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A retrospective study of mortality 
for perioperative cardiac arrests 
toward a personalized treatment
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Perioperative cardiac arrest (POCA) is associated with a high mortality rate. This work aimed to study 
its prognostic factors for risk mitigation by means of care management and planning. A database of 
380,919 surgeries was reviewed, and 150 POCAs were curated. The main outcome was mortality prior 
to hospital discharge. Patient demographic, medical history, and clinical characteristics (anesthesia 
and surgery) were the main features. Six machine learning (ML) algorithms, including LR, SVC, RF, 
GBM, AdaBoost, and VotingClassifier, were explored. The last algorithm was an ensemble of the first 
five algorithms. k-fold cross-validation and bootstrapping minimized the prediction bias and variance, 
respectively. Explainers (SHAP and LIME) were used to interpret the predictions. The ensemble 
provided the most accurate and robust predictions (AUC = 0.90 [95% CI, 0.78–0.98]) across various 
age groups. The risk factors were identified by order of importance. Surprisingly, the comorbidity of 
hypertension was found to have a protective effect on survival, which was reported by a recent study 
for the first time to our knowledge. The validated ensemble classifier in aid of the explainers improved 
the predictive differentiation, thereby deepening our understanding of POCA prognostication. It 
offers a holistic model-based approach for personalized anesthesia and surgical treatment.

Abbreviations
POCA	� Perioperative cardiac arrest
ML	� Machine learning
SHAP	� Shapley additive Explanations
LIME	� Local interpretable model-agnostic explanations
ANOVA	� Analysis of variance
BMI	� Body mass index
CPR	� Cardiopulmonary resuscitation
ASA PS	� American society of anesthesiologist’s physical status classification
LR	� Logistic regression
SVC	� Support vector classifier
RF	� Random forest
GBM	� Gradient boosted machine
AdaBoost	� Adaptive boosting classifier
AUC​	� Area under the receiver operating characteristic curve
ROC	� Receiver operating characteristic

Perioperative cardiac arrest (POCA) is a rare but extremely serious risk event with high mortality during 
anesthesia and surgery. It is commonly defined as the loss of circulation that prompts resuscitation with chest 
compressions and/or defibrillation in the operating room1,2. The reported incidence of anesthesia-related POCA 
ranges from 0.04 to 8 per 10,000 administered anesthetics, and it is associated with high immediate mortality 
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rates varying between 20 and 60%3–7. Accurately predicting survival and promptly making correct decisions pose 
a huge challenge for anesthesiologists and clinicians under uncertain and dynamic environments.

The incidence and causes of cardiac arrests related to anesthesia have been studied over the last two decades1. 
Nevertheless, understanding of POCA and controlling the related risk factors are still in their infancy. Several 
studies8–11 analyzed individual variables associated with the survival of cardiac arrests by meta-analysis. The 
main issue with this approach is that effects are often multivariate rather than univariate, making results prone to 
bias. Multiple disease severity scores predicting survival have been developed as a tool for risk stratification after 
cardiac arrest12–21; however, as they usually have suboptimal predictive accuracy for a specific patient population, 
they should be cautiously extrapolated and applied to an individual patient in hospital.

Recently, machine learning has emerged as an effective approach to integrate multiple quantitative variables 
to improve accuracy of incidence predictions in medicine, with the potential to dramatically improve healthcare 
delivery22–26. Specifically, in the fields of anesthesiology and cardiac arrest research, it has recently been shown 
that ML is a promising method for a more comprehensive understanding of the risk factors and a supporting 
tool for healthcare improvement27–31.

Therefore, this study reported all cardiac arrests that occurred in a surgical population pre-intra-post 
anesthesia in one of the largest Chinese tertiary hospitals during an 8-year period, and examined causes of 
mortality with ML in addition to the univariate method of ANOVA. After validating the ML models, they can be 
used to identify the mortality risk factors and predict survival outcome of an individual patient. The data bring 
more information about anesthesia and surgery in addition to patients’ demographic characteristics, and ML 
models may help offer more potential to understand and manage the procedure than traditional resuscitation 
algorithms33. This study may provide a basis for designing model-based prediction and care management 
strategies of anesthesia/surgery to improve the prognosis and survival of POCA. The aim of this retrospective 
study was to identify factors of POCA and help to improvement in the prevention and management of POCA. 
This work will open up an avenue for a personalized anesthesia and surgery strategy, with a better treatment 
and a higher survival rate attained.

Methods
Data collection.  This retrospective study was approved by Human Research Ethics Committee of the First 
Affiliated Hospital of Zhengzhou University (number: KY-2021-0084). The study was registered at the Chinese 
Clinical Trial Registry (ChiCTR2100051737). The requirement for obtaining a written informed consent from 
patients was waived due to the retrospective nature of the study. The study was performed in accordance with the 
principles of the Declaration of Helsinki. Electronic medical records of 380,919 patients who had undergone a 
surgical procedure between December 2012 and June 2020 were reviewed by three of the authors (Huijie Shang, 
Qinjun Chu, Jin Guo) in July 2020. Brain-dead organ donors and babies undergoing cardiac compressions due to 
arrest immediately after caesarean section were excluded from the analysis. Patients on cardiopulmonary bypass 
or extracorporeal membrane oxygenation were also excluded because cardiac compressions are not needed in 
such situations and the use of such devices can significantly affect clinical outcomes. The “perioperative” period 
was defined as the time from entering the operating room to exiting the postanesthesia care unit. Cardiac arrest 
was defined as any condition that required performing chest compressions or defibrillation. From the anesthetic 
records, 150 patients who suffered POCA with a full record were selected for this study. Data were classified 
into patient demographic characteristics, operation-related variables, and cardiac arrest–related variables. The 
patients’ demographic characteristics included gender, age, body mass index (BMI), comorbidities, emergency, 
trauma, and five-category physical status by ASA PS. The operation-related variables comprised anesthetic type, 
surgical type, operative position, the amount of blood lost, blood transfused anti-arrhythmic drug use, and 
continuous infusion of vasoactive drugs. Cardiac arrest–related variables included arrest cause, arrest time, 
whether or not defibrillation was done, and duration of CPR. The primary outcome was in-hospital mortality of 
POCA patients until hospital discharge.

Statistical analysis.  The patients’ characteristics were compared by mortality outcomes. The statistical 
methods used in this work were the same as those used in a previous study31. The analyses were done in R 
programming language, version 3.6.1. The code has been uploaded (refer to Supplementary Document 1.2 in 
Online Supplementary Materials).

Machine learning models.  Six algorithms were explored. Five of them, namely LR, SVC, RF, GBM, and 
AdaBoost, are the most commonly used algorithms for binary classification problems in medicine37. An additional 
one is an ensemble approach, which is realized through a voting classifier aggregating the prediction of multiple 
classifiers. Therefore, we designed VotingClassifier, which combines the predictions of the aforementioned five 
models to improve prediction robustness.

Notably, it was quite a challenge to obtain a robust and accurate ML model given that the data were scarce 
because POCA is a very rare event. A thorough effort was made in this work as follows.

1.	 A five-fold cross-validation resampling procedure was used to evaluate the models on the limited training 
data to reduce the prediction bias. The bootstrapping method was further leveraged to minimize the 
potentially large prediction variance. For each fold, we extracted the true positive rate and false positive rate 
and calculated the area under the receiver operating characteristic curve (AUC), the mean of which was 
used as the optimization metric. Based on this series of results, we obtained a confidence interval of AUC to 
show the robustness of an ML classifier.

2.	 Grid and random hyperparameter search were used to search for optimal hyperparameters.
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Model explainability.  The ML models except LR are all “black-box” algorithms. To break down the black 
box, we employed several model-agnostic methods, including (1) Permutation feature importance to globally 
understand the importance and effects of features; (2) SHAP to calculate local feature importance for every 
observation38; and (3) LIME to analyze individual predictions (accumulated local effects)39. All ML analyses 
were conducted using open-source software libraries of Python, version 3.7.3.

Results
Patients’ characteristics and statistical analysis.  There were 380,919 patients who had undergone a 
surgical procedure, with 163 POCAs, of which 13 were excluded and 150 included (Supplementary Fig. 2). As 
shown in Table 1, 150 POCA patients were investigated. A total of 81 patients died prior to hospital discharge, 
resulting in a survival rate of 46%. The average age was 49.4 (± 18.5) years, with 96 (64.0%) patients being 
male and 73 (48.7%) being emergency cases. A total of 145 (96.7%) patients underwent general anesthesia, 
and 91 (60.7%) patients were in ASA PS III–V. Fourteen patients experienced cardiac arrest during induction, 
while 13 patients experienced cardiac arrest during intubation. The majority of cardiac arrests (N = 102; 68.0%) 
occurred during surgery. The common causes of POCA were preoperative complications (N = 34; 22.7%), related 
to anesthesia (N = 23; 15.3%), and surgical complications (N = 41; 27.3%).

The following variables were significantly different between the survivor and non-survivor groups (P < 0.05): 
gender, surgical type, emergency, operative position, ASA PS, hemorrhage, blood transfusion, epinephrine, and 
CPR. Accordingly, the favorable categories for survival were female sex, throat (or other) surgery, non-emergency, 
and ASA PS I–II. In contrast, there was a higher probability of mortality in male individuals, neurosurgery, 
emergency, supine operative position, massive hemorrhage and blood transfusion, and ASA PS V. A higher 
epinephrine dose (4.0 [IQR 2.0–7.9] versus 0.5 [IQR 0.0–2.0] mg) was administered, and a longer CPR (37.0 
[IQR 27.0–43.0] versus 11.0 [IQR 1.0–37.0] min) was performed during cardiac arrest in non-survivors.

Other variables, such as age, BMI, trauma, arrest time, use of defibrillation, and arrest cause, were not 
significantly different between the two groups. There was no evidence that the administration of drugs except 
epinephrine was directly associated with survival or death.

In addition, comorbidities and medical history were generally not strongly associated with mortality. The 
observed difference in the presence of hypertension (P = 0.146) between the survival and death groups was 
14.6%, which indicates that hypertension might be a remarkably influential comorbidity for further exploration.

ML models.  The 150 patients were split into two subgroups in a gender-stratified manner, i.e., 112 (75%) and 
38 (25%) for training and testing of the ML models, respectively. To preserve the same gender proportions of 
patients in each subgroup as in the total patients, the data were split in a gender-stratified manner. The predicting 
outcome was the probability of mortality.

Figure 1 shows the Receiver Operating Characteristic (ROC) curves generated with the test data by the six 
ML models, including LR, SVC, RF, GBM, AdaBoost, and VotingClassifier, and their AUCs were 0.84, 0.87, 0.91, 
0.90, 0.87, and 0.90, respectively.

In binary classification, the most basic metric/bench-mark is the confusion matrix given that “accuracy,” 
“precision,” “recall,” “f1-score,” “ROC,” and “AUC” all stem from the confusion matrix38. We used these 
multiperspective performance measures to fairly judge the predictive models.

As shown in Table 2, three significantly accurate ML models were the RF (AUC, 0.91 [95% CI, 0.79–0.98]), 
the ensemble (AUC, 0.90 [95% CI, 0.78–0.98]), and the GBM (AUC, 0.90 [95% CI, 0.79–0.98]). It is not a 
surprise that as a simple and interpretable classifier, the LR produced the poorest accuracy (AUC, 0.84 [95% CI, 
0.71–0.95]). Taking other metrics into account, it was demonstrated that the VotingClassifier outperformed all of 
the other classifiers, with the highest values of accuracy (0.84), precision (0.85), recall (0.85), and f1-score (0.85).

We further considered two aspects to analyze the prediction performance of the models. One was probability 
curves for each ML model (Fig. 2); another was model comparisons with respect to mortality estimation across 
age groups (Fig. 3).

As shown in Fig. 2, the LR estimated a higher probability of survival. Corresponding to a threshold of 50%, 
the false negative (FN) of mortality was 6, and the false positive (FP) was 4; this means that six patients who died 
were wrongly classified into survivors, while four patients who survived were wrongly predicted to have died. 
For the SVC model, FN was 5 and FP was 3, with low variance in probability attributed to all survivors. For the 
RF and the GBM, the misclassified values were smaller, i.e., FN = 4 and FP = 3. The VotingClassifer brought about 
the smallest misclassifications, with FN = 3 and FP = 3. In addition, the GBM and VotingClassifier demonstrated 
significant separation of the dead individuals from the survivors, with lower overlap between the two groups.

As shown in Supplementary Fig. 1, the VotingClassifier was the best classifier for age groups “ < 12 years” 
and “ ≥ 65 years”, and probably the second best for age groups “12–40 years” and “40–65 years” (outmatched 
only by the RF). The GBM model tended to significantly overestimate mortality in age groups “ < 12 years” and 
“ ≥ 65 years”.

To summarize, the ensemble ML model (VotingClassifier) outperformed all of the other classifiers by making 
better predictions and achieving better performance than any single contributing model. Moreover, it reduced 
the spread or dispersion of the predictions with higher robustness.

Model explainability.  First, we applied the SHAP to explain predictions on the test data by the 
VotingClassifier. The SHAP summary, combining feature importance with feature effects, was visualized with 
violin plots to present the distribution of Shapley values (Fig. 3). The position on the y-axis was determined by 
the feature and that on the x-axis by the Shapley value.

The following results were obtained, and most of them enhanced the previous ANOVA analyses:
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All patients

Survived to hospital discharge

p-ValueYes No

Number of patients (%) 150 (100.0) 69 (46.0) 81 (54.0)

Gender, N (%) 0.016

Female 54 (36.0) 32 (46.4) 22 (27.2)

Male 96 (64.0) 36 (57.2) 60 (74.1)

Age, years (SD) 49.4 (18.5) 51.3 (19.4) 47.1 (17.2) 0.155

BMI, kg/m2 (SD) 24.3 (3.9) 24.6 (4.1) 23.8 (3.7) 0.233

Comorbidities and medical history, N (%)

Diabetes 10 (6.7) 7 (10.1) 3 (3.7) 0.186

Hypertension 43 (28.7) 24 (34.8) 19 (23.5) 0.146

Cardiac disease 34 (22.7) 15 (21.7) 19 (23.5) 1.000

Pulmonary disease 36 (24.0) 14 (20.3) 22 (27.2) 0.489

Hepatic disease 14 (9.3) 4 (5.8) 10 (12.3) 0.298

Renal disease 20 (13.3) 9 (13.0) 11 (13.6) 1.000

Neurological disease 31 (20.7) 13 (18.8) 18 (22.2) 0.823

Cancer 33 (22.0) 15 (21.7) 18 (22.2) 1.000

Surgical type, N (%) 0.020

Abdominal 63 (42.0) 28 (40.6) 35 (43.2)

Neurosurgery 17 (11.3) 3 (4.3) 14 (17.3)

Thoracic 37 (24.7) 15 (21.7) 22 (27.2)

Throat 12 (8.0) 8 (11.6) 4 (4.9)

Others 21 (14.0) 14 (20.3) 7 (8.6)

Emergency, N (%) 73 (48.7) 24 (34.8) 49 (60.5) 0.005

Trauma, N (%) 19 (12.7) 11 (15.9) 8 (9.9) 0.352

Anesthetic type, N (%) 1.000

General 145 (96.7) 66 (95.7) 79 (97.5)

Local 5 (3.3) 2 (2.9) 3 (3.7)

Operative position (%) 0.016

Lateral decubitus 21 (14.0) 13 (19.1) 8 (9.8)

Lithotomy 4 (2.7) 4 (5.9) 0 (0.0)

Prone 3 (2.0) 3 (4.4) 0 (0.0)

Supine 122 (81.3) 48 (70.6) 74 (90.2)

ASA PS, N (%) 0.000

1 4 (2.7) 4 (5.8) 0 (0.0)

2 55 (36.7) 35 (50.7) 20 (24.7)

3 37 (24.7) 16 (23.2) 21 (25.9)

4 36 (24.0) 12 (17.4) 24 (21.0)

5 18 (12.0) 1 (1.4) 17 (24.6)

Arrest time, N (%) 0.937

Induction 14 (9.3) 7 (10.1) 7 (8.6)

Intubation 13 (8.7) 5 (7.2) 8 (9.9)

Surgery 102 (68.0) 46 (66.7) 56 (69.1)

NA* 21 (14.0) 10 (14.5) 11 (13.6)

Defibrillate, N (%) 72 (48.0) 30 (43.5) 42 (51.9) 0.482

Arrest cause, N (%) 0.200

Anesthesia 23 (15.3) 11 (15.9) 12 (14.8)

Comorbidities 34 (22.7) 10 (14.5) 24 (29.6)

Surgery 41 (27.3) 20 (29.0) 21 (25.9)

Unknown 52 (34.7) 27 (39.1) 25 (30.9)

Hemorrhage, median [Q1, Q3] (ml) 100.0 [2.3, 500.0] 95.0 [4.3, 200.0] 200.0 [0.8, 1075.0] 0.032

Blood transfusion, median [Q1, Q3] (ml) 0.0 [0.0, 1000.0] 0.0 [0.0, 0.0] 0.0 [0.0, 1712.0] 0.002

Epinephrine, median [Q1, Q3] (mg) 2.0 [0.1, 5.9] 0.5 [0.0, 2.0] 4.0 [2.0, 7.9] 0.000

Atropine, median [Q1, Q3] (mg) 0.0 [0.0, 0.5] 0.0 [0.0, 0.5] 0.0 [0.0, 0.5] 0.737

Amiodarone, median [Q1, Q3] (g) 0.0 [0.0, 0.0] 0.0 [0.0, 0.0] 0.0 [0.0, 0.0] 0.598

Ephedrine, median [Q1, Q3] (mg) 0.0 [0.0, 0.0] 0.0 [0.0, 2.3] 0.0 [0.0, 0.0] 0.182

Methoxamine, median [Q1, Q3] (mg) 0.0 [0.0, 0.0] 0.0 [0.0, 0.0] 0.0 [0.0,0.0] 0.885

CPR, median [Q1, Q3] (min) 30.0 [10.0, 37.0] 11.0 [1.0, 37.0] 37.0 [27.0, 43.0] 0.000
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1.	 A high mortality risk was strongly associated with the top 10 important features, in the following order of 
importance: longer CPR (≥ 60 min), higher ASA PS (IV–V), surgical type (“abdominal” or “neurosurgery”), 
higher dose of epinephrine (> 6 mg), emergency, male sex, massive hemorrhage (≥ 800 mL), older age 
(especially > 65 years), cause of arrest (“anesthesia” or “comorbidities”), or massive blood transfusion 
(≥ 800 mL);

2.	 In the less important features, operative position (“supine”), arrest time (“induction”), comorbidity (“cancer” 
or “hepatic disease”), BMI (“obese”), and atropine (> 0.65 mg) showed slight positive associations with 
mortality;

3.	 Counterintuitively but interestingly, the comorbidity of hypertension appeared to have a protective effect on 
survival prior to hospital discharge, similar as recently reported33.

All effects described the model behavior and were not necessarily causal in the real world, which was why we 
used the term “association” rather than “causation” in the above statements32.

Table 1.   Patient demographics and operative variables of entire cohort stratified by survival to hospital 
discharge. NA*: not available.

Figure 1.   ROC curves for the six ML models on the test data. The AUC value of each model is represented by 
“(AUC = mean ± standard deviation)”, which was estimated from 1000 bootstrap resamples of predictions on the 
test data. Each ROC curve is visualized by corresponding plot with shaded bands.

Table 2.   Performance of the six ML models for the estimation of mortality of patients with a POCA. The 95% 
CI of AUC was calculated from 1000 bootstrap resamples of predictions on the test data.

Models AUC [95%CI] Accuracy Precision Recall f1-score

Logistic regression 0.84 [0.71–0.95] 0.74 0.78 0.70 0.74

Support vector classifier 0.87 [0.73–0.96] 0.79 0.83 0.75 0.79

Random forest 0.91 [0.79–0.98] 0.82 0.84 0.80 0.82

Gradient boost machine 0.90 [0.79–0.98] 0.82 0.84 0.80 0.82

Adaptive boosting classifier 0.87 [0.73–0.97] 0.76 0.79 0.75 0.77

Ensemble (VotingClassifer) 0.90 [0.78–0.98] 0.84 0.85 0.85 0.85
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Second, we interpreted the VotingClassifier with the LIME explainer, particularly to explore misclassification 
of prediction. Four typical cases corresponding to the four quadrants in a confusion matrix (TP, TN, FP, FN), 
were compared. The top 10 features are presented in Fig. 4, with the weight of each feature represented in either 
green or red depending on whether it favored survival or death, respectively.

In Fig. 4a, we show a specific individual with a high probability of mortality (80%). This patient died as 
predicted, and the key risk-associated factors were longer CPR (30–60 min, ~ 20% impact on mortality), ASA PS 
of IV–V (~ 14% impact), epinephrine > 5 mg (~ 12% impact), emergency (~ 9% impact), obesity (~ 8% impact), 
and no hypertension (~ 7% impact). In one TN case (Fig. 4b), the predicted probability of mortality was 24%. The 
patient actually survived and was correctly predicted. The survival-favorable features were CPR ≤ 30 min (~ 27% 
increased probability of survival), ASA PS of I–III (~ 14% increase), underweight BMI, hemorrhage < 200 mL, 
female sex, and no hepatic disease.

In one FP case (Fig. 4c), the predicted probability of mortality was 62%, but the patient survived. The key 
unfavorable features for survival were CPR 30–60 min (~ 19% impact) and hemorrhage ≥ 800 mL (~ 12% impact), 
to which the misclassification could be attributed. In one FN case (Fig. 4d), the predicted probability of mortality 
was 39%. However, the patient died. The most survival-favorable feature was CPR ≤ 30 min (~ − 28% impact), 

Figure 2.   Probability curves for each ML model. Survivors indicated in green, and non-survivors in red. 
p < 0.005 for ensemble versus other models.
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which probably overpowered other survival-unfavorable features, such as emergency, thereby leading to this 
misclassification.

Discussion
Given the fact that POCA is a quite rare incidence, it is hard to access to an abundant amount of data. Moreover, 
there are few papers about cardiac arrests in China. The present study investigated POCA in 380,919 patients at a 
Chinese tertiary hospital. Overall, the incidence of POCA was 3.9 per 10,000 surgical procedures with a mortality 
of 54% prior to hospital discharge. All of the ML models used in this study, except for the LR, are “black-box” 
algorithms, which provide great accuracy at the cost of low interpretability33. There are multiple dangers of a 
decision made by ML without opening the black box, as follows: (1) It is usually hard to explain the predictions 
to clinicians, which is a barrier to the adoption of ML for high stakes decisions35; (2) More and more concerns 
or regulations specific to ML have been emerging on interpretability and its predictive reasoning (for example, 
the EU General Data Protection Regulation).

First, a global model-agnostic method of permutation feature importance was employed in this work. The 
results were not shown in this article because some evident drawbacks of this method were found: (1) shuffling 
the feature added randomness and the results usually varied greatly; (2) some features were inherently correlated, 
and this method was very biased by unrealistic data instances.

In this study, SHAP and LIME were demonstrated to be two competent local model-agnostic methods in the 
model explainability. Instead of calibrating global feature contributions, these two methods train local surrogate 
models to explain individual predictions with more solid insights generated, such as how to rank a feature 
by importance with a favorable or unfavorable impact value on prediction outcome. We obtained contrastive 
explanations with the two explainers, particularly to explore misclassification, making the ensemble ML model 
more transparent and shedding light on their applications in clinical decision-making. Explanations can be used 
to interrogate and rectify the ensemble model when such a misclassification surfaces.

Our study has several limitations. First, although the ultimately validated ensemble model was robust and 
accurate, the size of data used was still relatively small. Specifically, there were only eight patients younger than 

Figure 3.   SHAP importance plots of the mortality and risk factors for the ensemble ML model 
(VotingClassifier). The features are ranked by importance. Each row represents the impact of a feature on 
the outcome of mortality, with higher SHAP values indicating higher likelihood of a positive outcome. For a 
binary feature, like gender, “male” → “1” is shown in red while “female” → “0” is shown in blue. For the detailed 
mapping of categorical features, please refer to the code online (such as “ < 12 ys” → “0”, “12 ~ 40 ys” → “1”, 
“40 ~ 65 ys” → “2”, “ > 65 ys” → “3”).
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12 years, which was probably why most of the ML models (except the ensemble) failed to satisfactorily predict 
the outcome of this age group. In the future, more internal data and even external data may bring more benefits 
to establish generalizability and further increase the model fidelity. Second, our dataset had no information on 
post-arrest care and discharge disposition. Thus, it was impossible to systematically follow up and assess long-
term recovery and survival of the discharged patients. Third, our study had a single-center retrospective design, 
and our dataset was abstracted from the electronic medical records by the researchers in this study, who had 
not been involved in the clinical treatment of the patients; therefore, the accuracy of the dataset was verified.

Finally, an ML model is not a “magic button,” although it would have reached a “super-human” performance. 
Like most ML approaches, the ML models validated in this study focused on predicting outcomes rather than 
on understanding causality, i.e., they found correlations but not causation. As an example, it was revealed in this 
study that two top predictors of risk for in-hospital mortality were CPR and epinephrine. The ensemble model 
predicted that longer CPR and higher dose of epinephrine were associated with a higher probability of death. In 
fact, the opposite was true; namely, patients (with severe ASA PS or massive hemorrhage) would be at a higher 
risk for serious complications and sequelae, even mortality, if insufficient CPR and/or epinephrine treatment 
were not timely delivered.

In clinical practice, accurate prediction models allow for improved medical prognostication, earlier 
identification of patients at high risk of complications, better risk adjustment and utilization of critical care 
resources, and more effective patient-physician-family communication.

In this study, the validated ensemble model provides superior prediction accuracy by virtue of high fidelity 
to data across various age groups and high robustness to uncertainty, as well as good discrimination between 
survivors and non-survivors. The data comprised operative parameters in addition to patients’ demographic 
characteristics, which makes it possible to integrate operational optimization and/or tactical planning with the 
model by managing the operative parameters and procedure.

(a)True positive, patient died                          (b) True negative, patient survived    

(c) False positive, patient survived                         (d) False negative, patient died

Figure 4.   LIME explainer for four typical scenarios. (a) True positive, patient died, i.e., a correctly classified 
non-survivor, (b) True negative, patient survived, i.e., a correctly classified survivor, (c) False positive, patient 
survived, i.e., an incorrectly classified survivor (predicted to die), and (d) False negative, patient died, i.e., an 
incorrectly classified non-survivor (predicted to survive). Features with a green bar favored survival, and those 
with a red bar were predictive of mortality. The x-axis shows how much each feature added to or subtracted 
from the final probability value for the patient. Each weight can be interpreted in the context of the original 
probability; if a feature is absent for a patient, it can be numerically added to or subtracted directly from the 
initial probability.
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One application scenario is early recognition of problems and suggestion of actions to avoid critical events. 
For an individual patient, an optimal combination of anesthesia management, surgical type, operative position 
(if optional), and treatment drugs could lead to a significantly improved probability of survival until hospital 
discharge (some exploratory simulations were done but not shown in this article). Another application scenario is 
that the model could enhance rational patient risk monitoring during operations, with drug doses administered in 
a timely fashion (target-controlled infusion), resulting in precision, efficacy, and safety of intravenous anesthesia 
delivery. In short, this model-based optimization opens an avenue for a personalized anesthesia and surgery 
strategy, with a better treatment and a higher survival rate attained.

Furthermore, clinicians hesitate to apply a black-box algorithm that is hard for them to understand and 
trust33,34. In this work, the explainers (LIME and SHAP) may pinpoint logics of decision-making and mitigate 
issue of clinical liability, encouraging clinicians to understand and leverage ML to assist decision-making and 
change management in practice.

Conclusion
The ensemble ML model makes solid predictions of mortality on the data of POCA patients’ demographic and 
operative parameters, bringing a more comprehensive understanding of the risk factors and patient prognostics 
prior to hospital discharge, compared to the approach with ANOVA. Furthermore, the explainers of LIME and 
SHAP provide a more comprehensible and holistic approach to the assessment of prognosis of an individual 
patient. All of these results may assist risk management of in-hospital cardiac arrest with improved patient-
centered and personalized care.

Data availability
The data and codes for analysis are accessible on GitHub if required, at https://​github.​com/​niuneo/​Risk-​factor-​
analy​sis-​of-​morta​lity-​for-​perio​perat​ive-​cardi​ac-​arrest-​using-​machi​ne-​learn​ing.

Received: 14 January 2022; Accepted: 2 August 2022

References
	 1.	 Andersen, L. W., Holmberg, M. J., Berg, K. M., Donnino, M. W. & Granfeldt, A. In-hospital cardiac arrest: A review. JAMA, J. Am. 

Med. Assoc. 321, 1200–1210 (2019).
	 2.	 Kazaure, H. S., Roman, S. A., Rosenthal, R. A. & Sosa, J. A. Cardiac arrest among surgical patients: an analysis of incidence, patient 

characteristics, and outcomes in ACS-NSQIP. JAMA Surg. 148, 14–21 (2013).
	 3.	 Ellis, S. J. et al. Anesthesia-related cardiac arrest. Anesthesiology 120, 829–838 (2014).
	 4.	 Huo, T. et al. Major complications of regional anesthesia in 11 teaching hospitals of China: a prospective survey of 106,569 cases. 

J. Clin. Anesth. 31, 154–161 (2016).
	 5.	 Jansen, G. et al. Incidence, characteristics and risk factors for perioperative cardiac arrest and 30-day-mortality in preterm infants 

requiring non-cardiac surgery. J. Clin. Anesth. 73, 110366 (2021).
	 6.	 Jansen, G. et al. Incidence, mortality, and characteristics of 18 pediatric perioperative cardiac arrests: An observational trial from 

22,650 pediatric anesthesias in a German tertiary care hospital. Anesth. Analg. 133, 747–754 (2021).
	 7.	 Nunnally, M. E., O Connor, M. F., Kordylewski, H., Westlake, B. & Dutton, R. P. The incidence and risk factors for perioperative 

cardiac arrest observed in the national anesthesia clinical outcomes registry. Anesth. Analg. 120, 364–370 (2015).
	 8.	 Sobreira-Fernandes, D. et al. Perioperative cardiac arrests–A subanalysis of the anesthesia -related cardiac arrests and associated 

mortality. J. Clin. Anesth. 50, 78–90 (2018).
	 9.	 Sprung, J. et al. Predictors of survival following cardiac arrest in patients undergoing noncardiac surgery: A study of 518,294 

patients at a tertiary referral center. Anesthesiology 99, 259–269 (2003).
	10.	 Hur, M. et al. The incidence and characteristics of 3-month mortality after intraoperative cardiac arrest in adults. Acta Anesthesiol. 

Scand. 61, 1095–1104 (2017).
	11.	 Siriphuwanun, V., Punjasawadwong, Y., Saengyo, S. & Rerkasem, K. Incidences and factors associated with perioperative cardiac 

arrest in trauma patients receiving anesthesia. Risk Manag. Healthc. Policy 11, 177–187 (2018).
	12.	 Subramanian, V., Mascha, E. J. & Kattan, M. W. Developing a clinical prediction score: Comparing prediction accuracy of integer 

scores to statistical regression models. Anesth. Analg. 132(6), 1603–1613 (2021).
	13.	 Cooper, S. & Evans, C. Resuscitation Predictor Scoring Scale for inhospital cardiac arrests. Emerg. Med. J. 20, 6–9 (2003).
	14.	 Balan, P. et al. The cardiac arrest survival score: A predictive algorithm for in-hospital mortality after out-of-hospital cardiac arrest. 

Resuscitation 144, 46–53 (2019).
	15.	 Choi, J. Y. et al. Performance on the APACHE II, SAPS II, SOFA and the OHCA score of post-cardiac arrest patients treated with 

therapeutic hypothermia. PLoS ONE 13, e196197 (2018).
	16.	 Constant, A. et al. Predictors of Functional Outcome after Intraoperative Cardiac Arrest. Anesthesiology 121, 482–491 (2014).
	17.	 Ebell, M. H., Jang, W., Shen, Y. & Geocadin, R. G. Development and validation of the good outcome following attempted 

resuscitation (GO-FAR) score to predict neurologically intact survival after in-hospital cardiopulmonary resuscitation. JAMA 
Intern. Med. 173, 1872 (2013).

	18.	 Fugate, J. E., Rabinstein, A. A., Claassen, D. O., White, R. D. & Wijdicks, E. F. M. The four score predicts outcome in patients after 
cardiac arrest. Neurocrit. Care 13, 205–210 (2010).

	19.	 Seewald, S. et al. CaRdiac Arrest Survival Score (CRASS)—A tool to predict good neurological outcome after out-of-hospital 
cardiac arrest. Resuscitation 146, 66–73 (2020).

	20.	 Vane, M. F. et al. Predictors and their prognostic value for no ROSC and mortality after a non-cardiac surgery intraoperative 
cardiac arrest: a retrospective cohort study. Sci. Rep.-UK 9(1), 1–9 (2019).

	21.	 Al’Aref, S. J. et al. Machine learning of clinical variables and coronary artery calcium scoring for the prediction of obstructive 
coronary artery disease on coronary computed tomography angiography: analysis from the CONFIRM registry. Eur. Heart J. 41, 
359–367 (2020).

	22.	 Xue, B. et al. Use of machine learning to develop and evaluate models using preoperative and intraoperative data to identify risks 
of postoperative complications. JAMA Netw. Open 4(3), e212240. https://​doi.​org/​10.​1001/​jaman​etwor​kopen.​2021.​2240 (2021).

	23.	 Char, D. S., Shah, N. H. & Magnus, D. Implementing machine learning in health care - addressing ethical challenges. N. Engl. J. 
Med. 378, 981–983 (2018).

https://github.com/niuneo/Risk-factor-analysis-of-mortality-for-perioperative-cardiac-arrest-using-machine-learning
https://github.com/niuneo/Risk-factor-analysis-of-mortality-for-perioperative-cardiac-arrest-using-machine-learning
https://doi.org/10.1001/jamanetworkopen.2021.2240


10

Vol:.(1234567890)

Scientific Reports |        (2022) 12:13709  | https://doi.org/10.1038/s41598-022-17916-3

www.nature.com/scientificreports/

	24.	 Hashimoto, D. A., Witkowski, E., Gao, L., Meireles, O. & Rosman, G. Artificial intelligence in anesthesiology. Anesthesiology 132, 
379–394 (2020).

	25.	 Nanayakkara, S. et al. Characterising risk of in-hospital mortality following cardiac arrest using machine learning: A retrospective 
international registry study. Plos Med. 15, e1002709 (2018).

	26.	 Harford, S. et al. A machine learning based model for Out of Hospital cardiac arrest outcome classification and sensitivity analysis. 
Resuscitation 138, 134–140 (2019).

	27.	 Churpek, M. M. et al. Multicenter comparison of machine learning methods and conventional regression for predicting clinical 
deterioration on the wards. Crit. Care Med. 44, 368–374 (2016).

	28.	 Kwon, J. M., Lee, Y., Lee, Y., Lee, S. & Park, J. An algorithm based on deep learning for predicting in-hospital cardiac arrest. J. Am. 
Heart Assoc. 7(13), e008678 (2018).

	29.	 Wu, T. T., Lin, X. Q., Mu, Y., Li, H. & Guo, Y. S. Machine learning for early prediction of in-hospital cardiac arrest in patients with 
acute coronary syndromes. Clin. Cardiol. 44, 349–356 (2021).

	30.	 Moitra, V. K. et al. Cardiac arrest in the operating room. Anesth. Analg. 126, 876–888 (2018).
	31.	 Alnabelsi, T. et al. Predicting in-hospital mortality after an in-hospital cardiac arrest: A multivariate analysis. Resusc. Plus 4, 100039 

(2020).
	32.	 Schober, P., Mascha, E. J. & Vetter, T. R. Statistics From A (Agreement) to Z (z Score): A guide to interpreting common measures 

of association, agreement, diagnostic accuracy, effect size, heterogeneity, and reliability in medical research. Anesth. Analg. 133(6), 
1633–1641 (2021).

	33.	 Poon, A. I. F. & Sung, J. J. Y. Opening the black box of AI-Medicine. J. Gastroen. Hepatol. 36, 581–584 (2021).
	34.	 Feldman, J., Kuck, K. & Hemmerling, T. M. Black box, gray box, clear box? How well must we understand monitoring devices?. 

Anesth. Analg. 132(6), 1777–1780 (2021).
	35.	 The, L. R. M. Opening the black box of machine learning. Lancet Respir. Med. 6, 801 (2018).
	36.	 Hemmerling, T. M. Automated anesthesia. Curr. Opin. Anesthesiol. 22(6), 757–763 (2009).
	37.	 Hastie, T. J., Tibshirani, R. J. & Friedman, J. H. The Elements of Statistical Learning: Data Mining, Inference, and Prediction 2nd 

edn. (Springer, New York, 2009).
	38.	 Lundberg, S. & Lee, S.I. A unified approach to interpreting model predictions. arXiv:​1705.​07874 (2017).
	39.	 Ribeiro, M.T., Singh. S., & Guestrin, C. Why should I trust you?: Explaining the predictions of any classifier. arXiv:​1602.​04938. 

(2016).

Acknowledgements
The authors thank Dr. Hongxing Niu for the support of analytics, modeling, and result explanation.

Author contributions
Study conception: H.S., M.J., J.Y.; Study design: H.S., Q.C., J.Y.; Data curation: H.S., Q.C., J.G., H.Y.; Discussion 
and validation of the content: S.Z., M.J.; Critical revision of the work: J.Y.; All authors reviewed the manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://​doi.​org/​
10.​1038/​s41598-​022-​17916-3.

Correspondence and requests for materials should be addressed to J.Y.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2022

http://arxiv.org/abs/1705.07874
http://arxiv.org/abs/1602.04938
https://doi.org/10.1038/s41598-022-17916-3
https://doi.org/10.1038/s41598-022-17916-3
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	A retrospective study of mortality for perioperative cardiac arrests toward a personalized treatment
	Methods
	Data collection. 
	Statistical analysis. 
	Machine learning models. 
	Model explainability. 

	Results
	Patients’ characteristics and statistical analysis. 
	ML models. 
	Model explainability. 

	Discussion
	Conclusion
	References
	Acknowledgements


