A was added to solution B directly, and the mixture was 
incubated for 30 min at room temperature. For each transfection, 
0.8 mL siRNA transfection medium was added to each tube 
containing the siRNA and transfection reagent mixtures. In 6-well 
tissue plates, 3×105 cells were seeded per well and the mixtures were 

overlaid onto the cells. The cells were incubated for 6 h at 37°C in a 
CO2 incubator, and then the transfection mixtures were removed 
and replaced with RPMI-1640 medium supplemented with 10% 
FBS and then incubated for an additional 6 h.

3. Western blot analysis
Western blotting was used to detect p16 protein after p16 siRNA 

transfection. Experiments were done for wild-type, control, and 
p16 siRNA-transfected NC-37 cells. The cells were collected 
by centrifugation, washed in phosphate-buffered saline (PBS), 
and lysed by the addition of SDS sample buffer (62.5 mM Tris-
HCl [pH 6.8], 6% [w/v] SDS, 30% glycerol, 125 mM DTT, and 
0.03% [w/v] bromophenol blue). Total cell samples were lysed and 
denatured by boiling for 5 min at 100℃. Equal amounts of protein 
from each sample were separated by 15% SDS-polyacrylamide 
gel electrophoresis and transferred to polyvinylidene difluoride 
membranes (Bio-Rad Laboratories, Hercules, CA, USA). The 
membranes were blocked for 1 h with Tris-buffered saline 
containing 5% (w/v) milk and 0.1% Tween 20, then incubated 
with the primary rabbit monoclonal antibody for p16 (p16 INK4A 
Antibody; Cell Signaling Technology, Beverly, MA, USA) 
overnight at 4℃. The blots were washed with Tris-buffered saline 
containing Tween 20, incubated with the anti-rabbit secondary 
antibody (Cell Signaling Technology, Beverly, MA, USA) for 2 h, 
and developed using West-Zol TM plus (iNtRON Biotechnology, 
Seoul, Korea).

4. Cell culture with dexamethasone (DX)
DX purchased from Sigma Chemical (St. Louis, MO, USA) was 

dissolved in dimethyl sulfoxide and added to the medium after 
p16 siRNA transfection. To study the effect of DX on p16 status, 
we added DX to samples containing wild-type, control, and p16 
siRNA-transfected NC-37 cells. The final concentration of DX was 
adjusted to 100 nM. For measurements, cells were harvested 6, 12, 
18, and 24 h after DX addition and then prepared for the next steps.

5. Flow cytometry analysis of GR expression  
Cultured cells were washed twice in PBS containing 1% 

bovine serum albumin. Aliquots of 1×106 cells were fixed in 
paraformaldehyde at room temperature for 30 min, washed, and 
permeabil ized with 0.1% Triton X-100 in 0.1% citrate buffer for 
5 min on ice. The cells were washed twice and incubated at 4℃ 
for 70 min with either FITC-conjugated anti-GR antibody (5E4; 
AbD Serotec, Oxford, UK) or FITC-conjugated isotype control 
(IgG1 AbD Serotec, Oxford, UK). Finally, the cells were washed 
and resuspended in PBS containing 1% bovine serum albumin and 
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analyzed using a Coulter Elite flow cytometer (Beckman Coulter 
Inc., Fullerton, CA, USA).

6. Cell apoptosis test
To detect apoptosis, we performed double staining with 

FITC-Annexin V and propidium iodide (PI; R &D Systems, 
Minneapolis, MN, USA). First 1×106 cells were washed with PBS. 
FITC-Annexin V was diluted at a concentration of 1 mg/mL in 
binding buffer, and the cells were resuspended in 1 mL of this 
solution (prepared fresh each time). The resuspended cells were 
incubated for 10 min in the dark at room temperature, and then 0.1 
mL PI solution was added to the cell suspensions before analysis to 
give a final concentration of 1 mg/mL. These cells were analyzed 
on using a Coulter Elite fl ow cytometer. Annexin V single-positive 
cells were regarded as early apoptotic cells, whereas Annexin V/PI 
double-positive cells were regarded as late apoptotic cells. 

7. Alamar blue (AB) assay for cell viability
First 1×104 cells were suspended in 95 µL phenol red-free RPMI-

1640 containing 0.1% FBS, then seeded into 96-well plates. DX 
was added to each plate at a concentration of 100 nM. After 6, 12, 
18, and 24 h, 11 µL AB solution was added to the medium directly, 
resulting in a fi nal concentration of 10%. As a negative control, AB 
was added to medium without cells. Th en the plates were incubated 
for 4 h at 37℃. Th e absorbance of test and control wells was read at 
570 and 595 nm with a standard spectrophotometer. Th e number 
of viable cells correlated with the magnitude of dye reduction and is 
expressed as a percentage of the AB reduction compared to control 
AB.

8. Statistics
All statistical analyses were conducted using SPSS 13.0 (SPSS, 

Chicago, IL, USA). The results were expressed as the mean± 
standard deviation, and the differences between the cell groups at 
each time point were analyzed using the Mann-Whitney U-test. 
General repeated measured analysis of variance was applied to 
identify the trends of time-dependent GR expression, apoptosis, 
and cell viability between the two groups. P value <0.05 was 
regarded as statistically signifi cant. 

Results

1. Identifi cation of p16 RNA interference in NC-37
To determine whether p16 affects GR regulation and the 

apoptosis of lymphoblast cells, we generated p16 siRNA-transfected 
NC-37 cells that did not express p16. First we used the fl orescence-
expressing control siRNA to confirm p16 siRNA transfection. 

When more than 50% of the control siRNA-transfected NC-37 
cells had fl uoresced, Western blot analysis was performed to detect 
p16. The wild-type and control NC-37 cells expressed p16 in the 
immunoblot analysis, whereas the p16 siRNA-transfected NC-37 
did not (P<0.05, Fig. 1).

2. GR expression after DX treatment
We evaluated time-dependent GR expression 0, 6, 12, 18, 

and 24 h after treatment with DX for control (p16+ NC-37) and 
p16 siRNA-transfected (p16- NC-37) cells. The GR levels were 
determined by flow cytometer after intracellular GR staining at 
each time point. After DX treatment, GR expression began to 
increase after 6 h, reached a peak at 18 h, and decreased sharply 
by 24 h (P<0.05). Th e GR expression levels at 18 and 24 h in both 
groups diff ered statistically (P<0.05). Th e degree of GR expression 
tended to be higher for p16+ NC-37 cells than p16- NC-37 cells at 
all times, and the diff erence was signifi cant at 18 h (P<0.05, Fig. 2).

3. Apoptotic changes after DX treatment
We assessed the time-dependent apoptotic changes after DX 

treatment using Annexin V/PI staining of cells by fl ow cytometry. 
After the DX treatment, both p16+ and p16- NC-37 cells showed 
a marked initial increase in Annexin V-stained cells (the early 
apoptotic cells) at 6 h, followed by a decrease at 24 h (both P<0.05). 
However, there was no statistical diff erence between the groups.

The late apoptotic cells (double-positive cells) in p16- NC-37  
cells increased through 6~18 h and reached a maximum at 18 h, 
and >50% of the cells were apoptotic. In contrast, the late apoptotic 
cells increased in a time-dependent manner over 24 h in p16- NC-
37 cells. Overall, p16+ NC-37 cells was more susceptible to DX-

Fig. 1. Western blot analysis of p16 compared with β-actin in NC-37 
cells. Wild-type, control siRNA-transfected, and p16 siRNA-transfected 
NC-37 cells were immunoblotted with p16 antibody. The p16 siRNA-
transfected NC-37 cells did not express p16 protein. The bar graphs 
express the ratio of p16 to β-actin calculated from densitometry 
measurements. *P<0.05.
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induced late apoptosis than p16- NC-37 cells, and the result at 18 h 
was significant (P<0.05, Fig. 3).

4. Time-dependent cell viability after DX treatment
We assessed time-dependent cell viability using the AB assay. 

AB is a redox indicator that produces a colorimetric change in 
the fluorescent signal in response to metabolic activity. Within 12 
h, the cell viability between p16+ and p16- NC-37 cells was not 
significantly different. At 18 and 24 h, the cell viability was reduced 
compared to the value at 12 h in both groups (P<0.05), and the 
degree of the decrease was more severe for p16+ NC-37 (P<0.05, 
Fig. 4).

Discussion

Clinically, GC resistance indicates a poor prognosis in ALL 
treatment1-3). However, the molecular mechanisms of the anti-
leukemic effects and GC resistance are not clear3-5). It has been 
hypothesized that GC induces apoptosis by affecting the Bcl-2 gene 
directly or inducing the release of apoptogenic factors. In addition, 
GC-induced cell cycle arrest in leukemic cells may be independent 
of apoptosis induction and associated with increased expression of 

CDK inhibitors such as p273-5). Factors affecting GC sensitivity 
include the availability of the hormone, tissue-specific factors, 
the intracellular metabolism of the hormones, and GR responses 
7). There is increasing evidence that the level of GR expression 
auto-induced by GC is associated with GR molecular functions, 

Fig. 2. Cytoplasmic glucocorticoid receptor (GR) expression levels as 
measured by flow cytometry. Time-dependent changes in GR expression 
after dexamethasone (DX) treatment are shown for control and p16 
siRNA-transfected NC-37 (A) along with the results of flow cytometry 
(B). GR expression peaked at 18 h and decreased sharply at 24 h. The 
control NC-37 cells expressed higher glucocorticoid receptor (GR) levels 
compared to the p16 siRNA-transfected NC-37 cells at 18 h. *P<0.05.

Fig. 3. Apoptotic cells stained with annexin V and propidium iodide (PI) 
as assessed by flow cytometry in both groups. Annexin V single-positive 
cells were regarded as early apoptotic cells (A) and double-positive 
cells were regarded as late apoptotic cells (B). There were no statistical 
differences between the 2 groups for early apoptosis (A). Late apoptotic 
cells increased in a time-dependent manner and peaked at 18 h in the 
control NC-37 cells. *P<0.05.

Fig. 4. Alamar blue (AB) assay estimating time-dependent cell viability. 
Cell viability decreased after dexamethasone (DX) treatment. After 12 h, 
viability of the control NC-37 cells decreased more rapidly than that of 
the p16 siRNA-transfected NC-37 cells. *P<0.05.
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including steroid responsiveness and resistance5, 14, 15). 
The inactivation of p16 has been confirmed to varying degrees 

in T-cell leukemias and other hematologic malignancies16-23), and 
INK4A gene knockout mice develop spontaneous lymphomas 
at high frequency24). These findings suggest that p16 is involved 
in the negative regulation of tumor proliferation and progression 
in the lymphoid lineage. Recently, p16 was also studied as a 
prognostic factor for the diagnosis of hematologic malignancies3, 

13). It was reported that the inactivation of p16 might be associated 
with the presence of minimal residual disease at the induction of 
chemotherapy, and loss of p16 function might also be a marker 
of chemoresistance in non-high-risk B-cell ALL3). However, 
other studies of several hematologic malignancies do not confirm 
these findings11). Ausserlechner et al reported that p16 sensitizes 
lymphoblastic leukemia cells to apoptosis by GC14). Using p16 
gene transfection to GC-sensitive T lymphoma cell lines, they 
observed that after GC treatment the p16+ cells showed increased 
GR expression and sensitivity to GC, whereas the p16- cells did 
not. They postulated that because leukemic cells may have a 
program for escaping apoptosis by suppressing apoptotic pathways, 
p16 inactivation might be required for lymphoid malignancies to 
escape from as yet unrecognized tumor surveillance, including GC-
induced apoptosis14). However, the mechanisms of p16 inactivation 
contributing to GR regulation and subsequent apoptosis remain 
unknown.

Few studies have examined the relationship between GC 
responsiveness and p16. In this study, we evaluated the time course 
of GC-induced GR expression changes and the effect of p16 on 
GC-induced apoptosis using p16 siRNA transfection of a B-cell 
lymphoblast cell line, NC-37 cells. We found a pattern of intra-
cytoplasmic GR expression after DX treatment within 24 h. That is, 
the initial GR levels peaked at 18 h, followed by a sudden decrease 
at 24 h in p16+ and p16- NC-37 cells; the former tended to show 
higher expression rates (Fig. 2). The repression of GR expression 24 
h after GC treatment has also been observed in other studies25-27). 
Along with GR expression, similar patterns of early apoptotic cells 
induced by DX were observed in both groups (Fig. 3A). However, 
late apoptotic cells increased in a time-dependent manner, and this 
was more marked at 18 h for p16+ NC-37 cells. This suggests that 
p16 influences DX-induced late apoptosis more than early apoptosis 
(Fig. 3B). The viable cell assay showed similar results for both 
groups (Fig. 4).

Combined, our results suggest that p16 is positively correlated 
with GR expression and GC-induced late apoptosis. Further effort 
is necessary to identify additional genetic changes in cell cycle 
regulators to complement these findings. Studies of p16 and GC 

responsiveness may lead to new treatment modalities, such as a 
combination of GC with substances mimicking p16 function, 
including CDK4- or CDK6-inhibiting peptides, for hematologic 
malignancies that do not express p1614). In addition, because GR 
expression is not the sole factor determining GC sensitivity4-6), 
further studies must examine the relationship between GC-induced 
apoptosis and the interaction of other signaling events associated 
with p16 or other proteins.

In conclusion, although p16 has a role in GR expression and 
apoptosis induced by GC, it remains to be seen whether the 
GC-induced apoptosis mechanism can interact with the other 
signaling events associated with the p16 gene operating during 
such malignant changes. This observation might have important 
implications for cancer therapy.
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