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Viral replicons as valuable tools for
drug discovery
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RNA viruses can cause severe diseases such as dengue, Lassa, chikungunya and Ebola. Many of these

viruses can only be propagated under high containment levels, necessitating the development of low

containment surrogate systems such as subgenomic replicons and minigenome systems. Replicons are

self-amplifying recombinant RNA molecules expressing proteins sufficient for their own replication but

which do not produce infectious virions. Replicons can persist in cells and are passed on during cell

division, enabling quick, efficient and high-throughput testing of drug candidates that act on viral

transcription, translation and replication. This review will explore the history and potential for drug

discovery of hepatitis C virus, dengue virus, respiratory syncytial virus, Ebola virus and norovirus

replicon and minigenome systems.
Introduction
Vaccines and therapeutics are the main weapons deployed to

combat infectious diseases. Vaccines have been successful in

dramatically lowering infection rates for diseases like measles,

mumps, rubella, diphtheria, pertussis and many more, and have

led to the complete eradication of smallpox and near-eradication

of polio [1–4]. However, safe and effective vaccines for some of the

most prevalent and crippling diseases known to mankind remain

elusive, despite decades of research [5–7]. Against a backdrop of a

rise in vaccine hesitancy across the world, the development of

effective drug treatments for patients suffering from infectious

diseases is imperative [8]. However, drug lead discovery and

optimisation for infectious agents can be technically challenging

for a variety of reasons: (i) no cell culture or adequate animal

model exists [9–11]; (ii) little is known about the biological activity

of the agent’s targets; (iii) the agent requires category 3 or 4

containment facilities not available to most academic or industrial

researchers and institutions. The 2018 WHO Blueprint List of

Priority Diseases is exclusively populated by RNA viruses that fulfil

one, two or all three of the criteria mentioned above [12].

Therefore, the development of low containment systems for

high-throughput hit discovery has become a necessity.
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Small-compound drugs act on proteins involved in the viral life

cycle: entry into host cells, virus uncoating, replication and

translation of the viral genome or suppression of the innate host

immune response. The development of viral pseudotypes and

virus-like particles (VLPs) has made research and drug discovery

into virus entry and uncoating possible at a reduced containment

level [13–15]. By contrast, analysis of subgenomic replicons

enables uncoupling of viral replication, transcription and transla-

tion from virus assembly, host cell egress, entry and uncoating.

Replicons are broadly defined as autonomously replicating DNA or

RNA molecules, whereas viral subgenomic replicons are usually

produced by deletion of one or more genes coding for structural

proteins or insertion of or replacement by a reporter gene and/or

selectable marker [16–19]. Replicons have been made possible by

the advent of reverse genetics: a process of storage and manipula-

tion of entire viral genomes hosted on plasmids, and the recreation

of viral RNA genomes by in vitro or in vivo transcription of these

plasmids. In cases where replicons cannot be established, plasmid-

driven co-expression of replication factors necessary to drive

replication of a reporter RNA create minimal replication systems

termed minigenomes. These reporter RNAs usually contain the

genomic 50 and 30 untranslated regions (UTRs) which are essential

for replication, transcription and translation. Whereas most

replicons can be maintained in cell lines by antibiotic selection
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and passed on during cell division, minigenomes based on plasmid

transfection have a limited lifespan and need to be recreated before

experimentation. Although not exhaustive, Table 1 lists estab-

lished replicons and minigenome systems for many medically

relevant viruses. Since their conception, replicons and minige-

nomes have been used in low- and high-throughput screens of

compound libraries, to elucidate the biological mechanisms of

drug action and to screen for drug escape-mutants arising in the

replicon-harbouring cell pool owing to generally poor fidelity of

viral RNA-dependent RNA polymerases (RdRp).

This review will briefly cover the modern success story of the

establishment and use of subgenomic replicons in the development

of drugs against hepatitis C virus (HCV) and then illustrate the

potential of dengue virus, togavirus, respiratory syncytial virus

and norovirus replicons, and the Ebola virus minigenome, in the

discovery of small-molecule inhibitors. In recent years replicons

have been derived from viruses such as hepatitis E virus, enterovirus

71, severe acute respiratory syndrome virus, among others, but their

description is beyond the scope of this review [20–22].
TABLE 1

Replicon and minigenome systems established for medically releva

Virus family Replicon 

Flaviviridae Dengue virus (DENV) 

Positive-sense single-
stranded RNA viruses

West Nile virus (WNV) 

Kunjin virus (KUNV) 

Tick-borne encephalitis 

(TBEV)
Yellow fever virus (YFV)
Japanese encephalitis v
Hepatitis C virus (HCV) 

Bovine viral diarrhoea v
Togaviridae Sindbis virus (SINV) 

Chikungunya virus (CHIK
Venezuelan equine
encephalitis virus (VEEV
Western equine enceph
(WEEV)
Semliki forest virus (SFV

Coronaviridae Severe acute respiratory
syndrome (SARS) virus
Middle eastern respirato
syndrome (MERS) virus

Caliciviridae Human norovirus (NOV)
Hepeviridae Hepatitis E virus 

Picornaviridae Polio virus 

Foot-and-mouth disease
(FMDV)
Enterovirus 71 (EV71) 

Astroviridae Human astrovirus 

Mononegavirales Rhabdoviridae Vesicular stomatitis viru
Paramyxoviridae 

Respiratory syncytial vir
Filoviridae 

Bunyavirales Phenuiviridae 

Hantaviridae 

Arenaviridae 
HCV replicons
It is estimated that 185 million people are infected with HCV

globally [23]. Infected individuals have a 75–85% likelihood of

developing chronic infection, which when left untreated can lead

to liver cirrhosis and hepatocarcinoma [24]. Previous to 2011

[when the first direct-acting antivirals (DAAs) were released into

the market], pegylated interferon (IFN)-a combined with ribavirin

was used as a standard therapy, with aviraemia 24 weeks after

completion of antiviral therapy of 40–80%, depending on viral

genotype [25].

HCV is a hepacivirus within the Flaviviridae family and has a

single-stranded, positive-sense RNA genome of �9.6 knt (kilo

nucleotides). The HCV genome encodes a polyprotein that is

proteolytically cleaved by the viral NS3/4A and cellular proteases

into the three structural proteins: Core, Envelope protein 1 and

Envelope protein 2, and the seven nonstructural proteins: p7, NS2,

NS3, NS4A, NS4B, NS5A and NS5B. Most HCV strains will not

establish productive infection in cell culture and it was not until

2005 that JFH-1 was shown to be the first strain that could be
nt viruses

Minigenome Refs

[45]
[41]
[17]

virus [105]

 [42]
irus (JEV) [106]

[18]
irus (BVDB) [107]

[58]
V) [61]

)
[19]

alitis virus [67]

) [108]
[22]

ry [109]

 [92]
[20]
[16]

 virus [119]

[21]
[120]

s (VSV) Vesicular stomatitis virus (VSV) [115,116]
Nipah virus [113]
Human metapneumovirus (HMPV) [114]

us (RSV) Respiratory syncytial virus (RSV) [76,78]
Ebola virus (EBOV) [99]
Marburg virus (MARV) [117]
Rift Valley fever virus (RVFV) [110]
Severe fever with thrombocytopenia
virus (STFSV)

[111]

Hantaan virus [118]
Lassa virus (LASV) [112]
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FIGURE 1

Graphic representation of viral genomes and their derived replicons and minigenomes. Each region coding for a protein is shown as a box in red if the region
codes for a structural protein, in yellow if it codes for a nonstructural (NS) protein or in purple if it codes for a nonviral protein. Internal ribosome entry sites (IRES)
and the foot-and-mouth disease virus 2A autoprotease sequences (FMDV2A) are marked by lines or arrows, respectively. For minigenomes (d,f ) plasmid-driven
expression of viral genes is shown by circularized lines. (a) Hepatitis C virus (HCV) genome (ai) and its derived replicon (aii). The HCV replicon was established by
replacement of C, E1, E2 and NS2 by the neomycin phosphotransferase (neo). Translation of NS3–NS5B was driven by an IRES sequence. (b) Dengue virus (DENV)
genome (bi) and its derived replicons (bii and iii). Replicons for dengue virus have been produced by replacement of the C-terminal part of C, full length prM and
the N-terminal part of E with either green fluorescent protein (GFP), which is cleaved by from NS1 by the FMDV2A sequence (bii), or with a polyprotein cleaved by
the FMDV2A sequence producing puromycin-N-acetyl transferase (pac) and enhanced GFP (EGFP). Translation of NS1–NS5 is driven by an IRES sequence (biii). (c)
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propagated in a cell culture system without adaptive mutations

[26,27]. To overcome this limitation, in 1999 Lohmann et al.

defined NS3, NS4A, NS4B, NS5A and NS5B as the minimal set of

HCV proteins necessary to facilitate autonomous replication by

replacement of the coding region for Core, Envelope protein 1 and

2, p7 and NS2 with a neomycin resistance cassette. Expression of

NS3–NS5B was driven by the encephalomyocarditis virus (EMCV)

internal ribosome entry site (IRES), establishing a bicistronic HCV

replicon [18] (Fig. 1a). This development started DAA discovery

which eventually led to the licensing in 2011 of first-generation

DAAs boceprevir and telaprevir, both NS3/4A protease inhibitors.

Replicons were used to assess efficacy and bioavailability of drug

candidates, as well as analysis of escape mutants during discovery

and optimisation of candidates, reviewed in Refs. [28,29]. Howev-

er, boceprevir and telaprevir act on HCV genotype 1 only, making

development of subgenomic replicons of other genotypes neces-

sary to facilitate discovery of drugs acting on some or all

genotypes. To date, subgenomic replicons have been developed

for HCV strains 1a, 1b, 2, 3, 4, 5a and 6a to ensure testing of pan-

genotype effectiveness of drug candidates [30–35]. These replicon

systems have aided in the development of second-generation

DAAs such as ledipasvir, acting on the viral NS5A regulatory

protein, and sofosbuvir, a nucleotide phosphoramidate prodrug

inhibiting the NS5B polymerase [36,37]. Without the develop-

ment of HCV replicons DAA development would have been

severely delayed if not impossible and, for the first time in history,

patients can now be cured of HCV by DAA combination therapy.

Dengue virus replicons
Dengue serotype 1–4 viruses (DENV1–4) are arthropod-borne

flaviviruses spread by Aedes mosquitos. It is estimated that 390

million people are infected with dengue virus every year. Despite a

high proportion of infections being asymptomatic, 96 million

cases of dengue disease are diagnosed annually. Roughly 5% of

symptomatic patients progress to dengue haemorrhagic fever and/

or dengue shock syndrome, which require hospitalisation and can

be fatal. To date, there is no approved specific drug treatment

available against dengue virus [38].

Dengue virus has a single-stranded, positive-sense RNA genome

with a size of roughly 11 knt that is translated into a �3400 amino

acid polyprotein. The polyprotein is then processed by the viral

NS2b/3 and cellular proteases into the three structural proteins

Capsid, pre-Membrane and Envelope, and the seven nonstructural

(NS) proteins NS1, NS2a, NS2b, NS3, NS4a, NS4b and NS5, with

NS5 harbouring N-terminal methyltransferase and C-terminal

RdRp activity. In addition to the 50 and 30 UTRs, the first 65

nucleotides of the Capsid coding region contain a hairpin element

and the 50 cyclisation motif, which are essential for replication
Togaviridae genome (ci) and derived replicons for Chikungunya virus (CHIKV) (cii
replacement of the structural polyprotein (C-E3-E2-6K-E1) with the polyprotein cle
Renilla luciferase (RLuc) within nonstructural protein (nsp) 3 (ciii). The SINV replico
Respiratory syncytial virus genome (di) and its derived minigenome system (dii) or r
sequence of chloramphenicol acetyl-transferase (cat) with the 50 leader and the 30 t
viral polymerase (L), nucleoprotein (N), phosphoprotein (P) and matrix protein 2 (M
small hydrophobic protein (SH) and the two glycoproteins G and F, and insertion
derived replicon (eii). The replicon was established by replacement of the major
genome shown in (+) sense (fi) and its derived minigenome system (fii). The mini
trailer sequences of the viral genome and plasmid-driven co-expression of the v
[39]. A DENV2 replicon was established by Pang et al. in 2001 by

deletion of pre-Membrane and Envelope protein coding regions,

showing that DENV is amenable to analysis by replicons [40].

Around the same time, replicons were established for closely

related viruses like Kunjin, West Nile and yellow fever virus

[17,41,42]. In 2011, selectable DENV replicons harbouring reporter

genes were reported by multiple groups. These were constructed by

replacement of Envelope or by excision of the coding region from

the C-terminal portion of Capsid to the end of Envelope and

replacement with a variety of reporter genes, including fluorescent

proteins, luciferase and a combination of reporter genes and

antibiotic resistance cassettes. In replicons with two foreign genes

(e.g., reporter and resistance cassette) translation of nonstructural

proteins was driven by an IRES sequence, and translation of the

reporter was driven by the viral 50 UTR. The reporter is separated

from the antibiotic resistance by the foot-and-mouth disease virus

(FMDV) 2A autoprotease, enabling post-translational cleavage of

the reporter from the resistance marker [43–46] (Fig. 1b).

Dengue replicon systems have been successfully used for hit

discovery by Lu et al., who identified phthalazinone derivatives as

potent inhibitors of DENV2 replication [47]. Frabasile et al., using a

similar screen, showed that naringenin, a citrus flavonone, greatly

impaired genome replication using human Huh7.5 cells harbour-

ing DENV1 and DENV3 replicons [48]. Hernandez-Morales et al.

tested a HCV compound library in a high-throughput DENV2

replicon screening assay, identifying JNJ-1A as an effective lead

[49]. This publication showed how the subgenomic replicon sys-

tem can be used to detect drug-induced resistance-associated

mutations. In the case of JNJ-1A, resistance-associated mutations

were found to cluster in the NS4b coding region. Interestingly,

NS4b has no known enzymatic activity but is essential for replica-

tion, and is known to interact with viral and cellular proteins to

form the dengue replication complex and subvert the cellular

innate immune response [50]. Quinic acid derivatives were shown

to reduce the amount of NS3 in treated DENV1 and DENV3

replicon-containing cells by FACS analysis [51]. Interestingly,

genome replication and translation were excluded as the mode

of action for some drug candidates, such as hirsutine, using the

dengue subgenomic replicon system [52]. Dengue virus drug

discovery is a hotbed of activity as recently reviewed [53].

However, none of the aforementioned drug candidates has been

taken to the clinic.

Togavirus replicons
Chikungunya virus (CHIKV), western, eastern and Venezuelan

equine encephalitis virus (WEEV, EEEV, VEEV) and Sindbis virus

(SINV) are the most prominent members of the Togaviridae family.

CHIKV is transmitted by Aedes mosquitos and can cause symptoms
 and ciii) and Sindbis virus (SINV) (civ). Replicons have been established by
aved by FMDV2A producing pac and EGFP (cii) or an additional insertion of
n was established by replacement of the structural polyprotein with pac. (d)
eplicon (diii). The minigenome system was established by tagging the coding
railer sequences of the viral genome and plasmid-driven co-expression of the
2). The replicon (diii) was established by deletion of the coding regions of the
 of GFP at the 50 end of NS1. (e) Human norovirus (NV) genome (ei) and its
ity of the viral protein (VP)1 coding region with neo. (f) Ebola virus (EBOV)
genome was established by tagging GFP with the (+) sense 50 leader and 30

iral polymerase (L), VP30, VP35 and the nucleoprotein (NP).
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confined to Central and South America and can infect humans

causing flu-like symptoms in healthy individuals, and severe

illness and death in the immunosuppressed. This virus has been

weaponised by the USA and the Soviet Union [55]. SINV has a wide

geographic distribution and can cause fever, rash, polyarthritis and

myalgia in humans [56].

Members of the Togaviridae family are single-stranded positive-

sense RNA viruses with genomes of �10–12 knt in size, featuring a 50

cap and a 30 poly-A tail. Togavirus genomes code for two polypro-

teins, the 50 nonstructural and the 30 structural polyprotein. The

nonstructural polyprotein is produced by direct translation of the

genome. The structural polyprotein is produced by translation of a

26S subgenomic RNA produced by the viral RdRp from a promoter

located between the two coding regions. The structural polyprotein

is processed into four structural proteins: Capsid, E2/3, E1 and 6K.

The nonstructural polyprotein is proteolytically processed into four

nonstructuralproteins: nsP1,nsP2, nsP3 and nsP4, whichall interact

to form the replication complex (reviewed in Ref. [57]).

The first togavirus replicon was established in 1989 for SINV by

replacing the region coding for the structural polyprotein with the

chloramphenicol transferase(cat) gene[58].However, replicons of the

SINV and CHIKV old world togaviruses, using wildtype viral

sequences, caused cytopathic effect in host cells, and could not be

propagated in cell culture for a prolonged period of time. This was

found to be caused by nuclear translocation of nsP2, resulting in

cytotoxicity [59]. In the case of CHIKV and Semliki Forest virus

replicons, mutations such as P718G in the nuclear localisation

sequence of nsP2 are essential to achieve a noncytopathic replicon

phenotype [60–62]. Interestingly, replicons of wildtype sequence

VEEV, a new-world togavirus, did not show a cytopathic effect [63].

As with DENV replicons, several reporter genes and/or antibiotic

selection markers have been used to replace cat, such as fluorescent

proteinsorluciferase,eitheraloneorinconjunctionwithanantibiotic

resistance gene separated by the FMDV 2A autoprotease (Fig. 1b).

These replicons have been used to screen for drug candidates

acting on the transcription and replication machinery of Togaviridae

family members. Lead compounds identified in the past years

include abamectin, ivermectin and berberine – a plant-derived

isoquinoline alkaloid [64]. Abamectin and ivermectin are widely

used antihelminthics but no follow-up studies were conducted on

their antiviral effect against CHIKV. However, a Phase II/III trial is

ongoing to assess safety and efficacy of ivermectin use in DENV

infections [65]. In a follow-up study, berberine was shown to inhibit

the MAP kinase pathway activated by CHIKV infection, showing

that it was effective in alleviating symptoms of CHIKV infection in a

mouse model [66]. However, no clinical studies followed. The WEEV

replicon has been used in a high-throughput study using a library of

2206 extracts of marine organisms from diverse geographic regions.

Thirty-seven primary hits were identified and, from these primary

hits, an antimycin A derivative from the marine actinomycete

Streptomyces kaviengensis was isolated as the most promising.

Antimycin A is a prominent broad-spectrum antiviral that inhibits

the cellular mitochondrial electron transport chain and de novo

pyrimidine synthesis [67]. Besides drug discovery, togavirus

replicons have been modified and successfully used as platforms

for the expression of heterologous recombinant proteins and as

vaccine platforms [68–71].
1030 www.drugdiscoverytoday.com
Respiratory syncytial virus (RSV) replicon and
minigenome
RSV is a common cause of acute lower respiratory infections. In 2015

an estimated 33 million cases were reported, with �60000 deaths of

hospitalised children under 5 years of age [72]. Modern vaccine efforts

are well under way by several major pharma companies after the

disastrousfailureofafirst-generationformalin-inactivatedwholevirus

vaccine in the 1960s [73]. To date, only ribavirin, a small-molecule

broadband antiviral, and palivizumab, a monoclonal antibody target-

ing the viral fusion protein, have been approved for treatment and

prevention of RSV [74]. RSV is a member of the Paramyxoviridae family.

It is an enveloped virus with a nonsegmented, single-stranded,

negative-sense RNA genome of �15.2 knt. The genome codes for

11 proteins: small hydrophobic protein (SH), attachment protein (G),

fusion protein (F), matrix protein (M), Nucleoprotein (N), phospho-

protein (P), Largeprotein (L) harbouring RdRp activity, transcriptional

regulator M2.1, transcription/replication  regulatory protein M2.2,

and the two nonstructural proteins: NS1 and NS2.

RSV can be handled at Biosafety Level 2; however, the majority

of virus progeny in cell culture are filamentous and extremely

fragile [75]. Therefore, in the mid-1990s a minigenome system was

developed based on plasmid-driven expression of the L, N, P and

M2 proteins that form a ribonucleoprotein complex within

transfected cells, together with an RNA molecule consisting of

the leader and trailer sequences of the RSV genome and a region

coding for cat (Fig. 1c) [76]. This system was mainly used to

elucidate replication and transcription of the RSV genome, al-

though some drug leads were found, including an inhibitor of co-

transcriptional RNA guanylylation [77]. In 2011 a true RSV repli-

con was established by replacing the SH, G and F coding regions

with the selectable marker blasticidin S deaminase (bla). The

replicon was found to be stable and non-cytopathic in several cell

lines. It could be packaged into VLPs by co-expression of structural

proteins SH, G and F in trans, and transferred to different cell lines

by infection with resulting trans-packaged VLPs (Fig. 1d) [78].

This replicon system was then used in high-throughput screening

for specific anti-RSV drugs acting on the replication machinery of this

virus. The small-molecule compound AZ-27 was found to inhibit

transcription and replication initiation [79]. This finding was later

confirmed  using the minigenome system [80]. In 2014, Laganas et al.

further screened the Astra Zeneca compound library in a high-

throughput approach using the RSV replicon and identified three

new lead compounds – nucleoside analogues and non-nucleoside

inhibitors of the RSV RdRp [81]. In 2015 > 100 nucleoside analogue

polymerase inhibitors were screened using the HeLa395-RV replicon

cell line. Compound ALS-8176 was found to be a first-in-class small-

molecule inhibitor of RSV replication, acting by chain termination

during replication [82]. The compound was abandoned by Johnson &

Johnson in March 2019 after Phase IIb trials [83].

Norovirus replicon
Norovirus was originally identified in 1968 from an outbreak of

‘winter vomiting disease’ in Norwalk, Ohio. The disease manifests

in self-limiting fulminant vomiting, diarrhoea and low-grade fever

lasting from 24 to 48 h [84]. It is estimated that, per year, norovirus

prompts �900000 hospital visits in the developed world and an

estimated 200 000 deaths of children under 5 years of age in the

developing world [85].
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Despite very high virus titers in stools during infection and

successful culture of murine noroviruses in RAW264.7 and

primary murine cells, human noroviruses have eluded efficient

propagation in cell culture so far. Human noroviruses have been

found to produce low virus titers in B cells and 3D models of

differentiating Caco-2 cells; however, these data are controversial

[9,86,87]. To circumvent this lack of virus propagation in cell

culture, norovirus replicons have been established.

Human noroviruses are non-enveloped, positive-sense, single-

stranded RNA viruses belonging to the family of Caliciviridae. Their

genome size varies between 7.2 and 7.5 knt and they contain three

open reading frames. ORF1 codes for a polyprotein that is post-

translationally processed by the NS6 protease into the six non-

structural proteins NS6 (protease), NS7 (RdRp), NS5/VPg (capping

of viral RNA), NS3 (RNA helicase) and NS1/2 and NS4, which have

been implicated in the formation of the replication complex. ORF2

and ORF3 are translated from subgenomic RNAs into the major

and minor capsid proteins VP1 and VP2, respectively (reviewed in

Ref. [88]). The short 50 and 30 UTRs flanking the ORFs contain

secondary structures that stretch into the coding regions and are

essential for replication, transcription and pathogenesis [89,90].

In 2004, the plasmid-based infectious clone NV FL101 (based on

the 1968 Norwalk strain) was established, which contained the

cDNA of the full virus genome under the control of the T7

promoter [91]. Based on NV FL101, Chang et al. established a

replicon by replacing the majority of the VP1 coding region with

the neomycin phosphotransferase (npt) gene (Fig. 1e). Transfec-

tion of BHK cells expressing T7 polymerase with the replicon-

coding plasmid resulted in cell lines that maintained the replicon

under G-418 selection. The replicon could then be transferred to

Huh-7 cells by RNA extraction and transfection with the resulting

RNA, and maintained for 100 passages under G-418 selection [92].

The Groutas lab at Witchita State University rationally designs

protease inhibitors of norovirus and other viruses, and tests

compounds using replicon systems (reviewed in Ref. [93]). Four

nucleoside analogues were tested on the norovirus replicon, with

20-C-methylcytidine showing good antiviral activity [94].

Rupintrivir, a protease inhibitor of rhinovirus 3C protease, was

shown to clear cells of the norovirus replicon [95]. However, owing

to the fact that norovirus infections are short-lived and self-

limiting, the interest of pharma companies to develop small-

molecule inhibitors has been limited, and none of the mentioned

candidates has been taken forward into clinical trials.

Ebola virus minigenome
Although not a true replicon, the Ebola virus minigenome has been

an integral part of Ebola virus basic research and inhibitor discovery.

The 2013–2016 EBOV outbreak in Sierra Leone, Liberia and Guinea,

and the ongoing epidemic in the Democratic Republic of Congo, led

to a sharp increase in funding and efforts to develop vaccines and

therapeutics against Ebola and related filoviruses. EBOV causes viral
haemorrhagic fever with mortality rates of up to 80%, and the virus

has to be handled in BSL 4 conditions [96].

EBOV is a negative-sense, single-stranded RNA virus. The EBOV

genome is �19 knt in size and codes for eight major viral proteins:

Nucleoprotein (NP), glycoprotein (GP) and soluble glycoprotein

(sGP), VP35, VP40, VP24, VP30 and Large protein (L) [97]. The

L protein, harbouring RdRp activity, together with NP, VP30 and

VP35, constitutes the ribonucleoprotein complex, with the former

three proteins being sufficient for replication, and VP30 essential

for transcription [98]. The minigenome system consists of an RNA

molecule carrying the native 50 leader and 30 trailer sequences of

the genome, with an expression cassette inserted in the antisense

direction coding for either cat, luciferase or green fluorescent

protein (GFP) (Fig. 1f) [15,98]. Classically, cells are co-transfected

with plasmids coding for L, VP30, VP35 and NP. These cells are

then transfected with the in vitro transcribed minigenome RNA,

leading to replication and transcription of the minigenome within

transfected cells, and ultimately to expression of the reporter gene.

Over the years improvements have been made to this system, such

as cell lines stably expressing L, NP, VP30 and VP35 to minimise

variability introduced during co-transfection of plasmids [99], a

selectable marker that is co-expressed with the reporter for

creation of a stable cell line continuously replicating the mini-

genome and T7-polymerase-driven expression of the minigenome

within cells transfected with a plasmid coding for the minigenome

and T7 polymerase [100].

These minigenome systems have been used on either small-

scale or in high-throughput systems for identification of lead

compounds such as angelicin derivates and benzoquinolones

[101], MCCB4-8 [102], the two anticancer drugs 6-azauridine

and 20-deoxy-20-fluorocytidine [103], and VER-155008, a heat-

shock protein (hsp)70 inhibitor [104]. However, to date, none

of these compounds has been taken into the clinical phase for

use as antivirals.

Concluding remarks
The advent of reverse genetics and the establishment of stable

replicon-harbouring cell lines and minigenomes have furthered

our understanding of the molecular biology of viruses and

facilitated the advancement of antiviral drug discovery in the

absence of viable cell culture systems and for viruses that require

high-containment facilities. Replicons have been and still are

invaluable tools for drug discovery.
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